首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
细胞需要胆固醇才能生存,但过量的胆固醇对细胞具有毒性,因此细胞需要调节胆固醇的稳态。细胞内胆固醇被转运到高密度脂蛋白载脂蛋白AI,会以胆固醇逆向转运的方式返回肝脏代谢。胆固醇逆向转运不仅是维持细胞胆固醇稳态所需的生理过程,而且对动脉粥样硬化发展起到潜在的抑制作用。目前的研究主要集中在细胞胆固醇流出的最初途径和最终代谢上,但关于胆固醇是如何离开血液却知之甚少。越来越多的研究表明,在胆固醇逆向转运过程中高密度脂蛋白需要通过淋巴管转运以返回到肝脏代谢。因此,研究高密度脂蛋白从血液流入外周组织的过程,以及它是怎样通过淋巴管转运对治疗动脉粥样硬化具有重要意义。本综述主要介绍淋巴管与胆固醇逆向转运之间的联系,为治疗动脉粥样硬化性心血管疾病提供新的策略。  相似文献   

2.
Aim/hypothesis Cellular cholesterol efflux to plasma is important in reverse cholesterol transport and may be affected by simvastatin in type 1 diabetes mellitus.Methods In 14 moderately hypercholesterolaemic type 1 diabetic and 13 healthy men we determined plasma (apo)lipoproteins, pre- HDL formation, cholesteryl ester transfer protein (CETP) activity, phospholipid transfer protein (PLTP) activity, cholesterol esterification, cholesteryl ester transfer and the capacity of plasma to induce cholesterol efflux out of Fu5AH cells and fibroblasts. After diet run-in, diabetic patients were randomly treated with simvastatin 10, 20, 40 mg and placebo, once daily each, for 6 weeks in a double-blind crossover design.Results Plasma very low density lipid protein (VLDL)+LDL cholesterol, LDL cholesterol, HDL phospholipids, apolipoprotein (apo) A-I, apo B, CETP activity, PLTP activity, cholesterol esterification, cholesteryl ester transfer and the capacity of plasma to induce cholesterol efflux from Fu5AH cells and fibroblasts were higher in diabetic patients. Pre- HDL formation was unaltered. Simvastatin treatment decreased VLDL+LDL cholesterol, LDL cholesterol, triglycerides and apo B, CETP activity, cholesterol esterification and cholesteryl ester transfer. HDL cholesterol increased and its change was correlated with the change in cholesteryl ester transfer. The ability to promote cholesterol efflux from Fu5AH cells and fibroblasts did not change after simvastatin.Conclusions/interpretation The capacity of plasma from moderately hypercholesterolaemic type 1 diabetic patients to induce cholesterol efflux out of Fu5AH cells and fibroblasts is enhanced, probably due to higher apo A-I, HDL phospholipids and PLTP activity. Simvastatin increases HDL cholesterol in type 1 diabetic patients via lowering of plasma cholesteryl ester transfer. The HDL changes after simvastatin do not increase cellular cholesterol efflux further.  相似文献   

3.
Despite a robust inverse association between high-density lipoprotein (HDL) cholesterol levels and atherosclerotic cardiovascular disease, the development of new therapies based on pharmacologic enhancement of HDL metabolism has proven challenging. Emerging evidence suggests that static measurement of HDL levels has inherent limitations as a surrogate for overall HDL functionality, particularly with regard to the rate of flux through the macrophage reverse cholesterol transport (RCT) pathway. Recent research has provided important insight into the molecular underpinnings of RCT, the process by which excess cellular cholesterol is effluxed from peripheral tissues and returned to the liver for ultimate intestinal excretion. This review discusses the critical importance and current strategies for quantifying RCT flux. It also highlights therapeutic strategies for augmenting macrophage RCT via three conceptual approaches: 1) improved efflux of cellular cholesterol via targeting the macrophage; 2) enhanced cholesterol efflux acceptor functionality of circulating HDL; and 3) increased hepatic uptake and biliary/intestinal excretion.  相似文献   

4.
High density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease, and HDL exerts various potentially antiatherogenic properties, including the mediation of reverse transport of cholesterol from cells of the arterial wall to the liver and steroidogenic organs. Enhancement of cholesterol efflux and of reverse cholesterol transport (RCT) is considered an important target for antiatherosclerotic drug therapy. Levels and composition of HDL subclasses in plasma are regulated by many factors, including apolipoproteins, lipolytic enzymes, lipid transfer proteins, receptors, and cellular transporters. In vitro experiments as well as genetic family and population studies and investigation of transgenic animal models have revealed that HDL cholesterol plasma levels do not necessarily reflect the efficacy and antiatherogenicity of RCT. Instead, the concentration of HDL subclasses, the mobilization of cellular lipids for efflux, and the kinetics of HDL metabolism are important determinants of RCT and the risk of atherosclerosis.  相似文献   

5.
AIMS: Cholesteryl ester transfer protein (CETP) has a well-established role in lipoprotein metabolism, but the effect of its overexpression or inhibition on the efficiency of reverse cholesterol transport (RCT) is unclear. METHODS AND RESULTS: Neither overexpression of CETP nor treatment with CETP inhibitor Torcetrapib of RAW 264.7 macrophages or HepG2 hepatocytes affected cholesterol efflux in vitro. Overexpression of CETP or treatment with Torcetrapib, respectively, stimulated or inhibited HDL cholesteryl ester uptake by HepG2 but not by RAW 264.7 cells. When RAW 264.7 cells transfected with CETP or ATP binding cassette transporter A1 (ABCA1) were injected intraperitoneally into mice, cholesterol egress from macrophages was elevated for ABCA1- but not for CETP-transfected macrophages. Systemic expression of CETP in mice by adenoviral infection stimulated egress of cholesterol to plasma and liver without affecting HDL levels. Treatment with Torcetrapib did not affect appearance of macrophage cholesterol in plasma and liver, but inhibited its excretion into feces. Treatment of hamsters with Torcetrapib led to elevation of HDL cholesterol, an increase in the capacity of plasma to support cholesterol efflux, and increased egress of cholesterol from macrophages to plasma and feces in vivo. CONCLUSION: Both increased (mice study) and decreased (hamster study) CETP activity could result in enhanced RCT.  相似文献   

6.
ObjectiveTo evaluate the impact of CETP inhibition on the capacity of individual postprandial HDL subspecies to promote key steps of the reverse cholesterol transport pathway.MethodsThe capacity of HDL particles to mediate cellular free cholesterol efflux and selective hepatic uptake of cholesteryl esters was evaluated throughout postprandial phase (0–8 h) following consumption of a standardised mixed meal before and after treatment for 6 weeks with atorvastatin alone (10 mg/d) and subsequently with combination torcetrapib/atorvastatin (60/10 mg/d) in 16 patients displaying low HDL-C levels (<40 mg/dl).ResultsThe larger HDL2b and HDL2a subfraction displayed a superior capacity to mediate cellular free cholesterol efflux via both SR-BI and ABCG1-dependent pathways than smaller HDL3 subspecies. CETP inhibition specifically enhanced the capacity of HDL2b subfraction for both SR-BI and ABCG1 dependent efflux. However, only the SR-BI-dependent efflux to HDL2b subspecies can be further enhanced during postprandial lipemia following CETP inhibition. Concomitantly, postprandial lipemia was associated with a reduced capacity of total HDL particles to deliver cholesteryl esters to hepatic cells in a drug independent manner.ConclusionCETP inhibition specifically improves postprandial SR-BI and ABCG1-dependent efflux to larger HDL2b subspecies. In addition, CETP inhibition improves HDL-CE delivery to hepatic cells and maintains an efficient direct return of cholesteryl esters to the liver during postprandial lipemia.  相似文献   

7.
Lewis GF  Rader DJ 《Circulation research》2005,96(12):1221-1232
The metabolism of high-density lipoproteins (HDL), which are inversely related to risk of atherosclerotic cardiovascular disease, involves a complex interplay of factors regulating HDL synthesis, intravascular remodeling, and catabolism. The individual lipid and apolipoprotein components of HDL are mostly assembled after secretion, are frequently exchanged with or transferred to other lipoproteins, are actively remodeled within the plasma compartment, and are often cleared separately from one another. HDL is believed to play a key role in the process of reverse cholesterol transport (RCT), in which it promotes the efflux of excess cholesterol from peripheral tissues and returns it to the liver for biliary excretion. This review will emphasize 3 major evolving themes regarding HDL metabolism and RCT. The first theme is that HDL is a universal plasma acceptor lipoprotein for cholesterol efflux from not only peripheral tissues but also hepatocytes, which are a major source of cholesterol efflux to HDL. Furthermore, although efflux of cholesterol from macrophages represents only a tiny fraction of overall cellular cholesterol efflux, it is the most important with regard to atherosclerosis, suggesting that it be specifically termed macrophage RCT. The second theme is the critical role that intravascular remodeling of HDL by lipid transfer factors, lipases, cell surface receptors, and non-HDL lipoproteins play in determining the ultimate metabolic fate of HDL and plasma HDL-c concentrations. The third theme is the growing appreciation that insulin resistance underlies the majority of cases of low HDL-c in humans and the mechanisms by which insulin resistance influences HDL metabolism. Progress in our understanding of HDL metabolism and macrophage reverse cholesterol transport will increase the likelihood of developing novel therapies to raise plasma HDL concentrations and promote macrophage RCT and in proving that these new therapeutic interventions prevent or cause regression of atherosclerosis in humans.  相似文献   

8.
Objective. Studies in mice suggest that plasma apoM is lowered in hyperinsulinaemic diabetes and that apoM stimulates formation of pre‐β‐HDL. Pre‐β‐HDL is an acceptor of cellular cholesterol and may be critical for reverse cholesterol transport. Herein, we examined whether patients with type 2 diabetes have reduced plasma apoM and whether apoM is associated with pre‐β‐HDL formation and cellular cholesterol efflux. Design. In 78 patients with type 2 diabetes and 89 control subjects, we measured plasma apoM with ELISA, pre‐β‐HDL and pre‐β‐HDL formation, phospholipid transfer protein (PLTP) activity and the ability of plasma to promote cholesterol efflux from cultured fibroblasts. Results. ApoM was ~9% lower in patients with type 2 diabetes compared to controls (0.025 ± 0.006 vs. 0.027 ± 0.007 g L?1, P = 0.01). The difference in apoM was largely attributable to diabetes‐associated obesity. ApoM was positively related to both HDL (r = 0.16; P = 0.04) and LDL cholesterol (r = 0.28; P = 0.0003). Pre‐β‐HDL and pre‐β‐HDL formation were not different between diabetic and control subjects. ApoM predicted pre‐β‐HDL (r = 0.16; P = 0.04) and pre‐β‐HDL formation (r = 0.19; P = 0.02), even independently of positive relationships with apoA‐I, HDL‐cholesterol and PLTP activity. Cellular cholesterol efflux to plasma was positively related to pre‐β‐HDL and PLTP activity but not significantly to apoM. Conclusions. Plasma apoM is modestly reduced in type 2 diabetes. Pre‐β‐HDL and pre‐β‐HDL formation are positively associated with apoM, supporting the hypothesis that apoM plays a role in HDL remodelling in humans. Lower apoM may provide a mechanism to explain why pre‐β‐HDL formation is not increased in type 2 diabetes despite elevated PLTP activity.  相似文献   

9.
We tested whether hypertriglyceridemia associated with type 2 diabetes mellitus is accompanied by alterations in pre beta-HDL, which are considered to be initial acceptors of cell-derived cholesterol, and by changes in the ability of plasma to promote cellular cholesterol efflux. In 28 hypertriglyceridemic and 56 normotriglyceridemic type 2 diabetic patients, and in 56 control subjects, we determined plasma lipids, HDL cholesterol and phospholipids, plasma pre beta-HDL and pre beta-HDL formation, phospholipid transfer protein (PLTP) activity, plasma cholesterol esterification (EST) and cholesteryl ester transfer (CET) and the ability of plasma to stimulate cholesterol efflux out of cultured human fibroblasts. HDL cholesterol and HDL phospholipids were lower, whereas plasma PLTP activity, EST and CET were higher in hypertriglyceridemic diabetic patients than in the other groups. Pre beta-HDL levels and pre beta-HDL formation were unaltered, although the relative amount of pre beta-HDL (expressed as % of total plasma apo A-I) was increased in hypertriglyeridemic diabetic patients. Cellular cholesterol efflux to plasma from hypertriglyceridemic diabetic patients was increased compared to efflux to normotriglyceridemic diabetic and control plasma, but efflux to normotriglyceridemic diabetic and control plasma did not differ. Multiple linear regression analysis demonstrated that cellular cholesterol efflux to plasma was positively and independently related to pre beta-HDL formation, PLTP activity and EST (multiple r=0.48), but not to the diabetic state. In conclusion, cholesterol efflux from fibroblasts to normotriglyceridemic diabetic plasma is unchanged. Efflux to hypertriglyceridemic diabetic plasma is enhanced, in association with increased plasma PLTP activity and cholesterol esterification. Unaltered pre beta-HDL formation in diabetic hypertriglyceridemia, despite low apo A-I, could contribute to maintenance of cholesterol efflux.  相似文献   

10.
高密度脂蛋白(HDL)能够将胆固醇从泡沫细胞中转运到肝脏,代谢转化为胆汁排出体外,进而产生抗动脉粥样硬化作用,称之为HDL的胆固醇逆转运(RCT)。因此,如何提高HDL浓度并促进HDL的功能,充分发挥其抗动脉粥样硬化的功能,成为近年来研究的热点。但研究显示单纯升高HDLC并未发现有明显的临床效果,揭示了HDL功能的复杂性。因此有必要进行系统的回顾HDL的分子结构、合成、代谢等,重新认识其RCT功能的分子生物学基础,为进一步研究HDL的RCT功能提供理论支撑。  相似文献   

11.
The formation of macrophage-derived foam cells is central to the development of fatty streaks within the arterial wall, and to the progression of atherosclerosis. The unregulated deposition of cholesteryl esters, as lipid droplets within the cytoplasm of these cells, is responsible for the formation of foam cells; this process is thought to be regulated by the balance between cholesterol esterification, by acyl CoA:cholesterol acyltransferase (ACAT), and hydrolysis, by neutral cholesteryl ester hydrolase (nCEH). This study examines the importance of the balance between these two enzymes in determining the efflux of cholesterol from human (THP-1) macrophages. The presence of modified lipoprotein, or of 25-hydroxycholesterol, markedly increased cholesterol esterification in these cells and these effects were potently inhibited by the presence of the ACAT inhibitor, 447C88. In the absence of HDL, an acceptor particle, there was little or no hydrolysis of the cholesteryl ester pool and no efflux of cholesterol to the extracellular milieu; addition of HDL led to a partial (36%) reduction in cholesteryl esters, an effect which was not enhanced by the inhibition of ACAT. This suggested that the stored cholesteryl esters in human (THP-1) macrophages, unlike those in mouse peritoneal macrophages, were relatively resistant to removal by efflux to HDL. Efflux of newly synthesised free cholesterol from these macrophages was increased by HDL in a saturable manner, suggesting that the lack of reduction of stored cholesteryl esters was due to impaired mobilisation of cholesteryl esters to free cholesterol via nCEH. Indeed, nCEH activity in these macrophages was much lower than in mouse peritoneal macrophages, and appeared to be down-regulated in the presence of 25-hydroxycholesterol or modified lipoproteins; this loss of nCEH activity was prevented by the ACAT inhibitor 447C88. The efflux of stored cholesteryl esters from THP-1 macrophages therefore appears to be limited by the activity of nCEH.  相似文献   

12.
The effects of ciprofibrate (100 mg/d) on apolipoprotein (apo)B- and apoAI-containing lipoprotein subclasses, cholesteryl ester (CE) transfer protein activity, and plasma high-density lipoprotein (HDL)-mediated cellular cholesterol efflux were evaluated in 10 patients displaying type IIB hyperlipidemia. Plasma concentrations of large very low-density lipoprotein (VLDL)-1 (Sf 60-400) and of small VLDL-2 (Sf 20-60) were markedly diminished after fibrate treatment (-40%, P = 0.001; and -25%, P = 0.003, respectively). We observed a reduction (-17%; P = 0.005) in plasma low-density lipoprotein (LDL) levels resulting from significant reductions in concentrations of dense LDL particles (-46%; P < 0.0001). Ciprofibrate induced elevation in plasma total HDL (+13%; P = 0.005) levels; such elevation occurred preferentially in HDL-3 (+22%; P = 0.009). Marked reduction in numbers of atherogenic apoB100-containing particle acceptors was associated with a 25% decrease (P < 0.02) in CE transfer protein-mediated CE transfer from HDL. Finally, a significant fibrate-mediated elevation (+13%; P = 0.01 compared with baseline) in the capacity of plasma from type IIB subjects to mediate free cholesterol efflux from scavenger receptor class B, type I-expressing Fu5AH hepatoma cells was observed. In conclusion, the action of ciprofibrate in type IIB dyslipidemia leads to preferential reduction in particle numbers of atherogenic VLDL-1, VLDL-2, and dense LDL and, concomitantly, to elevation in HDL-3 levels that are associated with stimulation of HDL-mediated cellular free cholesterol efflux through the scavenger receptor class B, type I receptor pathway.  相似文献   

13.
For three decades, low-density lipoprotein (LDL) dominated research into cholesterol metabolism and atherosclerosis, whereas scant attention was paid to high-density lipoprotein (HDL), an equally important risk factor for cardiovascular disease. This low interest reflected the lack of knowledge about physiological HDL receptors. As a result, our understanding of HDL-cell interactions failed to develop alongside that of LDL, and mechanisms through which atheroprotective HDL promoted clearance of cholesterol from peripheral cells remained poorly-defined. Interest was kindled with the recognition that scavenger receptor class B, type I is the cell-surface protein in hepatocytes and steroidogenic tissues which selectively extracts cholesteryl esters from HDL. Greater impetus still was given by the discovery that mutations in the gene encoding the ATP-binding cassette transporter, class A1 (ABCA1) are the cause of Tangier disease, a rare recessive disorder with near-absent plasma HDL. The ABCA1 transmembrane protein is crucial for efficient efflux of cellular cholesterol and HDL maturation and has emerged as a promising therapeutic target for cardiovascular disease. The hope is that new drugs, regulating ABCA1 activity and HDL homeostasis, will accelerate cholesterol efflux from lipid-laden foam cells and thus promote regression of atherosclerotic lesions.  相似文献   

14.
Scavenger receptor class B, type I (SR-BI) is a receptor for high-density lipoprotein (HDL) that mediates cellular uptake of HDL cholesteryl ester (HDL CE) and is the major route for cholesterol delivery to the steroidogenic pathway. SR-BI is localized in specialized microvillar channels in the plasma membrane that retain HDL and are sites of selective uptake of HDL CE. The formation of microvillar channels in the adrenal gland requires SR-BI and is regulated by adrenocorticotropin hormone. SR-BI-mediated uptake of HDL CE is a two-step process that requires high-affinity binding of HDL followed by transfer of CE to the membrane. CE uptake is followed by hydrolysis to free cholesterol by a neutral CE hydrolase. In this review, we describe new information on the mechanism of transfer of cholesterol from plasma HDL to the steroidogenic pathway in endocrine cells.  相似文献   

15.
High-density lipoprotein (HDL) mediated reverse cholesterol transport (RCT) is regarded to be crucial for prevention of foam cell formation and atherosclerosis. ABC-transporter A1 (ABCA1) and scavenger receptor BI (SR-BI) are involved in the biogenesis of HDL and the selective delivery of HDL cholesterol to the liver, respectively. In the present study, we phenotypically characterized mice lacking these two proteins essential for HDL metabolism. ABCA1 × SR-BI double knockout (dKO) mice showed severe hypocholesterolemia mainly due to HDL loss, despite a 90% reduction of HDL cholesterol uptake by liver. VLDL production was increased in dKO mice. However, non-HDL cholesterol levels were reduced, probably due to enhanced clearance via LRP1. Hepatobiliary cholesterol transport and fecal sterol excretion were not impaired in dKO mice. In contrast, the macrophage RCT in dKO mice was markedly impaired as compared to WT mice, associated with the accumulation of macrophage foam cells in the lung and Peyer's patches. Strikingly, no atherosclerotic lesion formation was observed in dKO mice. In conclusion, both ABCA1 and SR-BI are essential for maintaining a properly functioning HDL-mediated macrophage RCT, while the potential anti-atherosclerotic functions of ABCA1 and SR-BI are not evident in dKO mice due to the absence of pro-atherogenic lipoproteins.  相似文献   

16.
Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.  相似文献   

17.
18.
19.
We have previously shown that chronic alcohol consumption leads to inhibition of sialylation of apolipoprotein E (apo E) that results in its impaired binding to high-density lipoprotein (HDL) molecule. Because apo E plays a major role in reverse cholesterol transport (RCT), we speculated that ethanol-mediated formation of HDL molecules without apo E may affect the RCT process. Therefore, we have investigated whether the RCT function of HDL is affected in chronic alcoholics with or without liver disease compared with nondrinkers. HDL was isolated from fasting plasma of normal subjects, n = 9 (nondrinkers), chronic alcoholics, n = 8 (ALC), and chronic alcoholics with liver disease, n = 6 (ALD). A portion of HDL sample from each subject was evaluated for its cholesterol efflux capacity from [3H]cholesterol oleate preloaded mouse macrophages. The remaining portion of each HDL sample was labeled with [3H]cholesterol oleate and evaluated for its ability to deliver cholesterol to the liver using HepG2 cells in culture. Cholesterol efflux capacity of HDLs was decreased by 83% (P < .0002) in alcoholics without liver disease and by 84% (P < .0006) in alcoholics with liver disease compared with the HDLs from nondrinkers. The capacities of HDLs to deliver cholesterol to the liver were decreased by 54% (P < .005) in alcoholics without liver disease and by 64% (P < .005) in alcoholics with liver disease compared with the HDLs from nondrinkers. The fact that further complications by liver disease in alcoholic subjects did not significantly exacerbate the extent of impairment in RCT function of HDL suggest that alcohol per se is responsible for its deleterious effects on RCT. Significantly, plasma HDL apo E concentration relative to that of apo A1 (apo E/apo A1 ratio) was also decreased by 31% to 32% (P < .0005) in alcoholics without or with liver disease compared with nondrinkers. It is therefore concluded that chronic alcohol consumption adversely affects the RCT function of HDL by altering its association with apo E due to ethanol-induced desialylation of apo E.  相似文献   

20.
Scavenger receptors that recognize advanced glycation end products   总被引:2,自引:0,他引:2  
Scavenger receptors recognize modified low-density lipoproteins (LDLs) such as acetylated LDL and oxidized LDL. Advanced glycation end products (AGE), which are generated through long-term exposure of proteins to glucose, also behave as active ligands for some scavenger receptors, including class A scavenger receptor (SR-A) and class B scavenger receptors such as CD36 and scavenger receptor, class B, type I (SR-BI). SR-BI, the first identified high-density lipoprotein (HDL) receptor, plays key roles in reverse cholesterol transport by promoting selective uptake of cholesteryl esters (CE) in HDL by hepatocytes, and cholesterol efflux of unesterified cholesterol from peripheral cells to HDL. Using Chinese hamster ovary cells overexpressing SR-BI (CHO-SR-BI cells), it was demonstrated that AGE-bovine serum albumin binds to SR-BI and inhibits selective uptake of HDL-CE by CHO-SR-BI cells as well as cholesterol efflux from CHO-SR-BI cells to HDL, suggesting potential roles of AGE in diabetic dyslipidemia and accelerated atherosclerosis in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号