首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fourteen of the 38 C-terminal repeats from Clostridium difficile toxin A (14CDTA) were cloned and expressed either with an N-terminal polyhistidine tag (14CDTA-HIS) or fused to the nontoxic binding domain from tetanus toxin (14CDTA-TETC). The recombinant proteins were successfully purified by bovine thyroglobulin affinity chromatography. Both C. difficile toxin A fusion proteins bound to known toxin A ligands present on the surface of rabbit erythrocytes. Intranasal immunization of BALB/c mice with three separate 10-microg doses of 14CDTA-HIS or -TETC generated significant levels of anti-toxin A serum antibodies compared to control animals. The coadministration of the mucosal adjuvant heat labile toxin (LT) from Escherichia coli (1 microg) significantly increased the anti-toxin A response in the serum and at the mucosal surface. Importantly, the local and systemic antibodies generated neutralized toxin A cytotoxicity. Impressive systemic and mucosal anti-toxin A responses were also seen following coadministration of 14CDTA-TETC with LTR72, an LT derivative with reduced toxicity which shows potential as a mucosal adjuvant for humans.  相似文献   

3.
Clostridium difficile is a spore-forming bacillus that produces toxin-mediated enteric disease. C. difficile expresses two major virulence factors, toxin A (TcdA) and toxin B (TcdB). Human and animal studies demonstrate a clear association between humoral immunity to these toxins and protection against C. difficile infection (CDI). The receptor binding-domains (RBDs) of TcdA and TcdB are known to be immunogenic. Here, we tested the immunoadjuvant properties of Salmonella enterica serovar Typhimurium flagellin (FliC) subunit D1 as an innate immune agonist expressed as a recombinant fusion vaccine targeting the RBDs of TcdA and TcdB in mice. Intraperitoneally immunized mice developed prominent anti-TcdA and anti-TcdB immunoglobulin G in serum. The protective efficacy of the recombinant vaccines, with or without an adjuvant, was tested in a mouse model of CDI that closely represents the human disease. Following intraperitoneal immunization equivalent to two doses of toxoid A and toxoid B vaccine adjuvanted with alum and oral challenge with C. difficile VPI 10463, C57BL/6 mice were able to mount a protective immune response that prevented diarrhea and death compared to mice immunzed with alum alone. These results are significantly different from those for control mice (P < 0.001). These results provide evidence that a recombinant protein-based vaccine targeting the RBDs of the C. difficile toxins adjuvanted with S. Typhimurium flagellin can induce rapid, high-level protection in a mouse model of CDI when challenged with the homologous strain from which the vaccine antigens were derived and warrant further preclinical testing against clinically relevant C. difficile strains in the mouse and hamster models of CDI.  相似文献   

4.
Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A1 peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A2 peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2ΔAB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A2 sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2ΔAB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) strains are important food-borne pathogens representing the major etiological agents of hemorrhagic colitis and hemolytic uremic syndrome (HUS), a life-threatening disease characterized by hemolytic anemia, thrombocytopenia, and renal failure (19). The infection correlates with ingestion of contaminated meat or vegetables but is also transmitted by water or even person-to-person contact (8, 14, 44). Sporadic or massive outbreaks have been reported in several developed countries but, in Argentina, HUS is endemic and represents a serious public health problem with high morbidity and mortality rates (29, 40). Production of verocytotoxin or Shiga-like toxin (Stx) is the basis of EHEC pathogenesis (18, 20). The toxin is formed by a single A subunit, which possesses N-glycosidase activity to the 28S rRNA and promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells (9, 28). Although two major types (Stx1 and Stx2) and several subtypes have been described, Stx2 and Stx2c are the most frequently found toxins in severe HUS cases among EHEC-infected subjects (12, 41). The degree of antigenic cross-reactivity between Stx2 and Stx1 is low, and several authors have reported that the two toxins do not provide heterologous protection, particularly concerning the B subunits (45, 47). On the other hand, Stx2c and Stx2d variants are readily neutralized by antibodies against Stx2 (27).Despite the magnitude of the social and economic impacts caused by EHEC infections, no licensed vaccine or effective therapy is presently available for human use. So far, attempts to develop vaccine formulations against EHEC-associated sequelae have relied mainly on induction of serum anti-Stx antibody responses. Several approaches have been pursed to generate immunogenic anti-Stx vaccine formulations and include the use of live attenuated bacterial strains (2, 32), protein-conjugated polysaccharides (21), purified B subunit (33, 48), B-subunit-derived synthetic peptides (15), and mutated Stx1 and Stx2 nontoxic derivatives (5, 6, 13, 16, 37, 39, 42, 45).In a previous report we described anti-Stx2 DNA vaccines encoding either the B subunit or a fusion protein between the B subunit and the first N-terminal amino acid of the A1 subunit (8). The DNA vaccine encoding the hybrid protein elicited Stx-specific immune responses in mice and partial protection to Stx2 challenge (1, 33). Recent data have indicated that epitopes leading to generation of Stx-neutralizing antibodies are present on both the B as well as the A subunit (34, 45, 46). In addition, further evidence indicates that the A2 subunit contains some of the most immunogenic epitopes of the Stx2 toxin (4). Thus, in line with such evidence, we attempted the construction of a new DNA vaccine encoding the last 32 amino acids from the A2 subunit, in addition to the complete B subunit of Stx2, as separated polypeptides which could enhance the immunogenicity and protective effects of the vaccine formulation. In the present report, we describe the generation of a new DNA vaccine encoding both Stx2 A2 and B subunits as an approach to elicit protective antibody responses to Stx2. The results obtained demonstrate that immunization with this vaccine formulation results in systemic antibody responses to Stx2 A and B subunits and toxin neutralization activity both in vitro and in vivo.  相似文献   

5.
6.
Clostridium difficile toxin A binds nonspecifically to a mouse monoclonal antibody (MAb) immunoglobulin G3 λ chain [IgG3(λ)], through the Fab component. This binding, which is retained even after boiling the MAb, is temperature dependent, with more toxin bound at 4 than 37°C (P = 0.0024). The nonspecific binding was decreased by incubation of the IgG3 λ MAb with α- or β-galactosidase (P = 0.0001 and 0.029, respectively), indicating that toxin A binds to a carbohydrate moiety on the Fab. However, binding was not blocked by the Bandeiraea simplicifolia lectin BS-1, indicating that a terminal α-galactose may not be involved. Binding was also not affected by competitive assays with Lewis X antigen. The dependence on carbohydrate moieties in nonspecific binding was also shown for two other MAbs, IgA(κ) and IgM(λ), with demonstration of a significant reduction in binding with α-galactosidase (P = 0.0001 and 0.0002, respectively) but not β-galactosidase (P = 0.27 and 0.25, respectively).  相似文献   

7.
Toxoplasma gondii is distributed worldwide and infects most species of warm-blooded animals, including humans. The heavy incidence and severe or lethal damage caused by T. gondii infection clearly indicates the need for the development of a vaccine. To evaluate the protective efficacy of a multiantigenic DNA vaccine expressing GRA7 and ROP1 of T. gondii with or without a plasmid encoding murine interleukin-12 (pIL12), we constructed DNA vaccines using the eukaryotic plasmids pGRA7, pROP1, and pGRA7-ROP1. Mice immunized with pGRA7, pROP1, or pGRA7-ROP1 showed significantly increased serum IgG2a titers; production of gamma interferon (IFN-γ), IL-10, and tumor necrosis factor alpha (TNF-α); in vitro T cell proliferation; and survival, as well as decreased cyst burdens in the brain, compared to mice immunized with either the empty plasmid, pIL12, or vector with pIL12 (vector+pIL12). Moreover, mice immunized with the multiantigenic DNA vaccine pGRA7-ROP1 had higher IgG2a titers, production of IFN-γ and TNF-α, survival time, and cyst reduction rate compared to those of mice vaccinated with either pGRA7 or pROP1 alone. Furthermore, mice immunized with either a pGRA7-ROP1+pIL12 or a single-gene vaccine combined with pIL12 showed greater Th1 immune response and protective efficacy than the single-gene-vaccinated groups. Our data suggest that the multiantigenic DNA antigen pGRA7-ROP1 was more effective in stimulating host protective immune responses than separately injected single antigens, and that IL-12 serves as a good DNA adjuvant.  相似文献   

8.
Pseudomembranous enterocolitis associated with Clostridium difficile infection is an important cause of morbidity and mortality in patients being treated with antibiotics. Two closely related large protein toxins produced by C. difficile, TcdA and TcdB, which act identically but at different efficiencies to glucosylate low-molecular-weight Rho GTPases, underlie the microbe''s pathogenicity. Using antisense RNA encoded by a library of human expressed sequence tags (ESTs), we randomly inactivated host chromosomal genes in HeLa cells and isolated clones that survived exposure to ordinarily lethal doses of TcdB. This phenotypic screening and subsequent analysis identified solute carrier family 11 member 1 (SLC11A1; formerly NRAMP1), a divalent cation transporter crucial to host defense against certain microbes, as an enhancer of TcdB lethality. Whereas SLC11A1 normally is poorly expressed in human cells of nonmyeloid lineage, TcdB increased SLC11A1 mRNA abundance in such cells through the actions of the RNA-binding protein HuR. We show that short hairpin RNA (shRNA) directed against SLC11A1 reduced TcdB glucosylation of small Rho GTPases and, consequently, toxin lethality. Consistent with the previously known role of SLC11A1 in cation transport, these effects were enhanced by elevation of Mn2+ in media; conversely, they were decreased by treatment with a chelator of divalent cations. Our findings reveal an unsuspected role for SLC11A1 in determining C. difficile pathogenicity, demonstrate the novel ability of a bacterial toxin to increase its cytotoxicity, establish a mechanistic basis for these effects, and suggest a therapeutic approach to mitigate cell killing by C. difficile toxins A and B.  相似文献   

9.
Clostridium difficile causes pseudomembranous colitis in humans. The enterotoxin (i.e., toxin A) from this organism is believed to be responsible for the initial intestinal pathology associated with this disease. Previous work shows that this toxin binds to carbohydrates that contain Gal alpha 1-3Gal beta 1-4GlcNAc. However, this carbohydrate is not present on normal human cells. Therefore, this study was undertaken to identify potential receptors for toxin A that do exist on human intestinal epithelium. Using enzyme-linked immunosorbent assay, affinity chromatography, and altered migration in an electric field, we assayed the binding of toxin A to purified carbohydrates and glycoproteins. We found that toxin A bound to the carbohydrate antigens designated I, X, and Y. Each of these carbohydrates exist on the intestinal epithelium of humans.  相似文献   

10.
Millipore diffusion chambers (MDC) with 0.22-μm filters loaded with spores or vegetative cells of Clostridium botulinum were surgically implanted intraperitoneally (ip) into guinea pigs. MDC expose C. botulinum spores or vegetative cells to body fluids yet protect them from phagocytes. Guinea pigs receiving MDC containing 109 spores plus 108 polymorphonuclear (PMN) leukocytes and MDC with 109 vegetative cells died within 48 hr, indicating that toxin was released and diffused out. MDC with 109 spores alone allowed 90% of animals to survive for at least 96 hr. Microscopically, it was observed that vegetative cells in MDC were disintegrated and leukocytes plus spores were phagocytized and germinated; spores alone remained intact and phase bright. Chemotactic attraction of leukocytes to MDC walls was also observed. Apparently, body fluids do not attack spores; thus, PMN leukocyte engulfment is essential for germination and release of spore-bound toxin in this type of C. botulinum pathogenesis. However, vegetative cells appear to be attacked by bacteriolytic enzymes (e.g., lysozyme) in body fluids, and leukocyte engulfment is not essential for toxin release.  相似文献   

11.
目的探讨艰难梭菌毒素A/B及其相关毒素基因检测对艰难梭菌相关性腹泻的诊断价值。方法收集2015年1月至2015年10月我院ICU病房腹泻疑似艰难梭菌感染患者的粪便标本133例作为研究对象,分别采用艰难梭菌培养法、CDAB法、PCR毒素基因检测法及艰难梭菌毒素GDH检测法进行检测,以艰难梭菌培养法结果为金标准,计算各方法的诊断指标所包含有的特异度、敏感度、阴性预测值和阳性预测值等。结果本研究收集的133例粪便标本中,经过金标准粪便样本厌氧培养法检出阳性结果 20例,阴性结果 113例。CDAB法具有低敏感度(0.550)和高特异度(0.912),诊断符合率为0.932,BD-PCR毒素基因检测法具有高敏感度(0.950)和高特异度(0.929),诊断符合率为0.932,艰难梭菌毒素GDH检测法的高敏感度(0.900)和低特异度(0.779),诊断符合率为0.797。结论对于疑似艰难梭菌感染,可联合艰难梭菌GDH、艰难梭菌毒素A/B(CDAB)或进行荧光定量PCR毒素基因共同检测,有效降低检测时间,为临床医师及时提供准确的诊断依据,并制定行之有效的治疗措施。  相似文献   

12.
13.
This study was undertaken to determine if the relative resistance of neonates and infants to Clostridium difficile-associated intestinal disease can be related to age-dependent differences in intestinal receptors for C. difficile toxins A and B. Brush border membranes (BBMs) from the small intestines of adult and infant hamsters were examined for their ability to bind radiolabeled toxins A and B. [125I]toxin A bound to both infant and adult hamster BBMs at physiological temperature, whereas [125I]toxin B did not bind to the BBMs under any of the conditions examined. The number of [125I]toxin A molecules bound at saturation was approximately 4 x 10(10) per micrograms of membrane protein for adult BBMs and 1 x 10(11) per micrograms of membrane protein for infant BBMs. Scatchard plot analysis suggested the presence of a single class of toxin A binding sites on both infant and adult hamster BBMs. Maximal binding capacity and Kd values were 0.63 pmol/mg of protein and 66.7 nM, respectively, for the infant BBMs, and 0.24 pmol/mg of protein and 27 nM, respectively, for the adult BBMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of extracted BBM proteins revealed differences in the proteins of infant and adult BBMs. However, there were not any detectable differences in the protein bands which bound [125I]toxin A between infant and adult hamsters. The results from these investigations indicate that differences in the binding kinetics of toxins A and/or B to infant and adult hamster BBMs do not account for the observed differences in their susceptibility to C. difficile-associated intestinal disease.  相似文献   

14.
Clostridium perfringens enterotoxin (CPE) action starts when the toxin binds to claudin receptors. Claudins contain two extracellular loop domains, with the second loop (ECL-2) being slightly smaller than the first. CPE has been shown to bind to ECL-2 in receptor claudins. We recently demonstrated that Caco-2 cells (a naturally CPE-sensitive enterocyte-like cell line) can be protected from CPE-induced cytotoxicity by preincubating the enterotoxin with soluble full-length recombinant claudin-4 (rclaudin-4), which is a CPE receptor, but not with recombinant nonreceptor claudins, such as rclaudin-1. The current study evaluated whether a synthetic peptide corresponding to the claudin-4 ECL-2 sequence can similarly inhibit CPE action in vitro and in vivo. Significant protection of Caco-2 cells was also observed using either rclaudin-4 or the claudin-4 ECL-2 peptide in both a preincubation assay and a coincubation assay. This inhibitory effect was specific, since rclaudin-1 and a synthetic peptide based on the claudin-1 ECL-2 offered no protection to Caco-2 cells. However, the claudin-4 ECL-2 peptide was unable to neutralize cytotoxicity if CPE had already bound to Caco-2 cells. When the study was repeated in vivo using a rabbit small intestinal loop assay, preincubation or coincubation of CPE with the claudin-4 ECL-2 peptide significantly and specifically inhibited the development of CPE-induced luminal fluid accumulation and histologic lesions in rabbit small intestinal loops. No similar in vivo protection from CPE was afforded by the claudin-1 ECL-2 peptide. These results suggest that claudin-4 ECL-2 peptides should be further investigated for their potential therapeutic application against CPE-associated disease.  相似文献   

15.
16.
A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A−B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A−B−, and A−B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A−B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A−B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections.  相似文献   

17.
We report the physical mapping of the toxin A and B genes to the bacterial chromosome of Clostridium difficile ATCC 43594 by pulsed-field gel electrophoresis. Single and double digestions with restriction endonucleases NruI and SacII allowed localization of the toxin genes to a specific 577-kb fragment and estimation of genome size to be approximately 3.8 megabases. This effort represents the initial step in the construction of a physical map of the whole genome.  相似文献   

18.
The incidence of Clostridium difficile infection (CDI) has been increasing within the last decade. Pathogenic strains of C. difficile produce toxin A and/or toxin B, which are important virulence factors in the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect either the bacterium or the toxins. We have developed an assay (Cdifftox activity assay) to detect C. difficile toxin A and B activities that is quantitative and cost-efficient and utilizes a substrate that is stereochemically similar to the native substrate of the toxins (UDP-glucose). To characterize toxin activity, toxins A and B were purified from culture supernatants by ammonium sulfate precipitation and chromatography through DEAE-Sepharose and gel filtration columns. The activities of the final fractions were quantitated using the Cdifftox activity assay and compared to the results of a toxin A- and B-specific enzyme-linked immunosorbent assay (ELISA). The affinity for the substrate was >4-fold higher for toxin B than for toxin A. Moreover, the rate of cleavage of the substrate was 4.3-fold higher for toxin B than for toxin A. The optimum temperature for both toxins ranged from 35 to 40°C at pH 8. Culture supernatants from clinical isolates obtained from the stools of patients suspected to be suffering from CDI were tested using the Cdifftox activity assay, and the results were compared to those of ELISA and PCR amplification of the toxin genes. Our results demonstrate that this new assay is comparable to the current commercial ELISA for detecting the toxins in the samples tested and has the added advantage of quantitating toxin activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号