首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim:

To investigate the effects of arbidol hydrochloride (ARB), a widely used antiviral agent, on the inflammation induced by influenza virus.

Methods:

MDCK cells were infected with seasonal influenza A/FM/1/47 (H1N1) or pandemic influenza A/Hubei/71/2009 (H1N1). In vitro cytotoxicity and antiviral activity of ARB was determined using MTT assay. BALB/c mice were infected with A/FM/1/47 (H1N1). Four hours later the mice were administered ARB (45, 90, and 180 mg·kg−1·d−1) or the neuraminidase inhibitor oseltamivir (22.5 mg·kg−1·d−1) via oral gavage once a day for 5 d. Body-weight, median survival time, viral titer, and lung index of the mice were measured. The levels of inflammatory cytokines were examined using real-time RT-PCR and ELISA.

Results:

Both H1N1 stains were equally sensitive to ARB as tested in vitro. In the infected mice, ARB (90 and 180 mg·kg−1·d−1) significantly decreased the mortality, alleviated virus-induced lung lesions and viral titers. Furthermore, ARB suppressed the levels of IL-1β, IL-6, IL-12, and TNF-α, and elevated the level of IL-10 in the bronchoalveolar lavage fluids and lung tissues. However, ARB did not significantly affect the levels of IFN-α and IFN-γ, but reduced the level of IFN-β1 in lung tissues at 5 dpi. In peritoneal macrophages challenged with A/FM/1/47 (H1N1) or poly I:C, ARB (20 μmol/L) suppressed the levels of IL-1β, IL-6, IL-12, and TNF-α, and elevated the level of IL-10. Oseltamivir produced comparable alleviation of virus-induced lung lesions with more reduction in the viral titers, but less effective modulation of the inflammatory cytokines.

Conclusion:

ARB efficiently inhibits both H1N1 stains and diminishes both viral replication and acute inflammation through modulating the expression of inflammatory cytokines.  相似文献   

2.

Aim:

FTY720, a new immunomodulatory drug with low cytotoxicity, is currently used to treat multiple sclerosis. In this study, we investigated the effects of FTY720 on inflammatory cell infiltration in albumin overload-induced nephropathy of rats.

Methods:

Male Wistar rats were subjected to right-side nephrectomy and divided into 3 groups. One week after the surgery, albumin overload (AO) group was treated with BSA (5 g·kg−1·d−1, ip) for 9 weeks; AO+FTY720 group was given BSA (5 g·kg−1·d−1, ip) plus FTY720 (0.5 g·kg−1·d−1, ip) for 9 weeks; and control group received daily ip injection of equivalent volume of saline. All rats were killed 9 weeks after nephrectomy.

Results:

AO rats exhibited gradually increased urinary protein excretion accompanied by elevated urinary N-acetyl-β-O-glucosaminidase activity, and both reached their peak values at week 7. Furthermore, AO significantly increased lymphocytes and monocytes in circulation and the inflammatory cells recruited to tubulointerstitium, and the expression of inflammatory cytokines MCP-1, TNF-α and IL-6, as well as sphingosine 1-phosphate (S1P) receptors S1pr1 and S1pr3, and S1P-synthesizing enzyme sphingosine kinase 1 (Sphk1) in the kidney. Concomitant administration of FTY720 significantly attenuated all the AO-induced pathological changes.

Conclusion:

FTY720 alleviates tubulointerstitium inflammation in an AO rat model of nephropathy via down-regulation of the Sphk1 pathway.  相似文献   

3.

Background and Purpose

Type 2 diabetes impairs the healing process because of an exaggerated and persistent inflammatory response, and an altered expression pattern of angiogenic molecules. We investigated the effects of inflammasome blockade in diabetes-related wound-healings defects, in genetically diabetic mice.

Experimental Approach

An incisional skin wound model was produced on the back of female diabetic C57BL/KsJ-m +/+ Leptdb mice (db+/db+) and their normal littermates (db+/m+). Animals were treated daily with two inflammasome blocking agents, BAY 11-7082 (20 mg·kg−1 i.p.), or Brilliant Blue G (BBG, 45.5 mg·kg−1 i.p.), or vehicle. Mice were killed on 3, 6 and 12 days after skin injury to measure expression of the NOD-like receptor NLRP3, caspase-1, VEGF, the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the chemokine CXCL12. Wound levels of IL-1β and IL-18 were also measured, along with histological assessments of wound tissue and the time to complete wound closure.

Key Results

During healing, the diabetic mice exhibited increased activation of NLRP3, caspase-1, ASC, IL-1β and IL-18. They also showed a reduced expression of VEGF and CXCL12.Treatment with BAY 11-7082 or BBG, to block activation of the inflammasome, decreased the levels of pro-inflammatory molecules. Histological evaluation indicated that inflammasome blockade improved the impaired healing pattern, at day 12 in diabetic mice, along with a decreased time to complete skin healing.

Conclusions and Implications

These data strongly suggest that activation of the NLRP3 inflammasome is one of the key contributors to the delayed healing of wounds in diabetic mice.  相似文献   

4.

Aim:

To determine whether administration of choline could attenuate brain injury in a rat model of ischemic stroke and the underlying mechanisms.

Methods:

A rat model of ischemic stroke was established through permanent middle cerebral artery occlusion (pMCAO). After the surgery, the rats were treated with choline or choline plus the specific α7 nAChR antagonist methyllycaconitine (MLA), or with the control drug nimodipine for 10 days. The neurological deficits, brain-infarct volume, pial vessel density and the number of microvessels in the cortex were assessed. Rat brain microvascular endothelial cells (rBMECs) cultured under hypoxic conditions were used in in vitro experiments.

Results:

Oral administration of choline (100 or 200 mg·kg−1·d−1) or nimodipine (20 mg·kg−1·d−1) significantly improved neurological deficits, and reduced infarct volume and nerve cell loss in the ischemic cerebral cortices in pMCAO rats. Furthermore, oral administration of choline, but not nimodipine, promoted the pial arteriogenesis and cerebral-cortical capillary angiogenesis in the ischemic regions. Moreover, oral administration of choline significantly augmented pMCAO-induced increases in the expression levels of α7 nAChR, HIF-1α and VEGF in the ischemic cerebral cortices as well as in the serum levels of VEGF. Choline-induced protective effects were prevented by co-treatment with MLA (1 mg·kg−1·d−1, ip). Treatment of rBMECs cultured under hypoxic conditions in vitro with choline (1, 10 and 100 μmol/L) dose-dependently promoted the endothelial-cell proliferation, migration and tube formation, as well as VEGF secretion, which were prevented by co-treatment with MLA (1 μmol/L) or by transfection with HIF-1α siRNA.

Conclusion:

Choline effectively attenuates brain ischemic injury in pMCAO rats, possibly by facilitating pial arteriogenesis and cerebral-cortical capillary angiogenesis via upregulating α7 nAChR levels and inducing the expression of HIF-1α and VEGF.  相似文献   

5.
6.

Background and Purpose

Thioredoxin-interacting protein (TXNIP), a regulator of cellular oxidative stress, has been associated with activation of NOD-like receptor 3 (NLRP3) inflammasome, inflammation and lipid metabolism, suggesting it has a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) in diabetes. In this study we investigated whether TXNIP is involved in type 1 diabetes-associated NAFLD and whether antioxidants, quercetin and allopurinol, alleviate NAFLD by targeting TXNIP.

Experimental Approach

Diabetes was induced in male Sprague-Dawley rats by a single i.p. injection of 55 mg·kg−1 streptozotocin. Quercetin and allopurinol were given p.o. to diabetic rats for 7 weeks. Hepatic function, oxidative stress, inflammation and lipid levels were determined. Rat BRL-3A and human HepG2 cells were exposed to high glucose (30 mM) in the presence and absence of antioxidants, TXNIP siRNA transfection or caspase-1 inhibitor, Ac-YVAD-CMK.

Key Results

Quercetin and allopurinol significantly inhibited the TXNIP overexpression, activation of NLRP3 inflammasome, down-regulation of PPARα and up-regulation of sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, fatty acid synthase and liver X receptor α, as well as elevation of ROS and IL-1β in diabetic rat liver. These effects were confirmed in hepatocytes in vitro and it was further shown that TXNIP down-regulation contributed to the suppression of NLRP3 inflammasome activation, inflammation and changes in PPARα and SREBPs.

Conclusions and Implications

Inhibition of hepatic TXNIP by quercetin and allopurinol contributes to the reduction in liver inflammation and lipid accumulation under hyperglycaemic conditions. The targeting of hepatic TXNIP by quercetin and allopurinol may have therapeutic implications for prevention of type 1 diabetes-associated NAFLD.  相似文献   

7.

Aim:

To investigate the anticancer mechanisms of triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook F, against human breast cancer cells and the involvement of the estrogen receptor-α (ERα)-mediated signaling pathway in particular.

Methods:

Human breast cancer ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells were tested. PrestoBlue assay was used to evaluate the cell viability. The levels of ERα mRNA and protein were detected with real-time PCR and immunoblotting, respectively. Mouse models of MCF-7 or MDA-MB-231 xenograft tumors were treated with triptolide (0.4 mg·kg−1·d−1, po) or a selective estrogen receptor modulator tamoxifen (mg·kg−1·d−1, po) for 3 weeks, and the tumor weight and volume were measured.

Results:

Triptolide (5–200 nmol/L) dose-dependently inhibited the viability of both MCF-7 and MDA-MB-231 cells, with a more potent inhibition on MCF-7 cells. Knockdown of ERα in MCF-7 cells by siRNA significantly attenuated the cytotoxicity of triptolide, whereas overexpression of ERα in MDA-MB-231 cells markedly enhanced the cytotoxicity. Triptolide dose-dependently decreased the expression of ERα in MCF-7 cells and MCF-7 xenograft tumors. Furthermore, treatment of MCF-7 cells with triptolide inhibited the phosphorylation of ERK1/2 in dose- and time-dependent manners. In the mice xenografted with MCF-7 cells, treatment with triptolide or tamoxifen resulted in significant reduction in the tumor weight and volume. Similar effects were not obtained in the mice xenografted with MDA-MB-231 cells.

Conclusion:

The anticancer activity of triptolide against ERα-positive human breast cancer is partially mediated by downregulation of the ERα-mediated signaling pathway.  相似文献   

8.

Background and purpose:

Drugs targeting brain κ-opioid receptors produce profound alterations in mood. In the present study we investigated the possible anxiolytic- and antidepressant-like effects of the κ-opioid receptor agonist salvinorin A, the main active ingredient of Salvia divinorum, in rats and mice.

Experimental approach:

Experiments were performed on male Sprague-Dawley rats or male Albino Swiss mice. The anxiolytic-like effects were tested by using the elevated plus maze, in rats. The antidepressant-like effect was estimated through the forced swim (rats) and the tail suspension (mice) test. κ-Opioid receptor involvement was investigated pretreating animals with the κ-opioid receptor antagonist, nor-binaltorphimine (1 or 10 mg·kg−1), while direct or indirect activity at CB1 cannabinoid receptors was evaluated with the CB1 cannabinoid receptor antagonist, N-(piperidin-1-yl) -5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, 0.5 or 3 mg·kg−1), binding to striatal membranes of naïve rats and assay of fatty acid amide hydrolase in prefrontal cortex, hippocampus and amygdala.

Key results:

Salvinorin A, given s.c. (0.001–1000 µg·kg−1), exhibited both anxiolytic- and antidepressant-like effects that were prevented by nor-binaltorphimine or AM251 (0.5 or 3 mg·kg−1). Salvinorin A reduced fatty acid amide hydrolase activity in amygdala but had very weak affinity for cannabinoid CB1 receptors.

Conclusions and implications:

The anxiolytic- and antidepressant-like effects of Salvinorin A are mediated by both κ-opioid and endocannabinoid systems and may partly explain the subjective symptoms reported by recreational users of S. divinorum.  相似文献   

9.

Aim:

We have shown that a combination of ligustrazine and berberine produces more effective inhibition on platelet activation and inflammatory reactions in rat acute myocardial infarction compared with either agent alone. In this study we evaluated the beneficial effects of a combination of ligustrazine and berberine in a rat model of coronary microembolization (CME).

Methods:

SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses.

Results:

Pretreatment with the combination of ligustrazine (27 mg·kg−1·d−1) and berberine (90 mg·kg−1·d−1) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg−1·d−1).

Conclusion:

The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects.  相似文献   

10.

BACKGROUND AND PURPOSE

An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist.

EXPERIMENTAL APPROACH

We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain.

KEY RESULTS

JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL−1 (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg−1) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test.

Conclusion and Implications

JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.  相似文献   

11.

Aim:

Liguzinediol is a novel derivative of ligustrazine isolated from the traditional Chinese medicine Chuanxiong (Ligusticum wallichii Franch), and produces significant positive inotropic effect in isolated rat hearts. In this study we investigated the effects of liguzinediol on a rat model of heart failure.

Methods:

To induce heart failure, male SD rats were injected with doxorubicin (DOX, 2 mg/kg, ip) once a week for 4 weeks. Then the rats were administered with liguzinediol (5, 10, 20 mg·kg−1·d−1, po) for 2 weeks. Hemodynamic examination was conducted to evaluate heart function. Myocardial cell apoptosis was examined morphologically. The expression of related genes and proteins were analyzed using immunohistochemical staining and Western blot assays, respectively.

Results:

Oral administration of liguzinediol dose-dependently improved the heart function in DOX-treated rats. Electron microscopy revealed that liguzinediol (10 mg·kg−1·d−1) markedly attenuated DOX-induced injury of cardiomyocytes, and decreased the number of apoptotic bodies in cardiomyocytes. Furthermore, liguzinediol significantly decreased Bax protein level, and increased Bcl-2 protein level in cardiomyocytes of DOX-treated rats, led to an increase in the ratio of Bcl-2/Bax. Moreover, liguzinediol significantly decreased the expression of both cleaved caspase-3 and NF-κB in cardiomyocytes of DOX-treated rats. Administration of digitalis (0.0225 mg·kg−1·d−1) also markedly improved the heart function and the morphology of cardiomyocytes in DOX-treated rats.

Conclusion:

Liguzinediol improves the heart function and inhibits myocardial cell apoptosis in the rat model of heart failure, which is associated with regulating Bcl-2, Bax, caspase-3 and NF-κB expression.  相似文献   

12.

Aim:

(−)-Epigallocatechin-3-gallate (EGCG) is one of the most abundant polyphenols in green tea with strong antioxidant activity and various therapeutic effects. In this study, we investigated the anti-fibrotic effects of EGCG and underlying mechanisms in bile duct-ligated (BDL) rats and a liver fibrosis model in vitro.

Methods:

BDL rats were treated with EGCG (25 mg·kg−1·d−1, po) for 14 d, and then the serum, bile and liver samples were collected. Liver fibrosis was assessed by serum, urine and bile biochemistry analyses and morphological studies of liver tissues. TGF-β1-stimulated human hepatic stellate LX-2 cells were used as a liver fibrosis model in vitro. The expression of liver fibrogenic genes and signaling proteins in the PI3K/Akt/Smad pathway was examined using Western blotting and/or real-time PCR.

Results:

In BDL rats, EGCG treatment significantly ameliorates liver necrosis, inflammation and fibrosis, and suppressed expression of the genes associated with liver inflammation and fibrogenesis, including TNF-α, IL-1β, TGF-β1, MMP-9, α-SMA, and COL1A1. In LX-2 cells, application of EGCG (10, 25 μmol/L) dose-dependently suppressed TGF-β1-stimulated expression of COL1A1, MMP-2, MMP-9, TGF-β1, TIMP1, and α-SMA. Furthermore, EGCG significantly suppressed the phosphorylation of Smad2/3 and Akt in the livers of BDL rats and in TGF-β1-stimulated LX-2 cells. Application of LY294002, a specific inhibitor of PI3K, produced similar effects as EGCG did in TGF-β1-stimulated LX-2 cells, but co-application of EGCG and LY294002 did not produce additive effects.

Conclusion:

EGCG exerts anti-fibrotic effects in BDL rats and TGF-β1-stimulated LX-2 cells in vitro via inhibiting the PI3K/Akt/Smad pathway.  相似文献   

13.

Aim:

We have shown that rutaecarpine extracted from the dried fruit of Chinese herb Evodia rutaecarpa (Juss) Benth (Wu Zhu Yu) promotes glucose consumption and anti-inflammatory cytokine expression in insulin-resistant primary skeletal muscle cells. In this study we investigated whether rutaecarpine ameliorated the obesity profiles, lipid abnormality, glucose metabolism and insulin resistance in rat model of hyperlipidemia and hyperglycemia.

Methods:

Rats fed on a high-fat diet for 8 weeks, followed by injection of streptozotocin (30 mg/kg, ip) to induce hyperlipidemia and hyperglycemia. One week after streptozotocin injection, the fat-fed, streptozotocin-treated rats were orally treated with rutaecarpine (25 mg·kg−1·d−1) or a positive control drug metformin (250 mg·kg−1·d−1) for 7 weeks. The body weight, visceral fat, blood lipid profiles and glucose levels, insulin sensitivity were measured. Serum levels of inflammatory cytokines were analyzed. IRS-1 and Akt/PKB phosphorylation, PI3K and NF-κB protein levels in liver tissues were assessed; pathological changes of livers and pancreases were examined. Glucose uptake and AMPK/ACC2 phosphorylation were studied in cultured rat skeletal muscle cells in vitro.

Results:

Administration of rutaecarpine or metformin significantly decreased obesity, visceral fat accumulation, water consumption, and serum TC, TG and LDL-cholesterol levels in fat-fed, streptozotocin-treated rats. The two drugs also attenuated hyperglycemia and enhanced insulin sensitivity. Moreover, the two drugs significantly decreased NF-κB protein levels in liver tissues and plasma TNF-α, IL-6, CRP and MCP-1 levels, and ameliorated the pathological changes in livers and pancreases. In addition, the two drugs increased PI3K p85 subunit levels and Akt/PKB phosphorylation, but decreased IRS-1 phosphorylation in liver tissues. Treatment of cultured skeletal muscle cells with rutaecarpine (20–180 μmol/L) or metformin (20 μmol/L) promoted the phosphorylation of AMPK and ACC2, and increased glucose uptake.

Conclusion:

Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating IRS-1/PI3K/Akt signaling pathway in liver and AMPK/ACC2 signaling pathway in skeletal muscles.  相似文献   

14.

Aim:

M2ES is PEGylated recombinant human endostatin. In this study we investigated the pharmacokinetics, tissue distribution, and excretion of M2ES in rats.

Methods:

125I-radiolabeled M2ES was administered to rats by intravenous bolus injection at 3 mg/kg. The pharmacokinetics, tissue distribution and excretion of M2ES were investigated using the trichloroacetic acid (TCA) precipitation method.

Results:

The serum M2ES concentration-time curve after a single intravenous dose of 3 mg/kg in rats was fitted with a non-compartment model. The pharmacokinetic parameters were evaluated as follows: Cmax=28.3 μg·equ/mL, t1/2=71.5 h, AUC(0–∞)=174.6 μg·equ·h/mL, Cl=17.2 mL·h−1·kg−1, MRT=57.6 h, and Vss=989.8 mL/kg for the total radioactivity; Cmax=30.3 μg·equ/mL, t1/2=60.1 h, AUC(0–∞)=146.2 μg·equ·h/mL, Cl=20.6 mL·h−1·kg−1, MRT=47.4 h, and Vss=974.6 mL/kg for the TCA precipitate radioactivity. M2ES was rapidly and widely distributed in various tissues and showed substantial deposition in kidney, adrenal gland, lung, spleen, bladder and liver. The radioactivity recovered in the urine and feces by 432 h post-dose was 71.3% and 8.3%, respectively. Only 0.98% of radioactivity was excreted in the bile by 24 h post-dose.

Conclusion:

PEG modification substantially prolongs the circulation time of recombinant human endostatin and effectively improves its pharmacokinetic behavior. M2ES is extensively distributed in most tissues of rats, including kidney, adrenal gland, lung, spleen, bladder and liver. Urinary excretion was the major elimination route for M2ES.  相似文献   

15.

Background and Purpose

The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, ‘lymphangions’. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC).

Experimental Approach

We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL−1), with or without COX inhibitors [TFAP (10−5 M), diclofenac (0.2 × 10−5 M)], PGE2 (10−5 M)], IL-1-receptor antagonist, Anakinra (5 μg·mL−1), or a selective prostanoid EP4 receptor antagonist, GW627368X (10−6 and 10−7 M).

Key Results

Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β.

Conclusions and Implications

The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2. In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction.  相似文献   

16.

Aim:

A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer''s disease (AD)-like symptoms.

Methods:

SD rats were administered IMM-H004 (8 mg·kg−1·d−1, ig) or donepezil (positive control, 1 mg·kg−1·d−1, ig) for 25 d. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis.

Results:

OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil.

Conclusion:

Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD.  相似文献   

17.

Background and purpose:

The association between torcetrapib and its off-target effects on blood pressure suggested a possible class-specific effect. The effects of dalcetrapib (RO4607381/JTT-705) and torcetrapib on haemodynamics and the renin-angiotensin-aldosterone system (RAAS) were therefore assessed in a rat model.

Experimental approach:

Arterial pressure (AP) and heart rate were measured by telemetry in normotensive and spontaneously hypertensive rats (SHR) receiving torcetrapib 10, 40 or 80 mg·kg−1·day−1; dalcetrapib 100, 300 or 500 mg−1·kg·day−1; or vehicle (placebo) for 5 days. Expression of RAAS genes in adrenal gland, kidney, aorta and lung from normotensive rats following 5 days'' treatment with torcetrapib 40 mg·kg−1·day−1, dalcetrapib 500 mg·kg−1·day−1 or vehicle was measured by quantitative polymerase chain reaction.

Key results:

Torcetrapib transiently increased mean AP in normotensive rats (+3.7 ± 0.1 mmHg), whereas treatment in SHR resulted in a dose-dependent and sustained increase [+6.5 ± 0.6 mmHg with 40 mg·kg−1·day−1 at day 1 (P < 0.05 versus placebo)], which lasted over the treatment period. No changes in AP or heart rate were observed with dalcetrapib. Torcetrapib, but not dalcetrapib, increased RAAS-related mRNAs in adrenal glands and aortas.

Conclusions and implications:

In contrast to torcetrapib, dalcetrapib did not increase blood pressure or RAAS-related gene expression in rats, suggesting that the off-target effects of torcetrapib are not a common feature of all compounds acting on cholesteryl ester transfer protein.  相似文献   

18.
19.

Background and purpose:

Naringin, a flavanone glycoside in citrus fruits, has been recently reported to stimulate bone formation in vitro and in vivo. The present study was designed to determine if naringin could exert oestrogen-like protective actions in bone.

Experimental approach:

Young C57/BL6J mice were ovariectomized (OVX) and treated orally with naringin (0.2 or 0.4 mg·g−1·day−1), 17β-oestradiol (2 µg·g−1·day−1) or its vehicle for 6 weeks. Bone mineral densities (BMD) and polar stress-strain index (SSI) were measured by peripheral quantitative computed tomography. Rat osteoblast-like UMR-106 cells were co-incubated with the oestrogen receptor (ER) antagonist ICI 182780 to determine if the effects of naringin on osteoblastic functions were ER dependent. Functional transactivation of ERα and ERβ as well as ERα phosphorylation by naringin were also studied.

Key results:

Naringin at 0.4 mg·g−1·day−1 increased BMD at trabecular-rich bone in OVX mice. Naringin (at both doses) significantly increased SSI at distal femur and lumbar spine and increased biomechanical strength (ultimate load and energy for breaking) at tibia diaphysis in OVX mice. The stimulatory effects of naringin on osteoblastic functions could be abolished by co-incubation with ICI 182780 in UMR-106 cells. Naringin failed to stimulate ERα- or ERβ-mediated oestrogen response element-dependent luciferase activity but could significantly induce ERα phosphorylation at serine 118, in UMR-106 cells.

Conclusions and implications:

Naringin was effective in protecting against OVX-induced bone loss in mice and its actions might be mediated through ligand-independent activation of ER in osteoblastic cells.  相似文献   

20.

Background and Purpose

To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5–0.1 μg·kg−1) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT3) receptor antagonist, ondansetron (OND).

Experimental Approach

We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined.

Key Results

CBDA (at doses as low as 0.5 μg·kg−1) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg−1) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg−1) there was an enhancement in the suppression of LiCl-induced conditioned gaping.

Conclusions and Implications

CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号