首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in erythrocyte delta-aminolevulinic acid dehydratase (ALA-D) have been reported after exposure to different pesticides, including organophosphates and paraquat. In this study, we have determined ALA-D in 135 pesticide applicators (sprayers) from an intensive agriculture setting at two periods with different pesticide exposure. Acetylcholinesterase (AChE) was used as a reference biomarker. The effects of the combined polymorphism of enzymes involved in the detoxification of pesticides (paraoxonase (PON1), benzoylcholinesterase (BChE), and glutathione S-transferase (GSTM1 and GSTT1)) on the level of the target erythrocyte enzymes were also studied as biomarkers of individual susceptibility. Sprayers presented significant lower levels of ALA-D and AChE than controls (41.3% and 14.5%, respectively) at the high exposure period. When all biomarkers of individual susceptibility to pesticides were considered at the same time, the GSTT1 null allele determined higher ALA-D and AChE activities at the period of high exposure to pesticides. PON1 R allele in turn determined lower AChE activity at the low exposure period. Null genotype for both GST subclasses (GSTM1 and GSTT1) was found to be the unique independent predictor of pesticide-related symptomatology. Interestingly, sprayers were consistently underrepresented among carriers of "unfavourable" BChE variants. In conclusion, ALA-D appears to be an important biological indicator of pesticide exposure and PON1 and GSTT1 are relevant determinants of susceptibility to chronic pesticide poisoning.  相似文献   

2.
Paraoxonase-1 (PON1) is a serum enzyme which catalyzes the hydrolysis of organophosphate pesticides. In this study we conducted a cross-sectional study and reported on the distribution of three common genetic polymorphisms of the PON1 gene in a population of floriculture workers from Mexico as well as the association between those polymorphisms and other predictors with serum PON1 activity on paraoxon, diazoxon and phenylacetate. The genotype frequencies at position PON155 were 89% (LL), 10% (LM) and 0.6% (MM), at position PON1192 they were 16% (QQ), 47% (QR) and 37% (RR), and 26% (TT), 42% (TC) and 32% (CC) at position PON1−108. Thus, the frequencies of alleles L, Q and T were 0.94, 0.40 and 0.47, respectively. The PON155 polymorphism had no significant effect on serum PON1 activity on any substrate. We found a significant association between the PON1192 polymorphism and PON1 activity towards paraoxon and diazoxon, which increased in genotypes as follows: 192RR > 192QR > 192QQ for paraoxonase activity and, inversely, 192QQ > 192QR > 192RR for diazoxonase activity. The PON1−108 polymorphism also had a significant effect on PON1 activity level towards paraoxon in the following order among the genotype groups: −108CC > −108TC > −108TT. Serum PON1 activity towards diazoxon was not associated with the PON1−108 polymorphism but it was influenced by the intensity exposure to pesticides at the floriculture industry and the years of the occupational exposure to pesticides. No polymorphism significantly influenced serum PON1 activity on phenylacetate.  相似文献   

3.
OBJECTIVES: Human serum paraoxonase (PON1) hydrolyses organophosphate pesticides (OPs) entering the blood circulation and tissue fluid thus limiting toxicity. The PON1 coding region has two polymorphisms involving the amino acids at position 55 (Lt<--M) and 192 (Qt<--R), giving rise to isoenzymes which differ in their catalytic rate for the hydrolysis of OPs. We therefore hypothesized that individuals inheriting low activity isoforms of PON1 would be more liable to report symptoms of OP toxicity. METHODS: We have therefore investigated the relationship between PON1 genetic polymorphisms and PON1 activity in farmers reporting chronic ill health which they attributed to OP exposure whilst sheep dipping (cases) and farmers who carried out similar activities, but remained well (controls). Diazoxon, paraoxon and phenylacetate were used as substrates for PON1. Diazoxon is the active metabolite of diazinon, the sheep dip most commonly used in the UK. RESULTS: Cases were found to be more likely to have the R192 allele ( 0.01) and to have the L55 allele ( 0.05) than the controls. This combination of R and L genotypes was associated with lower PON1 activity towards diazoxon in both cases and controls. Farmers in the lowest quintile for the rate of serum diazoxon hydrolysis had a greater risk of being a case i.e. of reporting ill health (odds ratio 2.47 (95% CI 1.35-2.82)), than the other four quintiles of diazoxon hydrolysis. The rate of serum hydrolysis of paraoxon was greatest in cases and controls with the R/L haplotype (both 0.001). CONCLUSIONS: The farmers reporting chronic ill health due to organophosphate exposure have a higher proportion of the PON1-192R polymorphism associated with lower rates of diazoxon hydrolysis and lower rates of diazoxon hydrolysis than the controls and that their ill health may be explained by a lower ability to detoxify diazoxon.  相似文献   

4.
Effect of organophosphate intoxication on human serum paraoxonase   总被引:2,自引:0,他引:2  
Recently, interindividual variations in serum paraoxonase (PON1) activity and the differences in its metabolic activity towards different organophosphates (OPs) caused by the coding region polymorphisms L55M and Q192R have been found to be important risk factors in susceptibility to OP poisoning. In this study, we investigated the effect of PON1 on the outcome of acute OP intoxication and the effect of acute OP intoxication on PON1. Twenty-eight OP-poisoned patients and 66 healthy volunteers were studied. Patients were evaluated for the clinical manifestations of OP intoxication as well as PON1 activity, PON1 mass and PON1 polymorphisms. Butyrylcholine-esterase (BChE) activity was 50% lower (2,276 +/- 738 U/L versus 5,037 +/- 1,553 U/L, P<0.01) while PON1 activity was 30% lower [114.2 +/- 67.4 nmol/mL/min versus 152.9 +/- 78.9 nmol/mL/ min, P<0.05) in patients than in controls. We observed that the PON1 and BChE activities of eight of the original subjects returned to normal levels when they were reinvestigated six months after exposure. The frequency of the PON192Q allele was significantly higher in patients than controls (85.7% versus 59.7%, chi2=6.745, P=0.034). QQ/ MM individuals had the lowest activity towards paraoxon, while RR/LL individuals had the highest activity. Our data indicate that interindividual differences in PON1 activity and the PON1-55 and -192 polymorphisms are important risk factors in susceptibility to acute OP poisoning; therefore, identifying an individual's PON1 alloenzymes may play an important role in the treatment of patients suffering from OP intoxication.  相似文献   

5.
Phosphorothioate pesticides (OP) such as diazinon, chlorpyrifos, and parathion are activated to highly toxic oxon metabolites by the cytochromes P450 (P450s), mainly in the liver. Simultaneously, the P450s catalyze detoxification of OP to nontoxic dearylated metabolites. The oxon is then detoxified to the dearylated metabolite by PON1, an A-esterase present in the liver and blood serum. The aims of this study were to define the influence of PON1-192 genotype and phenotype on the capacity of human liver microsomes (n = 27) to detoxify the oxons diazoxon, chlorpyrifos-oxon, and paraoxon. Near physiological assay conditions were used to reflect as closely as possible metabolism in vivo and because the hydrolytic activity of the allelic variants of PON1-192 are differentially affected by a number of conditions. The rates of hydrolysis of diazoxon, chlorpyrifos-oxon, and paraoxon varied 5.7-, 16-, and 56-fold, respectively, regardless of PON1-192 genotype. Individuals with the PON1-192RR genotype preferentially hydrolyzed paraoxon (p < 0.01), and the R allele was associated with higher hydrolytic activity toward chlorpyrifos-oxon, but not diazoxon. There were strongly significant relationships between phenylacetate and paraoxon hydrolysis (p < 0.001) and phenylacetate and chlorpyrifos-oxon hydrolysis (p < 0.001), but not between phenylacetate and diazoxon hydrolysis. These data highlight the importance of PON1 phenotype for efficient hydrolysis of paraoxon and chlorpyrifos-oxon, but environmental and yet unknown genetic factors are more important than PON1-192 genotype in determining capacity to hydrolyze diazoxon.  相似文献   

6.
Serum paraoxonase-1 (PON1) is an esterase associated with high-density lipoproteins in plasma and is involved in the detoxification of organophosphates (OP). We have previously reported a significant decrease in serum PON1 activity following Nippostrongylus brasiliensis infection in Wistar rats. In the present study we investigated the effects of decreased serum PON1 activity due to N. brasiliensis infection on acute toxicity induced by chlorpyrifos oxon (CPO) and paraoxon (PO) in rats. CPO and PO were dermally applied at doses of 8 mg/kg and 0.2 mg/kg body weight, respectively, to infected (on day 7 post-infection) and uninfected rats, after which acetylcholinesterase (AChE) activity was measured within the brain, diaphragm, plasma, and red blood cells, 4h after administration as a measure of toxicity. In addition, serum PON1 activity was measured immediately prior to administration of CPO and PO. N. brasiliensis infection significantly increased the degree of inhibition of AChE in the brain and diaphragm after treatment with CPO and PO in association with a significant reduction in PON1 activity. Likewise, similar findings were observed in the blood (plasma and RBCs) ChE activity after treatment with PO, but not CPO. These results indicate that N. brasiliensis infection makes rats more susceptible to CPO and PO toxicity, suggesting that gastrointestinal nematode infection might be a potential factor affecting OP toxicity.  相似文献   

7.
  1. The hydrolysis of organophosphate pesticides (OP) and nerve gases by serum paraoxonase (PON1) is an important factor determining their toxicity to mammals including man. The PON1 gene contains 2 polymorphic sites at amino acid positions 55 (L→M) and 192 (G→A, classically defined as the A and B genotypes) which result in several alloenzymes of PON1 in human serum.
  2. The 192 polymorphism has previously been shown to affect PON1 activity. We have investigated the effect of both polymorphisms on the hydrolysis of paraoxon by serum from 279 healthy human subjects.
  3. The 55 polymorphism significantly influenced PON1 activity. MM homozygotes had over 50% less activity towards paraoxon compared to the LL and LM genotypes regardless of the 192 genotype (P<0.001).
  4. Multiple regression analysis indicated that the 192 polymorphism, 55 polymorphism and serum PON1 concentration were responsible for 46, 16 and 13% of the variation in PON1 activity, respectively (all P<0.001). None of the other parameters investigated significantly affected PON1 activity.
  5. Therefore both PON1 polymorphisms affect the hydrolysis of paraoxon. AA/MM and AB/MM individuals may be potentially more susceptible to OP intoxication.
  6. Genotyping individuals for both PON1 polymorphisms may provide a method for identifying those individuals at most risk of OP poisoning. The effect of PON1 polymorphisms on activity may also explain why some Gulf War Veterans have developed Gulf War Syndrome and some have not.
  相似文献   

8.
Human paraoxonase (PON1) plays a role in detoxification of organophosphorus (OP) compounds by hydrolyzing the bioactive oxons, and in reducing oxidative low-density lipoproteins, which may protect against atherosclerosis. Some PON1 polymorphisms have been found to be responsible for variations in catalytic activity and expression and have been associated with susceptibility to OP poisoning and vascular diseases. Both situations are of public health relevance in Mexico. Therefore, the aim of this study was to evaluate PON1 phenotype and the frequencies of polymorphisms PON1 -162, -108, 55, and 192 in a Mexican population. The studied population consisted of unrelated individuals (n = 214) of either gender, 18-52 years old. Serum PON1 activity was assayed using phenylacetate and paraoxon as substrates. PON1 variants, -162, 55, and 192, were determined by real-time PCR using the TaqMan System, and PON1 -108 genotype by PCR-RFLP. We found a wide interindividual variability of PON1 activity with a unimodal distribution; the range of enzymatic activity toward phenylacetate was 84.72 to 422.0 U/mL, and 88.37 to 1645.6 U/L toward paraoxon. All four PON1 polymorphisms showed strong linkage disequilibrium (D% >90). PON1 polymorphisms -108, 55, and 192 were independently associated with arylesterase activity; whereas the activity toward paraoxon was related only with PON1 192 polymorphism, suggesting that this polymorphism is determinant to infer PON1 activity. A better understanding of the phenotype and genotypes of PON1 in Mexican populations will facilitate further epidemiological studies involving PON1 variability in OP poisoning and in the development of atherosclerosis.  相似文献   

9.
Pesticide exposure, including organophosphorous (OP) insecticides, has been associated with poor semen quality, and paraoxonase (PON1), an enzyme involved in OP deactivation, may have a role on their susceptibility, due to PON1 polymorphisms. Our objective was to evaluate the role of PON1Q192R polymorphism on the susceptibility to OP toxicity on semen quality and DNA integrity in agricultural workers. A cross-sectional study was conducted in farmers with Mayan ascendancy from southeastern Mexico chronically exposed to pesticides; mostly OP. Fifty four agricultural workers (18-55 years old) were included, who provided semen and blood samples. Semen quality was evaluated according to WHO, sperm DNA damage by in situ-nick translation (NT-positive cells), PON1Q192R polymorphism by real-time PCR and serum PON1 activity by using phenylacetate and paraoxon. Two OP exposure indexes were created: at the month of sampling and during 3 months before sampling, representing the exposure to spermatids-spermatozoa and to cells at one spermatogenic cycle, respectively. PON1 192R and 192Q allele frequencies were 0.54 and 0.46, respectively. Significant associations were found between OP exposure at the month of sampling and NT-positive cells and sperm viability in homozygote 192RR subjects, and dose-effect relationships were observed between OP exposure during 3 months before sampling and sperm quality parameters and NT-positive cells in homozygote 192RR farmers. This suggests that cells at all stages of spermatogenesis are target of OP, and that there exists an interaction between OP exposure and PON1Q192R polymorphism on these effects; farmers featuring the 192RR genotype were more susceptible to develop reproductive toxic effects by OP exposure.  相似文献   

10.
Human paraoxonase (PON1) is a polymorphic, high-density lipoprotein (HDL)-associated esterase that hydrolyzes the toxic metabolites of several organophosphorus (OP) insecticides and nerve agents. The activity polymorphism is determined by a Gln/Arg (Q/R) substitution at position 192. Injection of purified PON1 protects animals from OP poisoning. In the present study, we investigated the in-vivo function of PON1 for detoxifying organophosphorus insecticides in PON1-knockout mice that were challenged via dermal exposure with diazoxon, diazinon and paraoxon. PON1-knockout mice were extremely sensitive to diazoxon. Doses (2 and 4 mg/kg) that caused no cholinesterase (ChE) inhibition in wild-type mice were lethal to the knockout mice, which also showed slightly increased sensitivity to the parent compound diazinon. Surprisingly, these knockout mice did not show increased sensitivity to paraoxon. In-vitro assays indicated that the PON1R192 isoform hydrolyzed diazoxon less rapidly than did the PON1Q192 isoform. In-vivo analysis, where PON1-knockout mice received the same amount of either PON1(192) isoform via intraperitoneal (i.p.) injection 4 h prior to exposure, showed that both isoforms provided a similar degree of protection against diazoxon, while PON1R192 conferred better protection against chlorpyrifos-oxon than PON1Q192. Injection of purified rabbit PON1 or either human PON1(192) isoform did not protect PONI-knockout mice from paraoxon toxicity, nor did over-expression of the human PON1R192 transgene in wild-type mice. Kinetic analysis of the two human PON1(192) isoforms revealed that the catalytic efficiency (Vmax/Km) determines the in-vivo efficacy of PON1 for organophosphorus detoxication. The results indicate that PON1 plays a major role in the detoxication of diazoxon and chlorpyrifos oxon but not paraoxon.  相似文献   

11.
Organophosphate pesticides are widely used in agricultural purposes. Recently, a few studies have demonstrated the ability of these chemicals to alter the function of the thyroid gland in human. Moreover, the paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity. This study evaluates the interaction between exposure to organophosphate compounds and PON1 enzyme activity on serum levels of TSH and thyroid hormones in a population of workers occupationally exposed to pesticides. A longitudinal study was conducted on a population of floriculture workers from Mexico, during two periods of high and low-intensity levels of pesticide application. A structured questionnaire was completed by workers containing questions on sociodemographic characteristics and other variables of interest. Urine and blood samples were taken, and biomarkers of exposure (dialkylphosphates), susceptibility (PON1 polymorphisms and activity) and effect (thyroid hormone levels) were determined. Interaction between dialkylphosphates and PON1 polymorphisms or PON1 activity on hormone levels was evaluated by generalized estimating equation (GEE) models. A significant interaction was found between serum diazoxonase activity and total dialkylphosphates (ΣDAP) on TSH levels. Thus, when PON1 activity was increased we observed a decrease in the percentage of variation of TSH level for each increment in one logarithmic unit of the ΣDAP levels. This interaction was also observed with the PON1192RR genotype. These results suggest a stronger association between organophosphate pesticides and thyroid function in individuals with lower PON1 activity.  相似文献   

12.
Previous reports in animals considered beta-glucuronidase activity as a novel biomarker of anticholinesterase (organophosphates and carbamates) pesticides exposure. Acid phosphatase activity was also shown to increase after organophosphates exposure. In addition, there is evidence that the paraoxonase status influences sensitivity to specific pesticides. In this study, activities of beta-glucuronidase, acid phosphatase, cholinesterase, and paraoxonase were measured in plasma from plastic greenhouse workers exposed over the long term to different pesticides, including organophosphates and carbamates, in order to evaluate the potential chronic toxicity of pesticides at occupational level. Our results show that activities of paraoxonase and cholinesterase were decreased in applicators of pesticides compared to non-applicators. Likewise, it was found that activities of beta-glucuronidase and acid phosphatase were associated with pesticide exposure in humans, and that both biochemical parameters were related to each other. Interestingly, the paraoxonase B allele (phenotyped in plasma) was associated with a higher risk of inhibition of cholinesterase activity above a 25% level, which supports the hypothesis that paraoxonase phenotypes are associated with susceptibility of humans to anticholinesterase pesticides toxicity.  相似文献   

13.
Paraoxonase (PON1) is tightly associated with high-density lipoprotein particles and is believed to contribute to the prevention of atherosclerosis by metabolizing oxidized lipids. PON1 also hydrolyses the bioactive oxon forms of organophosphorus pesticides such as parathion, diazinon and chlorpyrifos. Two common polymorphisms have been identified in the coding sequence of human PON1: L55M and R192Q. Several previous studies have found that the presence of the PON1R192 allele raises the risk of cardiovascular disease while others found no correlation. The studies, however, have focused on the genotype of PON1 and not the expression level of the protein. We found that the PON1 expression level in plasma, as determined by the rates of paraoxon and diazoxon hydrolysis, varies widely among individuals and within a genotype. Previous studies found that individuals having Met at PON155 have lower levels of both PON1 mRNA and activity. In this study, we determined the plasma activity levels of PON1 and examined the relationships between PON155 genotype and PON1 level. As with PON1192, we found considerable overlap in activity among the PON155 genotypes. Of the 317 individuals whose PON1 status was determined in this study, 48.9% were PON1Q192 homozygotes. Analysis of the PON1QQ192 population showed that while the average PON1 activity (diazoxon hydrolysis) was 12266 U/L for PON1LL55 and 7777 U/L for PON1MM55, a given PONMM55 individual could have more than twice the activity of a PON1LL55 individual. PON1 status, which includes PON1 level as well as PON1192 genotype, may be a better predictor for cardiovascular disease or organophosphate susceptibility than PON1 genotype alone.  相似文献   

14.
Previously Haley et al. described six possible syndromes identified by factor analysis of symptoms in Gulf War veterans and demonstrated that veterans with these symptom complexes were more neurologically impaired than age-sex-education-matched well controls. They also uncovered strong associations (relative risks 4-8) suggesting that these symptom complexes were related to wartime exposure to combinations of organophosphate pesticides, chemical nerve agents, high concentration DEET insect repellant, and symptoms of advanced acute toxicity after taking pyridostigmine. Here we have shown that compared to controls, ill veterans with the neurologic symptom complexes were more likely to have the R allele (heterozygous QR or homozygous R) than to be homozygous Q for the paraoxonase/arylesterase 1 (PON1) gene. Moreover, low activity of the PON1 type Q (Gln192, formerly designated type A) arylesterase allozyme distinguished ill veterans from controls better than just the PON1 genotype or the activity levels of the type R (Arg192, formerly designated type B) arylesterase allozyme, total arylesterase, total paraoxonase, or butyrylcholinesterase. A history of advanced acute toxicity after taking pyridostigmine was also correlated with low PON1 type Q arylesterase activity. Type Q is the allozyme of paraoxonase/arylesterase that most efficiently hydrolyzes several organophosphates including sarin, soman, and diazinon. These findings further support the proposal that neurologic symptoms in some Gulf War veterans were caused by environmental chemical exposures.  相似文献   

15.
Paraoxonase 1 (PON1) has been described as a potential catalytic bioscavenger due to its ability to hydrolyze organophosphate (OP) insecticides and nerve agents. In vitro catalytic efficiency of purified human and rabbit serum PON1 against different OP substrates was compared to human recombinant PON1, expressed in Trichoplusia ni larvae. Highly purified human and rabbit serum PON1s were prepared by multiple chromatography methods. Purified enzymes showed higher catalytic activity with the substrate p-nitrophenyl acetate compared to diethyl paraoxon. The hydrolyzing potential of PON1s against multiple OPs was evaluated by using an in vitro acetylcholinesterase back-titration assay. Significant differences in the catalytic efficiency of all the three PON1s with regard to various OP substrates were observed. Purified PON1s showed higher catalytic activity towards diisopropylfluorophosphate followed by diethylparaoxon compared to dimethyl paraoxon. Heat inactivation or incubation of PON1 with specific inhibitor resulted in complete loss of the enzyme catalytic activity indicating that OP hydrolysis was intrinsic to PON1. In conclusion, purified PON1s from multiple sources show significant differences in the catalytic activity against several OP substrates. These results underscore the importance of systematic analysis of candidate PON1 molecules for developing as an effective catalytic bioscavenger against toxic OPs and chemical warfare nerve agents.  相似文献   

16.
Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long‐term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long‐term effect of low‐level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON‐1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1‐dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide‐spraying period was independent on PON‐1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1‐dependent DNA repair activity through 8‐oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide‐exposure. A post‐translational regulation of OGG1 by pesticide may be postulated. Taken together, long‐term exposure to low‐levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders.  相似文献   

17.
Ideally we would like to treat people exposed to nerve agents with an enzyme that rapidly destroys nerve agents. The enzymes considered for such a role include human butyrylcholinesterase (BChE), acetylcholinesterase (AChE), carboxylesterase and paraoxonase (PON1). Success has been achieved in endowing BChE with the ability to hydrolyze organophosphates. The G117H mutant of BCHE hydrolyzes sarin and VX, whereas the double mutant G117H/E197Q hydrolyzes soman (Millard et al. Biochemistry 1995; 34: 15925-15933; 1998; 37: 237-247). However, the rates of organophosphate hydrolysis are slow and a faster organophosphate hydrolase is being sought. Native PON1 hydrolyzes paraoxon with a catalytic efficiency, of 2.4 x 10(6) M(-1) x min(-1), and our goal is to improve the organophosphate hydrolase activity of PON1. To achieve this we need to identify the amino acids in the active site of PON1. Using site-directed mutagenesis and expression in human 293T cells, we have identified the following eight amino acids as being essential to PON1 activity: W280, H114, H133, H154, H242, H284, E52 and D53. Fluorescence of PON1 complexed to terbium ion shows that at least one tryptophan is close to the calcium binding site.  相似文献   

18.
Paraoxonase (PON1) has been termed an environmental response enzyme for its function in the detoxification of organophosphate pesticides, nerve agents and pharmaceuticals such as glucocorticoids and statins, as well as its cardioprotective role in breaking down oxidized LDL. PON1(192) genotype can be predicted with high accuracy from an examination of the two-dimensional plot of paraoxon and diazoxon hydrolysis rates [ 1]. Individuals for whom this functional genomic assay failed to predict PON1(192) genotype, or who had a low PON activity relative to others with the same genotype, were predicted to have genetic alterations that explained the inconsistency. Sequencing of the PON1 region of 23 Caucasian individuals detected a nonsense mutation changing amino acid 194 from a Trp to a stop codon (PON1(Trp194stop)). It was predicted that subjects who genotyped as PON1(192QR) but phenotyped as PON1(192QQ) or PON1(192RR) might carry the protein truncation mutation for which the defective product failed to be detected by the phenotyping assay. Screening of the five discordant subjects resulted in the detection of a single Caucasian carrying the stop codon, and determined its phasing on the PON1(192R) allele. Sequencing confirmed the change and revealed an additional subject with a likely deletion of the 5' end of the PON1 gene. Additional sequencing of 25 subjects with low PON1 activities identified two additional previously undescribed PON1 mutations, which may affect PON1 function: PON1(Pro90Leu) associated with the PON1(192Q) allele and PON1(Asp124missplice) associated with the PON1(192R) allele.  相似文献   

19.
Pharmacogenetics of paraoxonases: a brief review   总被引:9,自引:0,他引:9  
The human paraoxonase (PON) gene family consists of three members, PON1, PON2, and PON3, aligned next to each other on chromosome 7. By far the most-studied member of the family is the serum paraoxonase 1 (PON1), a high-density lipoprotein-associated esterase/lactonase. Early research focused on its capability to hydrolyze toxic organophosphates, and its name derives from one of its most commonly used in vitro substrates, paraoxon. Studies in the last 2 decades have demonstrated PON1's ability to protect against atherosclerosis by hydrolyzing specific derivatives of oxidized cholesterol and/or phospholipids in oxidized low-density lipoprotein and in atherosclerotic lesions. Levels and genetic variability of PON1 influence sensitivity to specific insecticides and nerve agents, as well as the risk of cardiovascular disease. More recently, the other two members of the PON family, PON2 and PON3, have also been shown to have antioxidant properties. A major goal in present research on the paraoxonases is to identify their natural substrates and to elucidate the mechanism(s) of their catalytic activities.  相似文献   

20.
It has been proposed that paraoxonase1 (PON1), a high density lipoprotein (HDL)-associated esterase/lactonase, has antiatherosclerotic properties. The activity of PON1 is influenced by PON1 polymorphisms. However, the influence of PON1 polymorphisms on PON1 activity and oxidative stress in response to lipid-lowering drugs remains poorly understood. The objective of the present study was to investigate the effects of atorvastatin on PON1 activity and oxidative status. The influence of PON1 polymorphisms on PON1 activity and oxidative status in response to atorvastatin treatment was also evaluated. In total, 22 hypercholesterolemic patients were treated with atorvastatin at a dose of 10 mg/day for 3 months. Lipid profile, lipid oxidation markers (malondialdehyde (MDA), conjugated diene (CD), total peroxides (TP)), total antioxidant substance (TAS), oxidative stress index (OSI), and paraoxonase1 activity were determined before and after treatment. L55M, Q192R, and T(-107)C PON1 polymorphisms were also determined. Atorvastatin treatment significantly reduced the levels of total cholesterol (24.5%), low density lipoprotein (LDL) cholesterol (25.4%), triglycerides (24.4%), CD (4.4%), MDA (15.2%), TP (13.0%) and OSI (24.0%), and significantly increased the levels of TAS (27.3%), and PON1 activity (14.0%). Interestingly, the increase in PON1 activity and the reduction in oxidative stress in response to atorvastatin were influenced only by the PON1 T-107C polymorphism. Atorvastatin treatment improved the lipid profile, lipid oxidation, and oxidative/antioxidative status markers including the activity of PON1 towards paraoxon. These beneficial effects may be attributed to the antioxidant properties of statins and the increase in PON1 activity. The increase in PON1 activity was enhanced by the PON1 T-107C polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号