首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorophotometric substrate, 7-glycidoxycoumarin (GOC), was examined for the assay of epoxide-glutathione (GSH)-conjugating activities of seven major GSH transferases (GSTs) isolated from rat liver cytosols. GST 7-7 (GST-P), isolated from the liver cytosol of rats bearing hepatic hyperplastic nodules, catalysed the GSH conjugation of GOC at a higher rate than any other examined GST isolated from the normal rat liver cytosol. GSTs 3-3, 3-4 and 4-4 (group 3-4 enzymes) had specific activities towards GOC by one fifth to one third of that of GST 7-7. GSTs 1-1, 1-2 and 2-2 (group 1-2 enzymes) had very low activities towards this epoxide. A kinetic study indicated that GST 7-7 showed the largest kappa cat/Km value for the catalytic reaction of GOC-GSH conjugation among the GSTs. In spite of their much smaller kappa cat values, group 3-4 enzymes showed much larger kappa cat/Km values for GOC than the group 1-2 enzymes, because GOC had a much higher affinity for group 3-4 enzymes than for group 1-2 enzymes. A comparative study was also done with GSH conjugations of styrene 7,8-oxide (STO) and 1-chloro-2,4-dinitrobenzene by the GSTs. Unlike GOC, the conjugation of STO was mediated at rates about twice as high by group 3-4 enzymes than by GST 7-7. STO was also a very poor substrate for group 1-2 enzymes.  相似文献   

2.
3.
Dog liver cytosolic glutathione S-transferases (GSTs) were investigated to characterize their properties in comparison with rat liver transferases. Dog liver GSTs after the glutathione affinity column chromatography showed three subunit bands on SDS-polyacrylamide gel electrophoresis. These three subunits, designated as Yd1 (mol.wt 26,000), Yd2 (mol.wt 27,000) and Yd3 (mol.wt 28,000), were distinctly different from rat liver GST subunits, i.e. Ya(1) (mol.wt 26,500), Yb1(3)/Yb2(4) (mol.wt 27,500) and Yc(2) (mol.wt 28,500). Western blot analysis revealed that Yd1, Yd2 and Yd3 were immunoreacted with anti-rat GST 7-7, 1-1 and 3-3 antibodies, respectively. Four transferase activity fractions, I (pH greater than 7.63), II (pH 6.92), III (pH 5.80) and IV (pH 5.65), were obtained from affinity purified GSTs by chromatofocusing. Each fraction exhibited a characteristic substrate specificity. GST-II, III and IV were all strongly immunoreacted with anti-rat GST 7-7 antibody by immunoblotting, thus suggesting the occurrence of the heterogeneity of transferases immunologically related to rat GST subunit 7 in dog liver. Immunohistochemical examination showed that transferases immunoreacted with anti-GST 7-7 antibody have diffusely distributed throughout the lobule, while enzymes related to subunit 3 have been localized in a narrow range of cells around the central vein. These data suggest that GSTs immunologically associated with rat transferase subunit 7 may be major forms in dog liver.  相似文献   

4.
The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular interest, since these isozymes have high activity toward peroxidative byproducts of oxidative injury that are linked to teratogenesis. The present study was initiated to examine the expression and catalytic activities of alpha class GST isozymes in human prenatal liver. Northern analysis demonstrated the presence of hGSTA1 and/or A2 (hGSTA1/2) and hGSTA4 steady-state mRNAs in second trimester prenatal livers. Western blotting of prenatal liver proteins provided corroborating evidence via detection of an hGSTA1/2-reactive protein in both cytosol and mitochondria and of hGSTA4-4-reactive protein in mitochondria alone. Catalytic studies demonstrated that prenatal liver cytosolic GSTs were active toward 1-chloro-2,4-dinitrobenzene (a general GST reference substrate), delta5-androstene-3,17-dione (relatively specific for hGSTA1-1), and 4-hydroxynonenal, a highly mutagenic alpha,beta-unsaturated aldehyde produced during oxidative damage and a substrate for hGSTA4-4. Total GSH-peroxidase and GST-dependent peroxidase activities were 9- and 18-fold higher, respectively, in adult liver than in prenatal liver. Multiple tissue array analyses demonstrated considerable tissue-specific and developmental variation in GST mRNA expression. In summary, our results demonstrate the presence of two important alpha class GSTs in second trimester human prenatal tissues, and indicate that mitochondrial targeting of GST may represent an important pathway for removal of cytotoxic products in prenatal liver. Furthermore, the relatively inefficient prenatal reduction of hydroperoxides may underlie an increased susceptibility to maternally transferred pro-oxidant drugs and chemicals.  相似文献   

5.
Glutathione S-transferases--a review   总被引:12,自引:0,他引:12  
The Glutathione S-transferases (GSTs) form a group of multi-gene isoenzymes involved in the cellular detoxification of both xenobiotic and endobiotic compounds. GSTs have been divided into a number of subclasses, alpha, mu, pi, and theta. The classification was made on the basis of sequence similarity and immunological cross-reactivity. GSTs show a high level of specificity toward GSH but the electrophilic second substrate can vary significantly both between and within the classes in spite of their sequence similarity. X-ray crystallography and site-directed mutagenesis studies have together elucidated the structure and mechanism of GSTs. Catalysis occurs by conjugation with glutathione (GSH) and the less toxic and more hydrophilic products can then be partially metabolised and excreted. This invaluable service is however disadvantageous during chemotherapy where GSTs have been associated with multi-drug resistance of tumour cells. Levels of expression of different isoforms of GSTs are tissue specific. The variations in expression between normal and tumour cells are of interest and in most cases the levels of GSTs are increased, especially p-GST. Understanding the complex role that GSTs play in drug resistance begins with determining the pattern of isoform expression and the substrate specificities of each isoform. The use of isozyme-specific, GSH analogues as inhibitors to modulate GST activity during chemotherapy is a promising strategy in the battle against cancer. This review attempts to provide a detailed overview of the literature concerning the different classes of GSTs, their function and mechanism and the use of GSTs as therapeutic targets for disease as current at the time of submission.  相似文献   

6.
Increased expression of certain glutathione S-transferase (GST) isoenzymes has frequently been associated with the development of resistance to alkylating agents and other classes of antineoplastic drugs in drug-selected cell lines. The question arises whether this phenomenon is causal or is a stress-induced response associated with drug resistance in these cell lines. We have constructed mammalian expression vectors containing the human GST mu and GST alpha 2 (Ha2) cDNAs and stably transfected them into the human breast cancer cell line MCF-7. Whereas the parental and pSV2neo-transfected cell lines display low GST activity, three individual transfected clones were identified in each group that expressed either GST mu or GST alpha 2. The range of GST activities was similar to those observed in cells selected for anticancer drug resistance. The GST mu specific activities were 56, 150, and 340 mlU/mg, compared with 10 mlU/mg of endogenous GST mu in control lines. Specific activities in GST alpha 2-transfected clones were 17, 28, and 52 mlU/mg, compared with no detectable alpha class GST in control lines. These clonal lines and the parental and pSV2neo-transfected control lines were tested for sensitivity to antineoplastic agents and other cytotoxic compounds. The clones with the highest activity in each group were 1.7-fold (GST alpha 2) to 2.1-fold (GST mu) resistant to the toxic effects of ethacrynic acid, a known substrate for GSTs. However, the GST-transfected cell lines were not resistant to doxorubicin, L-phenylalanine mustard, bis(2-chloroethyl)-1-nitrosourea, cisplatin, chlorambucil, or the GST substrates 1-chloro-2,4-dinitrobenzene or tert-butyl hydroperoxide. Thus, although L-phenylalanine mustard, bis(2-chloroethyl)-1-nitrosourea, chlorambucil, tert-butyl hydroperoxide, and 1-chloro-2,4-dinitrobenzene are known to be metabolized by glutathione-dependent GST-catalyzed reactions, there was no protection against any of these agents in MCF-7 cell lines overexpressing GST mu or GST alpha 2. We conclude that, at the levels of GST obtained in this transfection model system, overexpression of GST mu or GST alpha 2 is not by itself sufficient to confer resistance to these anticancer agents. These studies do not exclude the possibility that GST may be a marker of drug resistance or that other gene products not expressed in MCF-7 cells might cooperate with GST to confer drug resistance.  相似文献   

7.
The glutathione S-transferases (GSTs) are a family of phase II detoxification enzymes which protect against chemical injury. In contrast to mammals, GST expression in fish has not been extensively characterized, especially in the context of detoxifying waterborne pollutants. In the Northwestern United States, coho salmon (Oncorhynchus kisutch) are an important species of Pacific salmon with complex life histories that can include exposure to a variety of compounds including GST substrates. In the present study we characterized the expression of coho hepatic GST to better understand the ability of coho to detoxify chemicals of environmental relevance. Western blotting of coho hepatic GST revealed the presence of multiple GST-like proteins of approximately 24-26kDa. Reverse phase HPLC subunit analysis of GSH affinity-purified hepatic GST demonstrated six major and at least two minor potential GST isoforms which were characterized by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI MS-MS) and Fourier transform-ion cyclotron resonance (FT-ICR) MS analyses. The major hepatic coho GST isoforms consisted of a pi and a rho-class GST, whereas GSTs representing the alpha and mu classes constituted minor isoforms. Catalytic studies demonstrated that coho cytosolic GSTs were active towards the prototypical GST substrate 1-chloro-2,4-dinitrobenzene, as well as towards ethacrynic acid and nitrobutyl chloride. However, there was no observable cytosolic GST activity towards the pesticides methyl parathion or atrazine, or products of oxidative stress, such as cumene hydroperoxide and 4-hydroxynonenal. Interestingly, coho hepatic cytosolic fractions had a limited ability to bind bilirubin, reflecting a potential role in the sequestering of metabolic by-products. In summary, coho salmon exhibit a complex hepatic GST isoform expression profile consisting of several GST classes, but may have a limited a capacity to conjugate substrates of toxicological significance such as pesticides and endogenous compounds associated with cellular oxidative stress.  相似文献   

8.
To evaluate the role of glutathione S-transferase (GST) isoenzymes in induced resistance of hepatocytes to aflatoxin B1 (AFB1), we compared DNA protective activities of different hepatic cytosol preparations and purified GSTs from normal rats, rats exposed to different polychlorinated biphenyls (PCBs), and rats with carcinogen-induced hepatocellular neoplasms, with cytosols or purified GSTs from mouse, rainbow trout, and human livers. These comparisons were performed in an in vitro assay for [3H]AFB1-DNA binding after activation by rat liver microsomes. Cytosol and S-hexylglutathione-affinity-purified GST preparations from livers of mice consistently had strong protective activity against AFB1-DNA binding. The majority of this activity was dependent on the presence of reduced glutathione (GSH) but some GSH-independent protection was observed in mouse hepatic cytosol, but not in purified GST preparations. We found that all of the GSH-dependent DNA-protective activity in mouse liver eluted as a single GST isoenzyme by hydroxyapatite chromatography. Preparations of cytosol and purified GSTs from normal rat liver, rainbow trout liver, and human liver had much less AFB1-specific DNA protective activity than GSTs found in mouse liver preparations. Cytosol from rats with carcinogen-generated liver neoplasms and livers induced with 3,3',4,4'-tetrachlorobiphenyl and 2,2',4,4',5,5'-hexachlorobiphenyl had more GST activity toward CDNB than cytosol from normal rat liver. When equivalent units of GST activity (CDNB) were compared, there was little difference observed between the DNA-protective activities of PCB-induced and normal rat liver cytosols, yet cytosol from rat liver neoplasms was more protective. Purified GST-P (7-7), the GST isoenzyme most induced in carcinogen-generated rat liver neoplasms, was not protective when added at protein concentrations found to be protective for total GSTs isolated from these neoplasms. These studies demonstrate that the resistance of mouse liver to AFB1 can be explained primarily by a single constitutive GST isoenzyme (YaYa or 4-4) with a relatively high activity toward DNA-binding metabolites of AFB1. GST isoenzymes with such high specific DNA protective activity against AFB1 metabolites were not evident in human, rat, or rainbow trout liver or in PCB-induced or neoplastic rat liver preparations.  相似文献   

9.
10.
Glutathione S-transferases (GSTs) are involved in the metabolism of a wide range of carcinogenic chemicals. In humans, cytosol GSTs are divided into eight classes: alpha (GSTA), mu (GSTM), pi (GSTP), theta (GSTT), tau (GSTZ), sigma (GSTS), omicron (GSTO) and kappa (GSTK). The allelic polymorphism of these enzymes is associated with variations in enzyme activity; hence, it may affect the concentration of activated carcinogenic chemicals in the body. In addition to the metabolism of chemical carcinogens, GSTs metabolize steroid hormones, compounds in the diet and other agents potentially involved in prostate carcinogenesis. Three genetic polymorphisms of GSTs, GSTM1*0 (null), GSTT1*0 (null) and GSTP1 A313G, have been well documented. No consistent associations between GSTM1, GSTT1 or GSTP1 genotypes and prostate cancer have been observed. Recent meta-analysis reports show that these polymorphisms of GSTM1, GSTT1 and GSTP1 are unlikely to be major determinants of susceptibility to prostate cancer.  相似文献   

11.
The omega class of glutathione transferases (GSTs) is a relatively ancient member of the cytosolic GST superfamily, and the omega-class GSTs are found in plants, animals, and some microbial species. The omega-class GSTs exhibit the canonical GST fold, but, unlike other GSTs, the omega-class GSTs have a cysteine residue in their active site. Consequently, the omega-class GSTs catalyze a range of thiol transferase and reduction reactions that are not catalyzed by members of the other classes. Human GSTO1-1 can catalyze the reduction of monomethylarsonic acid (V), but this does not appear to be physiologically important in cases of high environmental arsenic exposure. GSTO1-1 also plays an important role in the biotransformation of reactive α-haloketones to nontoxic acetophenones. Genetic variation is common in the omega-class GST genes, and variants that result in deficiency of GSTO1-1 have been characterized. Genetic linkage studies have discovered associations between GSTO genes and the age at onset of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The mechanism underlying this association with neurological disease may derive from the capacity of omega-class GSTs to mitigate oxidative stress or their role in activating the proinflammatory cytokine, interleukin-1β.  相似文献   

12.
Acute exposure to naphthalene produces severe bronchiolar epithelial cell necrosis in mice, whereas subchronic exposure to naphthalene (200 mg/kg/7 days) fails to produce epithelial necrosis and renders the animals tolerant to subsequent challenge doses of naphthalene. Mechanisms responsible for the development of tolerance have not been delineated. The few studies exploring naphthalene tolerance focus on expression of microsomal enzymes and have yet to delve into expression of the hepatic detoxification enzymes such as glutathione S-transferases (GSTs; EC 2.5.1.18). Glutathione conjugation catalyzed by GSTs accounts for one of the two primary routes of naphthalene detoxification. In this study, we rigorously quantify levels of individual GST isozymes expressed within the livers and lungs of mice with acquired tolerance to naphthalene. Subchronic exposure to naphthalene increases the abundance of some hepatic GSTs to levels as much as 68% greater than controls. Naphthalene-tolerant mice displayed increases in mGSTM1 (51%), mGSTM2 (58%), and mGSTP1 (66%), whereas no significant difference in mGSTA3 was observed between exposed and control mice. Extracts of pulmonary tissues from naphthalene-tolerant mice showed minor increases in levels of mGSTP1 (7%) and Peak 8 isozyme (27%) and decreases in levels of mGSTM1 (31%), mGSTM2 (17%), and mGSTA3 (8%). The total enzymatic activity for the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) was 22% lower in lung extracts from naphthalene-tolerant animals than in controls. These results indicate that induction of hepatic GSTs is substantial and may be an important factor in the development of tolerance to naphthalene.  相似文献   

13.
In general, the biological activation of nephrocarcinogenic chlorinated hydrocarbons proceeds via conjugation with glutathione. It has mostly been assumed that the main site of initial conjugation is the liver, followed by a mandatory transfer of intermediates to the kidney. It was therefore of interest to study the enzyme activities of subgroups of glutathione transferases (GSTs) in renal cancers and the surrounding normal renal tissues of the same individuals (n = 21). For genotyping the individuals with respect to known polymorphic GST isozymes the following substrates with differential specificity were used: 1-chloro-2,4-dinitrobenzene for overall GST activity (except GST theta); 7-chloro-4-nitrobenzo-2-oxa- 1,3-diazole for GST alpha; 1,2-dichloro-4-nitro-benzene for GST mu; ethacrynic acid and 4-vinylpyridine for GST pi; and methyl chloride for GST theta. In general, the normal tissues were able to metabolize the test substrates. A general decrease in individual GST enzyme activities was apparent in the course of cancerization, and in some (exceptional) cases individual activities, expressed in the normal renal tissue, were lost in the tumour tissue. The GST enzyme activities in tumours were independent of tumour stage, or the age and gender of the patients. There was little influence of known polymorphisms of GSTM1, GSTM3 and GSTP1 upon the activities towards the test substrates, whereas the influence of GSTT1 polymorphism on the activity towads methyl chloride was straightforward. In general, the present findings support the concept that the initial GST-dependent bioactivation step of nephrocarcinogenic chlorinated hydrocarbons may take place in the kidney itself. This should be a consideration in toxicokinetic modelling.  相似文献   

14.
Glutathione transferases (GSTs) have been shown to play an important role in multiple drug resistance in cancer chemotherapy. The inactivation of GST isoforms could lead to an enhanced activity of cytotoxic drugs. Thus, we have developed glutathione phosphono analogs [(S)-gamma-glutamyl-(2RS)-(+/-)-2-amino-(dialkoxyphosphinyl)-ac etylgl ycines], which were previously shown to be inhibitors of GSTP1-1. In the present study, the inhibition characteristics of these analogs, including isoenzyme specificities, type of inhibition, and determination of K(i) values, were determined. The inhibition of class alpha GSTs was competitive towards GSH. A mixed-type, non-competitive inhibition of class mu and pi GSTs was observed. The K(i) values varied between 880 +/- 210 and 0.45 +/- 0.1 microM. The inhibitors were most effective towards class mu GSTs. In order to investigate the potential use of these GST inhibitors in intact cellular systems, two additional approaches were examined. Firstly, the metabolic stability was tested with purified gamma-glutamyl transpeptidase and cell homogenates as well as during incubation of cell lines. No appreciable degradation was observed in any of the tested systems. Secondly, to facilitate cellular uptake, three derivatives were synthesized in which the glycine carboxylic group was esterified. Uptake and a possible intracellular cleavage to the corresponding free acids were monitored by HPLC analysis. The esters were effectively transported into HT29 (colon cancer) and EPG85-257P (gastric cancer) cells, respectively, and readily converted into the more active free acids. In conclusion, the tested inhibitors may be regarded as model compounds for the development of modulating agents in cancer chemotherapy.  相似文献   

15.
Glutathione transferases (GSTs) are a large family of enzymes that can be divided into different classes based on structure. There has been considerable interest in the ability of GSTs to conjugate and inactivate endogenously derived reactive lipid peroxidation products that contain alpha,beta-unsaturated carbonyl moieties such as 4-hydroxyalkenals. One enzyme with prominent activity toward these substrates is human GST A4-4. Recently, we described a novel series of compounds termed A(2)/J(2)-isoprostanes (IsoPs) that are formed endogenously in humans from the free radical-initiated peroxidation of arachidonic acid. These compounds contain alpha,beta-unsaturated carbonyl groups and have structures similar to cyclooxygenase-derived PGA(2) and PGJ(2). Because of their chemical reactivity, these compounds may mediate tissue injury associated with oxidant stress. Herein, we report that the A-ring IsoP 15-A(2t)-IsoP (8-iso-PGA(2)) is efficiently conjugated to glutathione (GSH) by human GST A4-4 with a k(cat)/K(m) value of >200 s(-)(1) mM(-)(1). The k(cat)/K(m) value for conjugation of 15-A(2t)-IsoP by the homologous rat GST A4-4 is >2000 s(-)(1) mM(-)(1). Similar high enzyme activities were observed when PGA(2) was used as a substrate. In contrast, the human GSTs A1-1, M1-1, M2-2, P1-1, and T1-1 and rat GST T2-2 did not significantly metabolize 15-A(2t)-IsoP. These studies have therefore defined a potentially important route by which cyclopentenone IsoPs are metabolized that may serve as a mechanism for the inactivation of these highly reactive compounds.  相似文献   

16.
The inducibility of hepatic cytosolic glutathione S-transferases (GSTs) was examined in brown bullheads, a freshwater fish that is highly susceptible to hepatic neoplasia following exposure to carcinogen-contaminated sediments. Juvenile bullheads were fed a semi-purified antioxidant-free diet supplemented with ethoxyquin (0.5% w/w dissolved in 3% corn oil), a prototypical rodent GST-inducing agent, twice daily for 14 days. Control bullheads received the antioxidant-free diet supplemented with corn oil (3% w/w). A significant increase (1.6-fold, p < or = 0.01) in hepatic cytosolic GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) was observed in the ethoxyquin-treated bullheads relative to control fish. A trend toward increased GST-NBC activity was observed in the ethoxyquin-treated fish (1.2-fold, p = 0.06), whereas no treatment-related effects were observed on GST activities toward ethacrynic acid (ECA). In contrast, GST activity toward (+/-)-anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) was repressed in affinity-purified cytosolic fractions prepared from ethoxyquin-treated bullheads relative to control bullheads. Silver staining and densitometric analysis of isoelectric-focused, affinity-purified GST proteins revealed increased expression of two basic GST-like isoforms in ethoxyquin-treated fish. In summary, exposure to ethoxyquin increases brown bullhead GST-CDNB catalytic activity and hepatic cationic GST protein expression. However, the increase in overall GST-CDNB activity by ethoxyquin is associated with repression of GST-BPDE activity, suggesting differential effects on hepatic bullhead GST isoforms by ethoxyquin. The potential repression of bullhead GST isoforms that conjugate the carcinogenic metabolites of PAH metabolism under conditions of environmental chemical exposure could be a contributing factor in the sensitivity of bullheads to pollutant-associated neoplasia.  相似文献   

17.
GlutathioneS-transferase placental form (GST-P) positive foci development and its expression in liver exposed by nongenotoxic carcinogens phenobarbital (PB) and clofibrate (CF), and genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) were investigated as a measure of carcinogenic potential of these chemicals. Male F344 rats were initially given a single intraperitioneal injection of diethylnitrosamine (200 mg/kg), and 2 weeks later, animals were fed diets containing 0.03% IQ or 0.5% CF or 0.05% PB or basal diet as a control for 6 weeks. All rats were subjected to two-thirds partial hepatectomy (PH) at week 3. Sequential sacrifice of rats was performed at 8 weeks or 52 weeks, and liver tissues were examined for immunohistochemical staining of GST-P positive foci. The numbers (No./cm2) and areas (mm2/cm2) of GST-P positive foci were increased by IQ or PB, but were decreased by CF compare to the control. Consistent with the development of GST-P positive foci, a time-related increase in the expression of GST-P mRNA was found in the rats treated with IQ, whereas CF decreased it. The incidence of hepatocellular carcinoma at 52 weeks was increased by all three chemicals. These results show that PB and IQ induced GST-P positive foci, but the peroxisome proliferator CF did not, which suggest that the prediction of carcinogenic potency based on the development of prenoplastic foci may cause false negative in a particular category compounds like peroxisome proliferators.  相似文献   

18.
Glutathione S-transferases (GSTs) are multifunctional detoxification proteins that protect the cell from electrophilic compounds. Overexpression of GSTs in cancer results in resistance to chemotherapeutic agents and inhibition of the over expressed GST has been suggested as an approach to combat GST-induced resistance. The inhibition of human recombinant GSTs by natural plant products was investigated in this study. Using 1-chloro-2,4 dinitrobenzene (CDNB) as a substrate, ellagic acid and curcumin were shown to inhibit GSTs A1-1, A2-2, M1-1, M2-2 and P1-1 with IC(50) values ranging from 0.04 to 5 microM whilst genistein, kaempferol and quercetin inhibited GSTs M1-1 and M2-2 only. The predominant mode of inhibition with respect to the G and H-sites were mixed inhibition and uncompetitive to a lesser extent. The K(i) (K(i)(')) values for ellagic acid and curcumin with respect to GSH and CDNB were in the range 0.04-6 microM showing the inhibitory potency of these polyphenolic compounds. Ellagic acid and curcumin also showed time- and concentration-dependent inactivation of GSTs M1-1, M2-2 and P1-1 with curcumin being a more potent inactivator than ellagic acid. These results facilitate the understanding of the interaction of human GSTs with plant polyphenolic compounds with regards to their role as chemomodulators in cases of GST-overexpression in malignancies.  相似文献   

19.
The effect of aflatoxin B1 (AFB1) on the expression of glutathione S-transferase-P (GST-P) which is the major isoform of GST in developmental stages has been investigated in rat liver during prenatal and postnatal stages. Following administration of AFB1 (0, 0.5, 1.0, 2.0, 3.0 or 4.0 mg/kg bw) injected I.P on day 8.5 of gestation the number of dead or reabsorbed fetuses and malformed embryos were recorded. Then the fetal livers were processed for measurement of total GST and GST-P activities, using 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) as substrates respectively. RT-PCR using rat GST-P specific primers was performed on mRNA extracted from livers. Besides, the effects of AFB1 on hepatic GST and GST-P were assessed in groups of suckling rats directly injected with the toxin. The results show that a single dose of AFB1 (1.0 or 2.0 mg/kg bw) caused approximately 50–60% depletion in fetal liver GST towards CDNB. Postnatal experiments revealed that liver GST (using CDNB as substrate) was significantly induced (~40%) in suckling rats injected with a single dose of AFB1 (3.0 mg AFB1/kg) 24 h before killing. Liver GST-P expression was unaffected due to AFB1 exposures of rats before and after the birth. This finding was substantiated by western blotting and RT-PCR techniques. These data suggest that AFB1-related induction in rat liver total GST after birth may be implicated in protective mechanisms against AFB1. In contrast, inhibition of this enzyme in fetal liver following placental transfer of the carcinogen may explain high susceptibility of fetal cells to transplancental aflatoxins. Furthermore, lack of influence of AFB1 on GST-P expression in developmental stages can role out the involvement of this class of GST in AFB1 biotransformation.  相似文献   

20.
GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTalpha, pi, mu, and theta isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses. Low levels of expression of each of the four enzymes were detected by Western blotting in both fetal lung and liver tissues in all four strains. A statistically significant 3.5-fold induction was observed only for GSTmu in the fetal lung of the parental strain of BALB/c mice 48 h after exposure to MC. None of the other enzymes showed any significant differences in the levels of expression following exposure to MC. Although strain-specific differences in the expression of the GSTs that were independent of MC treatment were observed, they could not account for the differences previously observed in either the Ki-ras mutational spectrum or lung tumor incidence in the different strains of mice. Similar results were obtained when the maternal metabolism of MC was assayed in liver microsomal preparations. The results are consistent with previous studies showing low levels and poor inducibility of phase II enzymes during gestation, and demonstrate for the first time that all four of the major GST enzymes are expressed in fetal tissues. While the high inducibility of activating enzymes, such as Cyp1a1, and low, uninducible levels of phase II conjugating enzymes probably account for the high susceptibility of the fetus to transplacentally induced tumor formation, the results also suggest that factors other than metabolism may account for the strain-specific differences in susceptibility to carcinogen-mediated lung tumor induction following in utero exposure to chemical carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号