首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Smith MJ  Wise PM 《Brain research》2001,898(1):162-165
It has been demonstrated previously that kappa opioid receptor agonists, such as dynorphin, inhibit oxytocin secretion in the rat. To determine whether kappa agonists act directly on oxytocin-containing magnocellular neurons to inhibit hormone secretion, we utilized immunofluorescence to examine the cellular localization of kappa opioid receptors in the rat paraventricular and supraoptic nuclei. kappa Opioid receptor immunoreactivity co-localized with oxytocin-containing cell bodies, their axons and axon terminals. Thus, our results suggest that kappa opioid receptor agonists can exert direct inhibitory actions on oxytocin magnocellular neurons.  相似文献   

2.
The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e. shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e. APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1–1 μM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1–10 wM concentrations. In addition to the potent agonist action of etorphine at μ-, δ- and κ-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potentantagonist of excitatory μ-, δ- and κ-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all μ-, δ- and κ-opioid receptor-mediated functions, whereas addition of the epsilon (ε)-opioid-receptor antagonist, β-endorphin(1–27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine showsexcitatory agonist action onnon-μ-/δ-/κ-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on μ-, δ- and κ-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of μ-, δ- and -opioid agonists. This weak excitatory agonist action of etorphine on non-μ-/δ-/κ-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.  相似文献   

3.
In vivo treatment with an antisense (AS) phosphorothioate oligodeoxynucleotide (oligo) to the rat κ-opioid receptor selectively inhibited κ-mediated analgesia in the rat cold-water tail-flick test. Intracerebroventricular (i.c.v.) AS oligo significantly inhibited the analgesic effect of i.c.v. spiradoline, but not that of μ- or δ-opioid agonists. The dose-effect curve for s.c. spiradoline was shifted to the right after AS, but not missense or sense oligo treatment. Thus, AS oligos provide another technique with which to selectively manipulate opioid receptors and further support the role of non-μ opioid receptors in mediating analgesia in rats.  相似文献   

4.
The co-localization patterns of catecholamine varicosities and peptide-specific neuronal perikarya were assessed within the supraoptic and paraventricular nuclei in the rhesus monkey, Macaca mulatta. Formaldehyde-induced histofluorescence was coupled with the unlabelled antibody technique for the demonstration of neuropeptides. Hormone-specific neurophysin staining served to identify vasopressin and oxytocin-containing neurons in these hypothalamic nuclei. Catecholamine varicosities were seen in juxtaposition to vasopressin- and oxytocin-containing perikarya and proximal dendrites. The densest catecholamine innervation patterns were seen in the ventrolateral portion of the supraoptic nucleus; the dorsomedial portion of this nucleus received a considerably less dense innervation pattern. Oxytocin neurons were clustered in this relatively catecholamine poor region, whereas the vasopressin-containing neurons were more abundantly found in the Catecholamine rich region. The paraventricular nucleus presented a considerably more complex pattern, perhaps reflecting the more diverse organization of this nucleus. Nevertheless, some separation of the oxytocin neurons, in a region less densely innervated by catecholamine varicosities, was noted. These observations confirm our earlier reports, in rat hypothalamus, that the norepinephrine innervation of the hypothalamic magnocellular neurons as seen with catecholamine histofluorescence favors the vasopressin-containing neurons over those located within the same nuclei which synthesize another neurohyphysial principal, oxytocin.  相似文献   

5.
β-Endorphin, met-enkephalin and several μ-selective opioid agonists were shown to decrease thymidine incorporation into DNA in various neural cell cultures. We now report that the κ-selective opioid agonists U50488, U69593 and MR2034 modulate [3H]thymidine incorporation into DNA in rat spinal cord-dorsal root ganglion co-cultures. U50488 at 10 μM increased by 60% thymidine incorporation in 6-day-old cultures. The thymidine incorporation induced by U50488 was blocked by the κ-selective antagonist nor-binaltorphimine, as well as by pertussis toxin and LiCl U50488 treatment stimulated phosphatidylinositol turnover by three-fold compared with untreated controls. These findings suggest that κ-opioid agonists modulate DNA synthesis in spinal cord-dorsal root ganglion co-cultures through a mechanism which involves pertussis toxin-sensitive GTP-binding proteins, as well as activation of phosphatidylinositol turnover.  相似文献   

6.
Dynorphin A is an endogenous opioid peptide that preferentially activates κ-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1–13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both κ-opioid and N-methyl- -aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through κ-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing κ-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both κ-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1–13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1–13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 μM), 2-amino-5-phosphopentanoic acid (100 μM), or 7-chlorokynurenic acid (100 μM)—suggesting that dynorphin A (1–13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (−)-naloxone (3 μM), or the more selective κ-opioid receptor antagonist nor-binaltorphimine (3 μM), exacerbated dynorphin A (1–13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 μM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 μM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates κ-opioid receptors and suggests that κ receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1–13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.  相似文献   

7.
We investigated the effect of long-term administration of opioid antagonists on the regulation of prodynorphin gene expression in rat brain. Intracerebroventricular (i.c.v.) injections for seven days of nor-binaltorphimine (nor-BNI), the highly selective κ opioid antagonist, naloxone and its longer acting analog naltrexone, both relatively selective antagonists for the μ opioid receptor, markedly raised prodynorphin mRNA levels in rat hypothalamus, hippocampus and striatum. Peptides, namely immunoreactive-dynorphin A (ir-dyn A), were unaffected after chronic treatment with all antagonists, in the same tissues. These results, taken together with our previous observations, suggest that chronic opioid antagonists, acting on κ and μ opioid receptors, clearly up-regulate prodynorphin gene expression in discrete rat brain regions, activating its biosynthesis. Moreover, our data support the hypothesis that the endogenous opioid system plays a role in the mechanisms underlying the development of opiate tolerance.  相似文献   

8.
9.
As a model of chronic inflammatory pain, Freund's adjuvant-induced polyarthritis has been shown to be associated with marked alterations in the activity of opioid- and calcitonin gene-related peptide (CGRP)-containing neurons in the dorsal horn of the spinal cord in rats. Possible changes in the interactions between these two peptidergic systems in chronic inflammatory pain were investigated by comparing the effects of various opioid receptor ligands on the spinal outflow of CGRP-like material (CGRPLM) in polyarthritic and age-paired control rats. Intrathecal perfusion of an artificial cerebrospinal fluid in halothane-anaesthetized animals allowed the collection of CGRPLM released from the spinal cord and the application of opioid receptor ligands. The blockade of κ-opioid receptors similarly increased CGRPLM release in both groups of rats as expected of a κ-mediated tonic inhibitory control of CGRP-containing fibres in control, as well as in polyarthritic rats. In contrast, the higher increase in CGRPLM outflow due to the preferential blockade of μ opioid receptors by naloxone in polyarthritic rats as compared to non-suffering animals supports the idea of a reinforced μ opioid receptor-mediated tonic inhibitory control of CGRP-containing fibres in rats suffering from chronic pain. Even more strikingly, the differences observed in the effects of ∂-opioid receptor ligands on CGRPLM outflow suggest that ∂ receptors are functionally shifted from a participation in a phasic excitatory control in non-suffering rats to a tonic inhibitory control in polyarthritic rats. These data indicate that agonists acting at the three types of opioid receptors all exert a tonic inhibitory influence on CGRP-containing nociceptive primary afferent fibres within the spinal cord of polyarthritic rats. Such a convergence probably explains why morphine and other opioids are especially potent to reduce pain in subjects suffering from chronic inflammatory diseases.  相似文献   

10.
The selective κ opioid receptor agonist MR 2034 exerted pronounced suppression of plaque-forming cell (PFC) response following intraperitoneal (i.p.) administration in the rat. Pretreatment with preferential κ and μ opioid receptor antagonists MR 2266 and naloxone, respectively, revealed that this effect was mediated mainly by κ, and to a low extent by μ opioid receptors. Intracerebroventricular (i.c.v.) administration of quaternary naltrexone (QNtx) moderately attenuated, whereas i.p. given QNtx completely prevented the suppressive effect of MR 2034, suggesting a peripheral mechanism of action, and only minor involvement of brain opioid receptors. MR 2034 markedly decreased the PFC response of spleen cells obtained from in vivo immunized rats, treated in vitro with the opiate. The immunosuppressive action of MR 2034 in vitro was completely and partially blocked by equimolar concentrations of MR 2266 and naloxone, respectively. Antagonists alone produced stimulation of PFC following i.p. administration in the rat, but did not affect PFC response upon in vitro treatment. These results suggest that peripheral k opioid receptors down-regulate primary humoral immune response in the rat, and that this effect may be produced by direct interference with plasma cell activity.  相似文献   

11.
Mice lacking the μ-opioid receptor gene have been developed by a gene knockout procedure. In this study, the activity of opioid receptor coupled G-proteins was examined to investigate whether there is a change in the extent of coupling for μ-, δ-, and κ-opioid receptors in μ-opioid receptor knockout mice. Selective agonists of μ- (DAMGO), δ- (DPDPE), and κ- (U-69,593) opioid receptors stimulated [35S]GTPγS binding in the caudate putamen and cortex of wild-type mice. In contrast, only U-69,593 stimulated [35S]GTPγS binding in these regions of μ-opioid receptor knockout mice. These results confirmed the absence of G-protein activation by a μ-opioid receptor agonist in μ-opioid receptor knockout mice, and demonstrated that coupling of the κ-opioid receptor to G-proteins is preserved in these mice. However, G-protein activation by the δ-opioid receptor agonist, DPDPE, was reduced in the μ-opioid receptor knockout mice, at least in the brain regions studied using autoradiography.  相似文献   

12.
Effects of enkephalin and selective opioid-receptor agonists on GABA-induced current were examined in dissociated neurons of bullfrog dorsal root ganglia (DRG) by using whole-cell patch-clamp method. Leucine-(Leu)-enkephalin and methionine-(Met)-enkephalin depressed GABAA receptor-mediated currents. DPDPE, DAMGO and dynorphin-A (Dyn-A) also depressed the inward current produced by GABA: the order of agonist potency was DPDPE ≥ DAMGO> Dyn-A. Naloxone blocked the inhibitory effects of ekephalins and other opioid agonists on the GABA current. Naltrindole (NTI), a δ-receptor antagonist, prevented the DPDPE-induced depression of the GABA current. β-Funaltrexamine (β-FNA), a μ-receptor antagonist, reduced the DAMGO-induced depression of GABA currents. Nor-binaltorphimine (nor-BNI), a κ-receptor antagonist, reduced the effects of Dyn-A in depressing the GABA current The results suggest that enkephalin down-regulates GABAA receptor function through mainly δ- and μ-opioid receptors in bullfrog DRG neurons.  相似文献   

13.
Oxytocin secretion from the posterior pituitary gland is increased during parturition, stimulated by the uterine contractions that forcefully expel the fetuses. Since oxytocin stimulates further contractions of the uterus, which is exquisitely sensitive to oxytocin at the end of pregnancy, a positive feedback loop is activated. The neural pathway that drives oxytocin neurons via a brainstem relay has been partially characterised, and involves A2 noradrenergic cells in the brainstem. Until close to term the responsiveness of oxytocin neurons is restrained by neuroactive steroid metabolites of progesterone that potentiate GABA inhibitory mechanisms. As parturition approaches, and this inhibition fades as progesterone secretion collapses, a central opioid inhibitory mechanism is activated that restrains the excitation of oxytocin cells by brainstem inputs. This opioid restraint is the predominant damper of oxytocin cells before and during parturition, limiting stimulation by extraneous stimuli, and perhaps facilitating optimal spacing of births and economical use of the store of oxytocin accumulated during pregnancy. During parturition, oxytocin cells increase their basal activity, and hence oxytocin secretion increases. In addition, the oxytocin cells discharge a burst of action potentials as each fetus passes through the birth canal. Each burst causes the secretion of a pulse of oxytocin, which sharply increases uterine tone; these bursts depend upon auto-stimulation by oxytocin released from the dendrites of the magnocellular neurons in the supraoptic and paraventricular nuclei. With the exception of the opioid mechanism that emerges to restrain oxytocin cell responsiveness, the behavior of oxytocin cells and their inputs in pregnancy and parturition is explicable from the effects of hormones of pregnancy (relaxin, estrogen, progesterone) on pre-existing mechanisms, leading through relative quiescence at term inter alia to net increase in oxytocin storage, and reduced auto-inhibition by nitric oxide generation. Cyto-architectonic changes in parturition, involving evident retraction of glial processes between oxytocin cells so they get closer together, are probably a response to oxytocin neuron activation rather than being essential for their patterns of firing in parturition.  相似文献   

14.
The purpose of the present study was to determine if D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons occurs via afferent neuronal inhibition of tonically active inhibitory dynorphinergic neurons in the male rat. To this end, the effects of either surgical deafferentation of the mediobasal hypothalamus or administration of a κ opioid receptor agonist (U-50,488) or antagonist (nor-binaltorphimine (NOR-BNI)) on D2 receptor-mediated activation of TIDA neurons were assessed. For comparison, the activity of mesolimbic DA neurons was also determined in these studies. TIDA and mesolimbic DA neuronal activities were estimated by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine (DOPA) following decarboxylase inhibition) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC)) in terminals of these neurons in the median eminence and nucleus accumbens, respectively. Intraperitoneal administration of the D2 receptor agonist quinelorane caused a dose-dependent increase in DOPAC in the median eminence and a decrease in DOPAC in the nucleus accumbens; surgical deafferentation of the mediobasal hypothalamus prevented the effect of quinelorane in the median eminence, but not the nucleus accumbens. Activation of κ opioid receptors with U-50,488 had no effect per se, but blocked quinelorane-induced increases in median eminence DOPA. In contrast, U-50,488 had no effect on DOPA in the nucleus accumbens of either vehicle- or quinelorane-treated rats. Blockade of κ opioid receptors with NOR-BNI increased median eminence DOPA, and prevented the stimulatory effects of quinelorane on dopamine synthesis. Administration of prolactin also increased median eminence DOPA, but did not alter the ability of quinelorane to stimulate dopamine synthesis. Neither NOR-BNI nor prolactin had any effect on DOPA in the nucleus accumbens of vehicle- or quinelorane-treated rats. These results suggest that D2 receptor-mediated activation of TIDA neurons occurs via an afferent neuronal mechanism involving, at least in part, inhibition of tonically active inhibitory dynorphinergic neurons in the male rat.  相似文献   

15.
In virgin rats, systemic administration of interleukin (IL)-1β (i.e. to mimic infection), increases oxytocin secretion and the firing rate of oxytocin neurones in the supraoptic nucleus (SON). However, in late pregnancy, stimulated oxytocin secretion is inhibited by an endogenous opioid mechanism, preserving the expanded neurohypophysial oxytocin stores for parturition and minimising the risk of preterm labour. Central levels of the neuroactive metabolite of progesterone, allopregnanolone, increase during pregnancy and allopregnanolone acting on GABA(A) receptors on oxytocin neurones enhances inhibitory transmission. In the present study, we tested whether allopregnanolone induces opioid inhibition of the oxytocin system in response to IL-1β in late pregnancy. Inhibition of 5α-reductase (an allopregnanolone-synthesising enzyme) with finasteride potentiated IL-1β-evoked oxytocin secretion in late pregnant rats, whereas allopregnanolone reduced the oxytocin response in virgin rats. IL-1β increased the number of magnocellular neurones in the SON and paraventricular nucleus (PVN) expressing Fos (an indicator of neuronal activation) in virgin but not pregnant rats. In immunoreactive oxytocin neurones in the SON and PVN, finasteride increased IL-1β-induced Fos expression in pregnant rats. Conversely, allopregnanolone reduced the number of magnocellular oxytocin neurones activated by IL-1β in virgin rats. Treatment with naloxone (an opioid antagonist) greatly enhanced the oxytocin response to IL-1β in pregnancy, and finasteride did not enhance this effect, indicating that allopregnanolone and the endogenous opioid mechanisms do not act independently. Indeed, allopregnanolone induced opioid inhibition over oxytocin responses to IL-1β in virgin rats. Thus, in late pregnancy, allopregnanolone induces opioid inhibition over magnocellular oxytocin neurones and hence on oxytocin secretion in response to immune challenge. This mechanism will minimise the risk of preterm labour and prevent the depletion of neurohypophysial oxytocin stores, which are required for parturition.  相似文献   

16.
The effects of naloxone on the release of oxytocin and vasopressin in discrete brain areas were investigated in control and morphine-tolerant/dependent female rats anesthetized with urethane. Two or three consecutive push-pull perfusates were collected for 30-40 min each and the peptide contents measured by radioimmunoassay; naloxone (5 mg/kg, i.v.) was given after the first perfusion. In control rats, naloxone did not increase oxytocin release from any of the regions studied: mediolateral septum, dorsal hippocampus, nucleus of tractus solitarius, or supraoptic nucleus. After naloxone, vasopressin release was approximately doubled in the nucleus of tractus solitarius (p less than 0.05), indicating endogenous opioid inhibition of vasopressin release. Naloxone increased oxytocin concentration in the circulation 3.7-fold (p less than 0.001) but did not affect vasopressin secretion. In rats made morphine tolerant/dependent by intracerebroventricular infusion of morphine for 5 d, oxytocin and vasopressin release in the perfused brain was initially similar to that in control rats, indicating tolerance to any initial morphine effects. In these rats, naloxone increased oxytocin release in the septum threefold relative to control rats (p less than 0.02) but did not alter oxytocin release in hippocampus or nucleus of tractus solitarius. Thus, the oxytocin neurons projecting to septum can develop morphine dependence and may be inhibited acutely by opioids acting via mu-receptors. The results indicate morphine acts selectively on oxytocin neurons projecting to mediolateral septum compared with other central projection areas and compared with centrally projecting vasopressin neurons. In the supraoptic nucleus, naloxone increased oxytocin release 2.3-fold (from 9.2 +/- 3.1 pg/30 min) and increased oxytocin release from axons of these neurons fivefold (from 7.8 +/- 3.2 pg/30 min). Naloxone had no significant effect on vasopressin release from any of the central sites, or on vasopressin secretion into blood, although oxytocin secretion was increased 36-fold (from 17.2 +/- 2.6 pg/ml; p less than 0.001), confirming dependence of magnocellular oxytocin neurons. The central processes of magnocellular supraoptic neurons may be a major source of central oxytocin released during morphine withdrawal.  相似文献   

17.
The effect of leucine-enkephalin (Leu-Enk) on primary humoral immune response was investigated following intracerebroventricular (i.c.v.) administration of the peptide in the rat. Leu-Enk stimulated plaque-forming cell (PFC) response in rats i.c.v. injected with 0.1 and 1 μg/kg, whereas doses of 20 and 50 μg/kg exerted immunosuppressive effects. I.c.v. treatment of rats with δ opioid receptor antagonist ICI 174864 and κ opioid receptor antagonist nor-binaltorphimine (nor-BNI) blocked stimulation and suppression of PFC response induced by Leu-Enk, respectively. The μ opioid receptor antagonist β-funaltrexamine (β-FNA) reversed both immunomodulatory effects produced by Leu-Enk. Since β-FNA alone had no effect on PFC response (unlike ICI 174 864 and nor-BNI), these data showed that central effects of Leu-Enk on PFC response were mediated by brain μ opioid receptors, and suggested a possible involvement of δ and κ opioid receptors.  相似文献   

18.
Opioid peptides have been reported by many laboratories to modulate in vitro and in vivo cell-mediated and humoral immune responses. However, less attention has been afforded to the class or classes of opioid receptors involved in these immunomodulatory effects. Previous studies by this laboratory indicated that β-endorphin and methionine-enkephalin were potent inhibitors of Staphylococcus aureus, Cowen strain I (SAC)-induced IgG production by human B lymphocytes. Results obtained from the present studies indicate that, at pharmacological concentrations, μ-, δ-, and κ-receptor-selective agonists arc potent inhibitors of SAC-induced IgG-secreting cells (IgG-ISC) by human B lymphocytes. Moreover, the suppression of IgG-ISC formation was reversed by μ-, δ-, and κ-receptor class-selective antagonists, [ Tic]cTAP, ICI 174,864, and nor-BNI, respectively. These findings are in ag showing that more than one class of receptors are involved in opioid peptide-mediated immunoregulation. Additional studies indicated that all three class-selective receptor agonists were found to suppress SAC-induced IL-6 production in intact PBMC cultures. As observed for suppression of IgG-ISC formation, inhibition of IL-6 production was found to be reversed by the appropriate receptor class-selective antagonist. These results support the hypothesis that one mechanism of opioid peptide-mediated inhibition of antibody production is via the down regulation of cytokine synthesis.  相似文献   

19.
Recent observations from our laboratory have led us to hypothesize that δ-opioid receptors may play a role in neuronal protection against hypoxic/ischemic or glutamate excitotocity. To test our hypothesis in this work, we used two independent methods, i.e., “same field quantification” of morphologic criteria and a biochemical assay of lactate dehydrogenase (LDH) release (an index of cellular injury). We used neuronal cultures from rat neocortex and studied whether (1) glutamate induces neuronal injury as a function of age and (2) activation of opioid receptors (δ, μ and κ subtypes) protects neurons from glutamate-induced injury. Our results show that glutamate induced neuronal injury and cell death and this was dependent on glutamate concentration, exposure period and days in culture. At 4 days, glutamate (up to 10 mM, 4 h-exposure) did not cause apparent injury. After 8–10 days in culture, neurons exposed to a much lower dose of glutamate (100 μM, 4 h) showed substantial neuronal injury as assessed by morphologic criteria (>65%, n=23, P<0.01) and LDH release (n=16, P<0.001). Activation of δ-opioid receptors with 10 μM DADLE reduced glutamate-induced injury by almost half as assessed by the same criteria (morphologic criteria, n=21, P<0.01; LDH release, n=16, P<0.01). Naltrindole (10 μM), a δ-opioid receptor antagonist, completely blocked the DADLE protective effect. Administration of μ- and κ-opioid receptor agonists (DAMGO and U50488H respectively, 5–10 μM) did not induce appreciable neuroprotection. Also, μ- or κ-opioid receptor antagonists had no appreciable effect on the glutamate-induced injury. This study demonstrates that activation of neuronal δ-opioid receptors, but not μ- and κ-opioid receptors, protect neocortical neurons from glutamate excitotoxicity.  相似文献   

20.
Autoradiographic localization of 125I-labeled β-endorphin binding in the rabbit pancreas demonstrated specific binding in the pancreatic islet cells. Binding was inhibited by (1) nonradioactive β-endorphin, (2) the opioid antagonist naloxone, (3) the μ receptor agonists morphine and [ -Ala2, (Me)Phe4, Gly(ol)5]enkephalin, (4) the δ receptor agonist [ -penicillamine2, -penicillamine5]-enkephalin, (5) the μ and δ agonist met-enkephalin and (6) the δ and κ agonist dynorphin. Specific binding was not clearly demonstrable in the acinar portion of the rabbit pancreas. The binding characteristics of 125 I-β-endorphin in the pancreatic islets were comparable with those of μ and δ opioid receptors in the rabbit brain. In the pancreas, β-endorphin binding appeared to be concentrated in discrete areas in the islets. Combined immunohistochemistry and autoradiography demonstrated that β-endorphin binding was primarily concentrated in the glucagon-containing alpha and somatostatin-containing delta cells, but was also found in the insulin-containing beta cells to a lesser extent, Given the intraislet location of the opioid binding sites, and our previous finding of immunoreactive β-endorphin in the pancreatic beta cells and the inhibitory effect of β-endorphin on insulin secretion, it appears that β-endorphin may serve a paracrine or autocrine function in the regulation of pancreatic hormone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号