首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to formulate and stabilize amorphous formulation of low T(g) drug (Indomethacin, INM) with selected polymers and compare these formulations based on solubility and dissolution rate studies. Eudragit EPO (EPO), Polyvinylpyrrolidone-vinyl acetate copolymer (PVP-VA), and Polyvinylpyrrolidone K30 (PVPK30) were selected as hydrophilic polymers. The melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), intrinsic dissolution rate and solubility studies. The formation of single-phase amorphous form was confirmed by DSC and PXRD. The melt extrudates showed a higher intrinsic dissolution rate (IDR), and solubility compared to the pure drug. The amorphous drug in solid solutions with EPO, PVP-VA, and PVPK30 showed tendency to revert back to crystalline form. However, the rate of reversion was dependent on the nature and concentration of the polymer. The solid solution with high ratio of EPO provided superior stabilization of the amorphous INM from crystallization. The stability of the amorphous form of INM could not be related to the glass transition temperature of the formulation as the mechanism of stabilization with EPO appears to be molecular interaction rather than immobilization. The presence of specific molecular interactions between INM and EPO was also shown by the antiplasticization effect.  相似文献   

2.
An emulsified solid dispersion of docetaxel was prepared and characterized in vitro. In contrast to conventional solid dispersions, emulsifying pharmaceutical excipients and hydroxypropyl methylcellulose (HPMC) as a supersaturation promoter were introduced into the PEG6000-based solid dispersion to further improve its solubilizing capability. The solubility, dissolution in vitro and stability of the prepared emulsified solid dispersions were studied taking into consideration of the effects of different emulsifying excipients, preparation methods and the media. Results of the emulsified solid dispersion of docetaxel showed that the solubility and dissolution at 2 h were 34.2- and 12.7-fold higher than the crude powder. The type of emulsifying excipient used had a significant influence on the dissolution of the emulsified solid dispersion. The dissolution of the emulsified solid dispersion prepared by the solvent-melting method or the solvent method was higher than the melting method. There were no apparent differences among the dissolution media utilized. The status of the drug in the emulsified solid dispersion was observed in an amorphous or a molecular dispersion state by differential thermal analysis and powder Xray diffraction. In conclusion, the incorporation of emulsifying pharmaceutical excipients and HPMC with polymers into a solid dispersion could be a new and useful tool to greatly increase the solubility and dissolution of poorly water-soluble drugs.  相似文献   

3.
谭伟  王柏 《药学进展》2012,36(9):418-422
目地:制备卡维地洛的固体分散体,提高其在水中的溶解度和溶出度。方法:以乙烯基吡咯烷酮/醋酸乙烯共聚物(PVPVA64)为载体,无水乙醇为溶剂,制备卡维地洛固体分散体,并通过差示扫描量热法、x-射线粉末衍射法、红外分光光度法、原子力显微镜扫描、溶解度测定、溶出度实验及稳定性试验对固体分散体进行表征。结果:差示扫描量热法、x-射线粉末衍射法以及原子力显微镜扫描的谱图和图像分析表明卡维地洛以无定形状态存在于制得的固体分散体中,而傅里叶变换红外光谱分析则表明在固体分散体中卡维地洛与PVPVA64间可能以氢键结合形式存在。与卡维地洛原料药相比,该固体分散体的溶解度提高了80倍,且1h溶出百分率也从10%以下提高到95.5%。经差示扫描量热法、x-射线粉末衍射法及溶出度实验考察发现,在温度为40℃、相对湿度为75%的环境条件下,于90d内,该固体分散体稳定性良好。结论:卡维地洛与PVPVA64形成固体分散体后可显著提高其溶解度和溶出度,且热力学稳定,可进一步用于制备生物利用度更高的口服固体剂型。  相似文献   

4.
In this study, the lack of complete drug release from amorphous solid dispersions (ASDs), as observed in most published reports, was investigated. ASDs with 20% ritonavir were prepared by HME using polyvinylpyrrolidone vinyl acetate (PVPVA) alone and in combination with 10% poloxamer 407 or Span 20 as carriers. It was established by the film casting technique that ritonavir was molecularly dispersed in formulations, and accelerated stability testing confirmed that extrudates were physically stable. Dissolution of ASDs (100-mg ritonavir equivalent) was performed in 250 mL 0.01 N HCl (pH 2), pH 6.8 phosphate buffer and FeSSIF-V2. Drug concentrations were measured by filtration through 0.45-μm pores and in unfiltered media; the latter gave total amounts of drug present in dissolution media, both as solution and dispersion. Because of low solubility, ritonavir did not dissolve completely in aqueous media. Rather, it formed supersaturated solutions, and the excess drug dispersed in the oily amorphous form with low particle sizes that could crystallize with time. Due to higher drug solubility, the dissolved drug in FeSSIF-V2 was much higher than that in the phosphate buffer. Complete drug release could be observed by accounting for drug both in solution and as phase-separated dispersion. Thus, the present study provides a complete picture of in vitro drug dissolution and dispersion from ASDs.  相似文献   

5.
This study aimed to develop a stable solid dispersion of Coenzyme Q10 (CoQ10) with high aqueous solubility and dissolution rate. Among various carriers screened, poloxamer 407 was most effective to form a superior solid dispersion of CoQ10 having significantly enhanced solubility. Particularly, solid dispersion of CoQ10 with poloxamer 407 in the weight ratio of 1:5 prepared by melting method enhanced the solubility of CoQ10 to the greatest extent. However, it exhibited poor stability and hence Aerosil® 200 (colloidal silicon dioxide) was incorporated into the solid dispersion as an adsorbent to inhibit the recrystallization process. The solid dispersion of CoQ10, poloxamer 407 and Aerosil® 200 in the weight ratio of 1:5:6 exhibited improved stability with no significant change in solubility during the 1-month stability test. Moreover, the solid dispersion formulation containing Aerosil® 200 significantly enhanced the extent of drug release (approx. 75% release) as well as the dissolution rate of CoQ10. In conclusion, the present study has developed the stable solid dispersion formulation of CoQ10 with poloxamer 407 and Aerosil® 200 for the enhanced solubility and dissolution of CoQ10, which could also offer some additional advantages including ease of preparation, good flowability and cost-effectiveness.  相似文献   

6.
This study aims to develop amorphous solid dispersion (ASD) of lumefantrine with a cost-effective approach of spray anti-solvent precipitation. Four acidic polymers, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), poly(methacrylic acid–ethyl acrylate) (EL100) and cellulose acetate phthalate (CAP) were studied as excipients at various drug-polymer ratios. Of the studied polymers, satisfactory physical stability was demonstrated for HPMCP- and HPMCAS-based ASDs with no observed powder X-ray diffraction peaks for up to 3 months of storage at 40 °C/75% RH. HPMCP and HPMCAS ASDs also achieved greater drug release levels in the dissolution study than other polymers. The HPMCP-based ASDs with a drug:polymer ratio of 2:8 exhibited a maximum drug release of 140 μg/mL for up to 2 h, which is significantly higher than the currently marketed formulation of Coartem® (<80 ng/mL). Relatively, the CAP and EL100 ASDs indicated a higher water content and crystallized within a day when stored at 40 °C/75% RH. The choice of polymer, and the drug-polymer ratio played a crucial role in the solubility enhancement of lumefantrine. Our study indicates that the developed spray anti-solvent precipitation method could be an affordable approach for producing ASDs.  相似文献   

7.
In the present study, we aimed to probe the possibility of using mixed poloxamers as carriers to prepare ternary solid dispersion (SD) that facilitated solubility and dissolution rate of the poorly water soluble drug and compare with binary SD with single poloxamer. Lidocaine (LIC) was selected as a model drug, and poloxamer 188 (P188) and poloxamer 407 (P407) were utilized as single and mixed carriers. Depending on DSC and the dissolution testing, the appropriate ratio of SD prepared by melting method was optimized. Ternary and binary SD was characterized by DSC, XRD, SEM and FTIR. In vitro dissolution study, phase solubility study and saturated solubility study were performed to clarify solubilization from apparent phenomena and inherent reason. Moreover, stability study under different relative humidity (RH) was investigated. Physical characterizations of binary and ternary SD exhibited the formation of eutectic mixture and the presence of molecular interaction. Compared with the pure LIC, the dissolution rate and solubility of LIC in binary and ternary SDs were enhanced. The phase solubility study revealed an AL-type curve. Furthermore, the stability test indicated that ternary and binary SD was stable. The results of this study demonstrated that SD with mixed poloxamers could improve dissolution rate and solubility of poorly water-soluble drug.  相似文献   

8.
A systematic study of the properties of ritonavir and the influence of polyethylene glycol 8000 (PEG) on ritonavir revealed that amorphous ritonavir dispersions in PEG would have an improved dissolution profile and could exhibit long-term stability. Ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, is highly lipophilic [distribution coefficient (log D)= 4.3, 25 degrees C, pH 6.8], poorly water soluble (400 microg/mL in 0.1 N HCl, 1 microg/mL at pH 6.8, 37 degrees C), and exhibits an exceedingly slow dissolution rate (0.03 mg/cm(2)-min in 0.1 N HCl at 37 degrees C). These properties indicated that a solid dispersion containing ritonavir might be useful for overcoming problems associated with slow dissolution. In addition, ritonavir is a good glass former [glass-transition temperature (T(g))/melting point (T(m)) > 0.7]. Amorphous ritonavir has an apparent solubility of 4 mg/mL in 0.1 N HCl at 37 degrees C and shows reasonable stability at 25 degrees C. Amorphous ritonavir, therefore, has properties desirable for preparing a solid dispersion containing this phase. Since PEG, a commonly used polymer, improved the aqueous solubility of crystalline ritonavir, it was expected to have a positive influence on the dissolution rate of ritonavir. Moreover, PEG was found to have negligible plasticizing effect on amorphous ritonavir, which was beneficial for the stability of the dispersion. Finally, solid dispersions of amorphous ritonavir in PEG were prepared, and these dispersions had improved in vitro dissolution rate and were physically stable for > 1.5 years at 25 degrees C when protected from moisture. The performance of this solid dispersion has been attributed to the physicochemical properties of amorphous ritonavir.  相似文献   

9.
Objectives Andrographolide, a natural lipophilic molecule, has a wide range of pharmacological actions. However, due to low aqueous solubility, it has low oral bioavailability. The purpose of the study was to increase the solubility and dissolution rate of isolated andrographolide by formulating its solid dispersion. Method Solid dispersions were obtained by a spray‐drying technique using different ratios of drug to polyvinylpyrrolidine (PVP K‐30). Solid dispersions in compression with isolated drug and corresponding physical mixtures were characterized for various molecular pharmaceutical properties and subjected to stability study for up to 3 months. Key findings A five‐fold increase in saturation solubility of andrographolide with higher values of Q5min (cumulative percentage release in 5 min) and lower values of t75% (time required for 75% w/w drug release) for solid dispersion was observed in different dissolution mediums. This was attributed to the formation of amorphous nature and intermolecular hydrogen bonding between drug and PVP K‐30. The stability study showed there to be no significant change in molecular pharmaceutical properties and dissolution profile over the period of 3 months. Moreover, the in‐vivo study in Wistar albino rats also justified improvement in the therapeutic efficacy of andrographolide after solid dispersion. Conclusions This study demonstrates the utility of solid dispersion to improve primary and secondary pharmaceutical properties of andrographolide using PVP K‐30 as a carrier.  相似文献   

10.
用溶剂法制备紫杉醇-PVP固体分散体,对其溶解度及体外溶出特性进行考察并对物相进行鉴定。采用溶剂法制备紫杉醇-PVP固体分散体,对固体分散体中紫杉醇的溶解度和溶出率进行测定,研究固体分散体的溶出性质。同时,利用差热分析(Differential scanning calorimetry,DSC)、粉末X衍射(X-ray powder diffractometry,PXRD)、扫描电镜(Scanning electron microscopy,SEM)等方法对其进行物相鉴定。采用SRB法对紫杉醇-PVP固体分散体对SKOV-3细胞药效进行测定。紫杉醇-PVP固体分散体中紫杉醇的溶解度和溶出速率相对其原料药和物理混合物均有了明显的提高;热差分析及粉末X衍射结果表明固体分散体中紫杉醇呈非结晶形式;扫描电镜下固体分散体中无紫杉醇晶体。细胞药效结果表明紫杉醇-PVP固体分散体的细胞药效强于紫杉醇纯药。采用溶剂法制备的紫杉醇-PVP固体分散体可显著提高紫杉醇的溶解度和溶出速度。  相似文献   

11.

Purpose

The oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved by the preparation of amorphous solid dispersions (ASDs) where the API is dissolved in polymeric excipients. Desired properties of such ASDs like storage stability, dissolution behavior, and processability can be optimized by additional excipients. In this work, the influence of so-called low-molecular-weight excipients (LMWEs) on the phase behavior of ASDs was investigated.

Method

Binary ASDs of an amorphous API, naproxen (NAP) or acetaminophen (APAP), embedded in poly-(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) were chosen as reference systems. Polyethylene glycol 1500 (PEG1500), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS1000), propylene glycol monocaprylate type II (Capryol? 90), and propylene glycol monolaurate type I (Lauroglycol? FCC) were used as LMWEs. The API solubility in the excipients and the glass-transition temperature of the ASDs were modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Kwei equation, respectively, and compared to corresponding experimental data.

Results

The API solubility curves in ternary systems with 90/10 wt%/wt% PVPVA64/LMWE ratios were very close to those in pure PVPVA64. However, the glass-transition temperatures of API/PVPVA64/LMWE ASDs were much lower than those of API/PVPVA64 ASDs. These effects were determined experimentally and agreed with the predictions using the PC-SAFT and Kwei models.

Conclusion

The impact of the LMWEs on the thermodynamic stability of the ASDs is quite small while the kinetic stability is significantly decreased even by small LMWE amounts. PC-SAFT and the Kwei equation are suitable tools for predicting the influence of LMWEs on the ASD phase behavior.
  相似文献   

12.
In this study, the influence of the glass-forming ability (GFA) of a drug on its physical stability in a supersaturated solid dispersion was investigated. Nine drugs were classified according to their GFA using their respective critical cooling rate. Their respective solubility in poly(vinylpyrrolidone-co-vinyl acetate) 6:4 (PVPVA64) was predicted using the melting point depression method based on the Flory-Huggins lattice theory. Supersaturated amorphous solid dispersions at a level of 25% w/w drug above saturation solubility in the polymer were prepared by film-casting, and their respective physical stability at temperatures of 10°C or 20°C above or below their respective Tg (dry conditions) was monitored by the use of polarized light microscopy. This study showed that drugs with good GFA (class 3) on average have higher physical stability in supersaturated amorphous solid dispersion compared to drug with modest GFA (class 2), which in turn have higher physical stability in supersaturated amorphous solid dispersion than drugs with poor GFA (class 1). These results indicate that the GFA of a drug and its physical stability in a supersaturated amorphous solid dispersion stored at a temperature above or below its Tg are correlated.  相似文献   

13.
An increasing number of drugs with low aqueous solubility are being formulated and marketed as amorphous solid dispersions because the amorphous form can generate a higher solubility compared to the crystalline solid. The amorphous solubility of a drug can be determined experimentally using various techniques. Most studies in this area investigate the drug in its pure form and do not evaluate any effects from other formulation ingredients. In this study, we use 6 marketed amorphous oral drug products, capsules containing 5 mg of tacrolimus, and various excipients, consisting of 1 innovator product and 5 generics. The amorphous solubility of tacrolimus was evaluated using different techniques and was compared to the crystalline solubility of the drug. Dissolution of the different products was conducted under non-sink conditions to compare the maximum achieved concentration with the amorphous solubility. Diffusion studies were performed to elucidate the maximum flux across a membrane and to evaluate whether there was any difference in the thermodynamic activity of the drug released from the formulation and the pure drug. The amorphous solubility of tacrolimus was found to be a factor of 35 higher than the crystalline solubility. The maximum concentration obtained after dissolution of the capsule contents in non-sink conditions was found to match the experimentally determined amorphous solubility of the pure drug. Furthermore, the membrane flux of tacrolimus following dissolution of the various formulations was found to be similar and maximized. This study demonstrates a link between key physicochemical properties (amorphous solubility) and in vitro formulation performance.  相似文献   

14.
目的将难溶性微管蛋白抑制剂SUD-35制备成固体分散体,以增加其溶解度及溶出速率。方法以聚乙二醇6000为载体,溶剂-熔融法制备SUD-35固体分散体。采用差示扫描量热分析与X-射线衍射观察药物在载体中的存在状态,并进行溶解度和体外溶出度研究。采用MTT法对SUD-35固体分散体对小鼠白血病L1210细胞药效进行测定。结果 SUD-35固体分散体中SUD-35的溶解度和溶出速率相对原料药和物理混合物均有明显提高,差示扫描量热分析与X-射线衍射结果显示SUD-35以无定型状态存在于固体分散体中,细胞药效结果显示SUD-35固体分散体对小鼠白血病L1210细胞增殖抑制率强于SUD-35纯药。结论聚乙二醇6000为载体制备SUD-35固体分散体,可显著提高SUD-35的溶解度及溶出速率。  相似文献   

15.
The purpose of this study was to develop a raloxifene-loaded solid dispersion with enhanced dissolution rate and bioavailability via spray-drying technique. Solid dispersions of raloxifene (RXF) were prepared with PVP K30 at weight ratios of 1:4, 1:6 and 1:8 using a spray-drying method, and characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and solubility and dissolution tests. The bioavailability of the solid dispersion in rats was also evaluated compared to those of RXF powder and commercial product. Results showed that the RXF-loaded solid dispersion was in amorphous form with increased solubility and dissolution rate. The absorption of RXF from solid dispersion resulted in approximately 2.6-fold enhanced bioavailability compared to pure drug. Moreover, RXF-loaded solid dispersion gave similar AUC, Cmax and Tmax values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. These findings suggest that an amorphous solid dispersion of RXF could be a viable option for enhancing the oral bioavailability of RXF.  相似文献   

16.
The objective of the study was to characterize the physical and viscoelastic properties of binary mixtures of drug and selected polymers to assess their suitability for use in the hot-melt extrusion (HME) process as a means to improve solubility by manufacturing either solid dispersion or solid solution. Indomethacin (INM) was selected as a model drug. Based on comparable solubility parameters, the selected polymers were Eudragit EPO (EPO), polyvinylpyrrolidone/vinyl acetate copolymer (PVP-VA), polyvinylpyrrolidone K30 (PVPK30), and poloxamer 188 (P188). The various drug and polymer systems were characterized for thermal and rheological properties as a function of drug concentration to provide an insight into miscibility and processibility of these systems. From the thermal analysis studies, a single T(g) was observed for the binary mixtures of INM/EPO, INM/PVP-VA, and INM/PVPK30, indicating miscibility of drug and polymer in the given ratios. In the case of mixtures of INM/P188, two melting endotherms were observed with decreasing drug melting point as a function of polymer concentration indicating partial miscibility of drug in polymer. As part of the rheological evaluation, zero rate viscosity (eta(o)) and activation energy (E(a)) was determined for the various systems using torque rheometer at varying shear rates and temperatures. The eta(o) for binary mixtures of drug and EPO, PVP-VA and PVPK30 were found to be significantly lower as compared to pure polymer, indicating disruption of the polymer structure due to miscibility of the drug. On the other hand, INM/P188 mixtures showed a higher eta(o) compared to pure polymer indicating partial miscibility of drug and polymer. With respect to E(a), the mixtures of INM/EPO showed an increase in E(a) with increasing drug concentration, suggesting antiplasticization effect of the drug. These findings corroborate the thermal analysis results showing increase T(g) for the various binary mixtures. The mixtures of INM/PVP-VA showed a decrease in the E(a) with the increasing drug concentration suggesting a plasticization effect of the drug. The understanding of thermal and rheological properties of the various drug/polymer mixtures help established the processing conditions for hotmelt extrusion (such as extrusion temperatures and motor load) as well as provided insight into the properties of the final extrudates. Using the actual hot-melt processing, a model was developed correlating the zero rate viscosity to the motor load determined by rheological evaluation.  相似文献   

17.
目的用溶剂法制备槲皮素-PVP固体分散体并考察其溶出特性并对物相进行鉴定。方法采用溶剂法制备槲皮素-PVP固体分散体,通过溶出实验对槲皮素溶出率的测定研究固体分散体的溶出性质,利用差热分析(Differentialscanning calorimetry,DSC)、红外光谱分析(Infrared spectroscopy,IR)、粉末X衍射(X-ray powder diffractometry,PXRD)、扫描电镜(Scanning electron microscopy,SEM)等方法对其进行物相鉴定。结果槲皮素-PVP固体分散体的溶出速率相对其物理混合物有了明显的改善; 溶解实验显示固体分散体中槲皮素的溶解度有了显著的提高;热差分析及粉末X衍射结果表明固体分散体中槲皮素呈非结晶形式;扫描电镜下固体分散体中无槲皮素晶体。结论采用溶剂法制备槲皮素-PVP固体分散体可显著提高槲皮素的溶解度及溶出速度。  相似文献   

18.
Poor water-solubility remains a typical property of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate, and bioavailability of these active ingredients belonging to biopharmaceutical classification system (BCS) II and IV classifications. Since the early 2000s, nanocrystal delivery and amorphous solid dispersions are more established techniques to overcome the limitations of poorly-water soluble drugs in FDA available products. This article provides an updated review of nanocrystal and amorphous solid dispersion techniques primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercially relevant scientific literature.  相似文献   

19.
王星星  孟旭 《中国药事》2019,33(5):544-554
共无定形药物是将活性药物成分和其他药物或辅料等小分子固体组分混合形成的一种二元单相无定形固体分散体给药系统。作为一种新颖的药物传递系统,共无定形药物可能改善水难溶性药物的溶解度和口服生物利用度问题,为仿制药物和复方药物的开发提供了新的策略和思路。近年来,共无定形药物在学术和制药工业领域受到广泛关注。本文综述了共无定形药物的载体材料的筛选、制备方法、物理稳定机制,以及体外溶出性能和体内吸收情况,并对共无定形药物的未来发展前景进行了展望。  相似文献   

20.
Drug–polymer solid dispersion has been demonstrated as a feasible approach to formulate poorly water-soluble drugs in the amorphous form, for the enhancement of dissolution rate and bioperformance. The solubility (for crystalline drug) and miscibility (for amorphous drug) in the polymer are directly related to the stabilization of amorphous drug against crystallization. Therefore, it is important for pharmaceutical scientists to rationally assess solubility and miscibility in order to select the optimal formulation (e.g., polymer type, drug loading, etc.) and recommend storage conditions, with respect to maximizing the physical stability. This commentary attempts to discuss the concepts and implications of the drug–polymer solubility and miscibility on the stabilization of solid dispersions, review recent literatures, and propose some practical strategies for the evaluation and development of such systems utilizing a working diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号