首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of camphor, a monoterpenoid, on catecholamine secretion was investigated in bovine adrenal chromaffin cells. Camphor inhibited [3H]norepinephrine ([3H]NE) secretion induced by a nicotinic acetylcholine receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), with a half-maximal inhibitory concentration (IC50) of 70 +/- 12 microM. In addition, camphor inhibited the rise in cytosolic calcium ([Ca2+]i) and sodium ([Na+]i) induced by DMPP with IC50 values of 88 +/- 32 and 19 +/- 2 microM, respectively, suggesting that the activity of nAChRs is also inhibited by camphor. On the other hand, binding of [3H]nicotine to nAChRs was not affected by camphor. [Ca2+]i increases induced by high K+, veratridine, and bradykinin were not affected by camphor. The data suggest that camphor specifically inhibits catecholamine secretion by blocking nAChRs without affecting agonist binding.  相似文献   

2.
Park T  Bae S  Choi S  Kang B  Kim K 《Biochemical pharmacology》2001,61(8):1011-1019
The effects of clozapine on the activities of nicotinic acetylcholine receptors (nAChRs) and voltage-sensitive calcium channels (VSCCs) were investigated and compared with those of chlorpromazine (CPZ) in bovine adrenal chromaffin cells. [(3)H]Norepinephrine ([(3)H]NE) secretion induced by activation of nAChRs was inhibited by clozapine and CPZ with half-maximal inhibitory concentrations (IC(50)) of 10.4 +/- 1.1 and 3.9 +/- 0.2 microM, respectively. Both cytosolic calcium increase and inward current in the absence of extracellular calcium induced by nicotinic stimulation were also inhibited by clozapine and CPZ, but the greater inhibition was achieved by CPZ. In addition, [(3)H]nicotine binding to chromaffin cells was inhibited by clozapine and CPZ with IC(50) values of approximately 19 and 2 microM, respectively. On the other hand, [(3)H]NE secretion induced by high K(+) was inhibited by clozapine and CPZ with similar IC(50) values of 15.5 +/- 3.8 and 17.1 +/- 3.9 microM, respectively. Our results suggest that clozapine, as well as CPZ, inhibits nAChRs and VSCCs, thereby causing inhibition of catecholamine secretion, and that clozapine is much less potent than CPZ in inhibiting nAChRs.  相似文献   

3.
Effect of the aqueous extract from a medicinal plant Dryobalanops aromatica(Dipterocarpaceae) on catecholamine secretion was investigated in bovine adrenal chromaffin cells. The aqueous extract inhibited [(3)H]norepinephrine ([(3)H]NE) secretion induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist, with a half-maximal inhibitory concentration (IC(50)) of 8.4 +/- 1.7 microgml(-1). Increases in cytosolic calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) induced by DMPP were also inhibited by the extract. However, the binding of [(3)H]nicotine to nAChRs was not affected by the addition of the extract in receptor binding competition analysis, suggesting that active components in the extract and nicotine do not share the binding site in the nAChR. On the other hand, [Ca(2+)](i)increases induced by high K(+), ionomycin, bradykinin, angiotensin II, and thapsigargin were not inhibited by the extract. The data suggest that the extract from D. aromatica specifically inhibits catecholamine secretion by blocking nAChR in a noncompetitive manner.  相似文献   

4.
Inhibition of acetylcholine-mediated effects by borneol   总被引:6,自引:0,他引:6  
We previously reported that the aqueous extract from a medicinal plant Dryobalanops aromatica specifically inhibits the nicotinic acetylcholine receptor (nAChR) (Oh et al. Pharmacol Res 2000;42(6):559-64). Here, the effect of borneol, the main constituent of D. aromatica, on nAChR activity was investigated in bovine adrenal chromaffin cells. Borneol inhibited a nAChR agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP)-induced calcium increase with a half maximal inhibitory concentration (IC(50)) of 56+/-9 microM. In contrast, borneol did not affect the calcium increases induced by high K+, veratridine, and bradykinin. The sodium increase induced by DMPP was also inhibited by borneol with similar potency (49+/-12 microM), suggesting that the activity of nAChRs is inhibited by borneol. Borneol inhibited DMPP-induced secretion of [3H]norepinephrine with an IC(50) of 70+/-12 microM. Carbon-fiber amperometry also confirmed the inhibition of DMPP-induced exocytosis by borneol in single chromaffin cells. [3H]nicotine binding, however, was not affected by borneol. The inhibitory effect by borneol is more potent than the effect by lidocaine, a commonly used local anesthetic. The data suggest that borneol specifically inhibits the nAChR-mediated effects in a noncompetitive way.  相似文献   

5.
Histamine H1 receptors mediate activation of phospholipase C, with subsequent increases in cytosolic Ca2+ concentration ([Ca2+]i), and H2 receptors mediate accumulation of cAMP. HL-60 promyelocytes possess H2 receptors, but it is not known whether these cells also possess H1 receptors. We studied the effects of histamine on [Ca2+]i and the functional importance of histamine receptors in HL-60 promyelocytes. In these cells, histamine and dimaprit increased [Ca2+]i with EC50 values of 15 microM and 30 microM, respectively. Diphenhydramine inhibited the effect of histamine (100 microM) on [Ca2+]i up to 40%, with an IC50 of 100 nM. Famotidine and cimetidine diminished the effect of histamine (100 microM) up to 75%, with IC50 values of 85 nM and 300 nM, respectively. Diphenhydramine plus famotidine abolished histamine-induced rises in [Ca2+]i. Impromidine, with an IC50 of 100 nM, abolished the effect of histamine (100 microM) on [Ca2+]i. Diphenhydramine, famotidine, cimetidine, and impromidine showed marked noncompetitive antagonism with histamine. Histamine-induced increases in [Ca2+]i were largely due to influx of Ca2+ from the extracellular space. Ca2+ influx was inhibited by 1-(beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl)-1H-imida zole hydrochloride (SK&F 96365). Histamine activated phospholipase C. Histamine induced expression of formyl peptide receptors, which effect was abolished by famotidine. In U-937 promonocytes and in the human erythroleukemia cell lines HEL and K-562, histamine did not induce rises in [Ca2+]i. Our data suggest the following. (i) In HL-60 promyelocytes, histamine increases [Ca2+]i predominantly via H2 receptors and to a lesser extent via H1 receptors. (ii) The agonist/antagonist profile of the H2 receptor-mediated increases in [Ca2+]i differs markedly from that for cAMP accumulation, suggesting the involvement of different H2 receptor subtypes. (iii) In HL-60 promyelocytes, histamine activates nonselective cation channels and induces functional differentiation via H2 receptors.  相似文献   

6.
1. Chinese hamster ovary cells (CHO-K1) express an endogenous 5-hydroxytryptamine (5-HT)1B-like receptor that is negatively coupled to adenylyl cyclase through a pertussis toxin (PTX)-sensitive mechanism. Furthermore, the human adenosine A1 receptor when expressed in CHO-K1 cells (CHO-A1) has been shown to mobilize intracellular Ca2+ through a PTX-sensitive mechanism. Therefore the aim of this investigation was to determine whether the endogenous 5-HT1B-like receptor was able to stimulate increases in intracellular free [Ca2+] ([Ca2+]i) in CHO-A1 cells. 2. In agreement with previous studies using CHO cells, 5-hydroxytryptamine (5-HT) elicited a concentration-dependent inhibition of forskolin-stimulated [3H]-cyclic AMP production in CHO-A1 cells (p[EC50] = 7.73 +/- 0.13). 5-HT (1 microM) inhibited 47 +/- 5% of the [3H]-cyclic AMP accumulation induced by 3 microM forskolin. Forskolin stimulated [3H]-cyclic AMP accumulation was also inhibited by the 5-HT1 receptor agonists (p[EC50] values) 5-carboxyamidotryptamine (5-CT; 8.07 +/- 0.08), RU 24969 (8.12 +/- 0.33) and sumatriptan (5.80 +/- 0.31). 3. 5-HT elicited a concentration-dependent increase in [Ca2+]i in CHO-A1 cells (p[EC50] = 8.07 +/- 0.05). In the presence of 2 mM extracellular Ca2+, 5-HT (1 microM) increased [Ca2+]i from 174 +/- 17 nM to 376 +/- 22 nM. The 5-HT1 receptor agonists (p[EC50] values), 5-carboxyamidotryptamine (5-CT; 7.9 +/- 0.02), RU 24969 (8.1 +/- 0.07) and sumatriptan (5.9 +/- 0.11) all elicited concentration-dependent increases in [Ca2+]i. Similar maximal increases in [Ca2+]i were obtained with each agonist. The selective 5-HT1A receptor agonist, 8-OH-DPAT (10 microM) did not stimulate increases in [Ca2+]i. 5-HT (100 microM) and 5-CT (10 microM) did not stimulate a measurable increase in [3H]-inositol phosphate accumulation in CHO-A1 cells. 4. 5-HT (1 microM)-mediated increases in [Ca2+]i were insensitive to the 5-HT receptor antagonist, ritanserin (5-HT2; 100 nM), ketanserin (5-HT2; 100 nM), LY-278,584 (5-HT3; 1 microM) and WAY 100635 (5-HT1A; 1 microM). The response to 5-HT (100 nM) was antagonized by the non-selective 5-HT1 antagonist, methiothepin (pKb = 8.90 +/- 0.09) and the 5-HT1D antagonist GR 127935 (pKb = 10.44 +/- 0.06). 5. Pretreatment with PTX (200 ng ml-1 for 4 h) completely attenuated the Ca2+ response to 100 microM 5-HT. 6. In untransfected CHO-K1 cells, 5-HT (1 microM), RU 24969 (1 microM), and 5-CT (1 microM) elicited increases in [Ca2+]i similar to those observed in CHO-A1 cells. 7. These data demonstrate that in CHO-K1 cells the endogenously expressed 5-HT1B-like receptor couples to the phospholipase C/Ca2+ signalling pathway through a PTX-sensitive pathway, suggesting the involvement of Gi/Go protein(s).  相似文献   

7.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells and the underlying mechanism were evaluated using fura-2 as a Ca2+ dye. Histamine at concentrations between 0.1 and 50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1 microM. The [Ca2+]i response comprised an initial rise and a slow decay, which returned to baseline within 3 min. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In the absence of extracellular Ca2+, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 10 microM histamine did not increase [Ca2+]i. After pretreatment with 10 microM histamine in a Ca2+-free medium for several minutes, addition of 3 mM Ca2+ induced [Ca2+]i increases. Histamine (10 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3- methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 10 microM pyrilamine but was not altered by 50 microM cimetidine. Collectively, the present study shows that histamine induced [Ca2+]i transients in PC3 human prostate cancer cells by stimulating H1 histamine receptors leading to Ca2+ release from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, and by inducing Ca2+ entry.  相似文献   

9.
The effects of micro-, delta- and kappa-opioid receptor agonists, and orphanin FQ/nociceptin (Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala-Arg-Lys-Leu-Ala-Asn-Gln), on K+-induced [Ca2+]i increase were examined in SK-N-SH cells. Exposure to K+ (50 mM) resulted in a [Ca2+]i rise, which was blocked (-85%) by furaldipine (1 microM) and increased (63%) by BayK 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethyl-pyridine-5 -carboxylate) (0.5 microM), indicating the involvement of L-type Ca2+ channels. The kappa-opioid receptor agonists 3,4-dichloro-N-Methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U-50488H) (1-50 microM) and 5,7,8-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-8-yl]benze neacetamide (U-69593) (25 microM), and the mu-opioid receptor agonist sufentanil (100 nM-3 microM) inhibited the amplitude of K+-induced [Ca2+]i increase. The agonist of the orphan opioid receptor, orphanin FQ/nociceptin (1 microM), induced dual excitatory and inhibitory effects on the depolarisation-induced Ca2+ influx. The effects of the opioid receptor agonists were not blocked by the kappa-opioid receptor antagonist nor-binaltorphimine (1 microM), only weakly prevented by naloxone (10-100 microM) and naltrexone (100 microM), and partially prevented by pertussis toxin (100 ng/ml, 24 h). The antagonist of the orphan opioid receptor, [Phe1psi(CH2-NH)Gly2]nociceptin(1-13)NH2 (1 microM), prevented the inhibitory effect of U-50488H, sufentanil and orphanin FQ. The present study provides pharmacological evidence for the presence of L-type Ca2+ channels in SK-N-SH cells, that are modulated by opioids through orphan opioid receptor activation.  相似文献   

10.
1. We studied the release of [3H]-dopamine and [3H]-noradrenaline (NA) from hippocampal synaptosomes induced by glutamate receptors and the associated Ca2+ influx through Ca2+ channels. The release of tritiated neurotransmitters was studied by use of superfusion system and the intracellular free Ca2+ concentration ([Ca2+]i) was determined by a fluorimetric assay with Indo-1 as a probe for Ca2+. 2. Presynaptic glutamate receptor activation induced Ca(2+)-dependent release of [3H]-dopamine and [3H]-NA from rat hippocampal synaptosomes. Thus, L-glutamate induced the release of both neurotransmitters in a dose-dependent manner (EC50 = 5.62 microM), and the effect of 100 microM L-glutamate was inhibited by 83.8% in the presence of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dioxine (CNQX), but was not affected by 1 microM (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine (MK-801). 3. Other glutamate receptor agonists also stimulated the Ca(2+)-dependent release of [3H]-dopamine and [3H]-NA as follows: N-methyl-D-aspartate (NMDA), at 200 microM, released 3.65 +/- 0.23% of the total 3H catecholamines, and this effect was inhibited by 81.2% in the presence of 1 microM MK-801; quisqualate (50 microM), S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid (AMPA) (100 microM) or kainate (100 microM) released 1.57 +/- 0.26%, 1.93 +/- 0.17% and 2.09 +/- 0.22%, of the total 3H catecholamines, respectively. 4. The ionotropic glutamate receptor agonist, AMPA, induced an increase in the [Ca2+]i which was inhibited by 58.6% in the presence of 10 microM CNQX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The antiplatelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg/mL), thrombin (0.05 U/mL), arachidonic acid (100 microM), a thromboxane (TX) A2 mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F2, 1 microM) and a Ca2+ ATPase inhibitor thapsigargin (0.5 microM) (IC50 values: 13.8 +/- 1.8, 26.3 +/- 1.2, 8.5 +/- 0.9, 4.3 +/- 1.7 and 49.8 +/- 1.4 microM, respectively). KR-32570 inhibited the collagen-induced liberation of [3H]arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at 50 microM. The TXA2 synthase assay showed that KR-32570 also inhibited the conversion of the substrate PGH2 to TXB2 at all concentrations. Furthermore, KR-32570 significantly inhibited the [Ca2+]i mobilization induced by collagen at 50 microM, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen (10 microg/mL)-induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, TXA2 synthase, the mobilization of cytosolic Ca2+ and NHE-1.  相似文献   

12.
The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.  相似文献   

13.
1. The mechanisms of action of semotiadil fumarate, a novel Ca2+ antagonist, were examined by measuring the cytosolic Ca2+ level ([Ca2+]i) and force of contraction in porcine coronary arteries, and by determining [3H]-pyrilamine binding to bovine cerebellar membranes. 2. Semotiadil or verapamil (0.1 and 1 microM) inhibited both the high KCl-induced increases in [Ca2+]i and force in a concentration-dependent manner. 3. Histamine (30 microM) produced transient increases followed by sustained increases in [Ca2+]i and force, which were inhibited by semotiadil and verapamil (1 and 10 microM). The agents were different in that semotiadil reduced the maximum [Ca2+]i and force responses to histamine, but not pD2 values, whereas verapamil did reduce the pD2 values for histamine, but not the maximum responses. 4. Verapamil (10 microM), but not semotiadil, inhibited histamine-induced increases in [Ca2+]i and force in Ca(2+)-free solution. Neither semotiadil nor verapamil affected the increases in [Ca2+]i and force induced by caffeine. Semotiadil even at the higher concentration (10 microM) did not displace specific binding of [3H]-pyrilamine to bovine cerebellar membranes. 5. These results suggest that semotiadil inhibits both KCl- and histamine-induced contractions mainly by blocking voltage-dependent L-type Ca2+ channels.  相似文献   

14.
N-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibited [Ca2+]i spiking by 73+/-8%. The cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the vanilloid VR1 receptor antagonist capsazepine (CPZ), and treatment with pertussis toxin failed to block AM404-mediated inhibition. AM404 (3 microM) inhibited action-potential-evoked Ca2+ influx by 58+/-3% but failed to affect calcium influx evoked by depolarization with 30 mM K+, suggesting that the inhibition of electrically evoked [Ca2+]i increases and that [Ca2+]i spiking was due to inhibition of Na+ channels. Palmitoylethanolamide (PMEA), capsaicin (CAP) and (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (VDM11), compounds structurally similar to AM404, inhibited [Ca2+]i spiking by 34+/-10%, 42+/-18% and 67+/-12%, respectively. Thus, AM404 and related compounds inhibit depolarization-induced Ca2+ influx independent of cannabinoid receptors, suggesting caution when using these agents as pharmacological probes to study synaptic transmission.  相似文献   

15.
The purpose of this study was to clarify how eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, modulates the vascular action of vasopressin in rat aortic smooth muscle cell lines. The effects of EPA on Ca2+ mobilization and DNA synthesis elicited by vasopressin were investigated and compared to those of Ca2+ channel blocking agents, by means of Ca2+ measurements and the incorporation of [3H]thymidine. Patch-clamp techniques were also employed. Vasopressin (100 nM) elicited an initial peak of intracellular Ca2+ ([Ca2+]i), followed by a sustained phase due to Ca2+ entry. Nifedipine or nicardipine (1 microM), a potent L-type Ca2+ channel blocker, partly inhibited the sustained phase, but La3+ completely abolished it. EPA (10 microM) also inhibited it even in the presence of nicardipine. Under voltage-clamp conditions with CsCl-internal solution, depolarizing pulses positive to -30 mV from a holding potential of -40 mV elicited a slow inward current. The inward current was blocked by La3+, nicardipine, and nifedipine (1 microM), suggesting that the inward current mainly consisted of the voltage-dependent L-type Ca2+ channel (ICa.L). EPA (1-30 microM) also inhibited ICa.L in a concentration-dependent manner. The inhibitory effect of EPA was observed at concentrations higher than 1 microM, and its half-maximal inhibitory concentration (IC50) was 7.6 microM. Vasopressin induced a long-lasting inward current at a holding potential of -40 mV. The vasopressin-induced current was considered as a non-selective cation current (Icat) with a reversal potential of approximately +0 mV. Both nifedipine and nicardipine (10 microM) failed to inhibit it significantly, but La3+ completely abolished Icat. EPA also inhibited vasopressin-induced Icat in a concentration-dependent manner; its IC50 value was 5.9 microM. Vasopressin (100 nM) stimulated [3H]thymidine incorporation. Exclusion of extracellular Ca2+ with EGTA or La3+ markedly inhibited it. EPA (3-30 microM) also inhibited the incorporation induced by vasopressin, while nifedipine and nicardipine (1 microM) only partly inhibited it. These results suggested that EPA, unlike nifedipine and nicardipine, inhibited vasopressin-induced Ca2+-entry and proliferation in rat vascular smooth muscle cells, where the inhibitory effects of EPA on Icat as well as ICa.L might be involved. Thus, EPA would exert hypotensive and antiatherosclerotic effects.  相似文献   

16.
1. Volume-Sensitive, Outwardly Rectifying (VSOR) Cl- currents were measured in canine colonic myocytes by whole-cell patch clamp. Decreasing extracellular osmolarity 50 milliosmoles l-1 activated current that was carried by Cl- and 5 - 7 times greater in the outward direction. 2. Niflumic acid, an inhibitor of Ca2+-activated Cl- channels, did not inhibit VSOR Cl- current. Glibenclamide, an antagonist of CFTR, and anthracene-9-carboxylate (9-AC) inhibited current less than 25% at 100 microM. 3. DIDS (4, 4-diisothiocyanato-stilbene-2,2'disulphonate) inhibited VSOR Cl- current more potently than SITS (4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonate). IC50s were 0.84 and 226 microM, respectively. 4. VSOR Cl- current was strongly inhibited by tamoxifen ([Z]-1-[p-dimethylaminoethoxy-phenyl]-1,2-diphenyl-1-butene), an anti-oestrogen compound (IC50=0.57 microM). 5. Gd3+ antagonized VSOR Cl- current more potently than La3+. The IC50 for Gd3+ was 23 microM. In contrast, 100 microM La3+ inhibited current only 35+/-7%. 6. Antagonists of VSOR Cl- current had non-specific effects. These compounds blocked voltage-dependent K+ and Ca2+ currents in colonic myocytes. Tamoxifen (10 microM) and DIDS (10 microM) inhibited L-type Ca2+ current 87+/-7 and 31+/-5%, respectively. Additionally, in the presence of 300 nM charybdotoxin, tamoxifen (1 microM) and DIDS (10 microM) inhibited delayed rectifier K+ current 38+/-8 and 10+/-2%, respectively. 7. The pharmacology of VSOR Cl- channels overlaps with voltage-dependent cation channels. DIDS and tamoxifen inhibited VSOR Cl- equally. However, because DIDS had much less effect on L-type Ca2+ and delayed rectifier K+ channels than did tamoxifen, it might be useful in experiments to investigate the physiological and pathophysiological role of this conductance in whole tissues.  相似文献   

17.
The effects of diltiazem and TA-3090, an 8-chloro analog of diltiazem, on cellular responses and calcium homeostasis of human neutrophils were investigated. TA-3090, at 10 to 20 microM, enhanced lysozyme release and superoxide generation induced in neutrophils by n-formyl-methionyl-leucyl-phenylalanine (FMLP). Higher concentrations of TA-3090 inhibited responses at IC50s between 70 and 85 microM. Diltiazem by comparison inhibited responses at an IC50 of about 200 microM. The two drugs had little or no effect on early signaling events: inositol 1,4,5-trisphosphate formation triggered by FMLP was not affected. Moreover, 500 microM TA-3090 or diltiazem did not significantly affect FMLP-triggered Ca2+ transients. (Cytoplasmic free Ca2+ levels ([Ca2+]i) were monitored in fura-2-loaded neutrophils.) Diltiazem alone caused a limited influx of extracellular Ca2+ which increased basal [Ca2+]i by twofold. Internal Ca2+ stores were not released. TA-3090, in contrast, induced a biphasic rise in [Ca2+]i--an initial mobilization of intracellular Ca2+ stores was followed after 10-15 min by a persistent influx of extracellular Ca2+ which increased [Ca2+]i to 1.3 +/- 0.7 (SD) microM. Complementary studies with semipermeabilized neutrophils showed that TA-3090 but not diltiazem directly released Ca2+ from intracellular stores. In TA-3090-treated cells, lactate dehydrogenase release was correlated with delayed influx of extracellular Ca2+. The chelation of extracellular Ca2+ by EGTA prevented LDH release. Present results show that TA-3090 and diltiazem initially blocked cell signaling at steps subsequent to phospholipase C activity. With TA-3090-treated cells, elevated [Ca2+]i ensuing from prolonged incubations likely activated inappropriate reactions leading to cell lysis and death.  相似文献   

18.
1. The effect of chlorpromazine on the store-operated Ca2+ entry activated via the phospholipase C signalling pathway was investigated in PC12 cells. 2. Chlorpromazine inhibited the sustained increase after the initial peak in the intracellular Ca2+ concentration produced by bradykinin while having no effect on the initial transient response. The inhibition was lowered by the removal of extracellular free Ca2+. However, chlorpromazine did not inhibit bradykinin-induced inositol 1,4,5-trisphosphate production. 3. Chlorpromazine inhibited the bradykinin-induced noradrenaline secretion in a concentration-dependent manner (IC(50): 24+/-5 microM, n=3). 4. To test for a direct effect of chlorpromazine on store-operated Ca2+ entry, thapsigargin, an inhibitor of microsomal Ca(2+)-ATPase, was used to induce store-operated Ca2+ entry in PC12 cells. Chlorpromazine reduced the thapsigargin-induced sustained Ca2+ level (IC(50): 24+/-2 microM, n=3), and the inhibition also occluded the inhibitory action of 1-[-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenyl]-1H-imidazole hydrochloride (SK&F96365). 5. The results suggest that chlorpromazine negatively modulates the store-operated Ca2+ entry activated subsequent to PLC activation.  相似文献   

19.
1. We used SH-SY5Y human neuroblastoma cells to investigate whether depolarization with high K+ could stimulate inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) formation and, if so, the mechanism involved. 2. Ins(1,4,5)P3 was measured by a specific radioreceptor mass assay, whilst [Ca2+]i was measured fluorimetrically with the Ca2+ indicator dye, Fura-2. 3. Depolarization with K+ caused a time- and dose-dependent increase in [Ca2+]i (peak at 27 s, EC50 of 50.0 +/- 9.0 mM) and Ins(1,4,5)P3 formation (peak at 30 s, EC50 of 47.4 +/- 1.1 mM). 4. Both the K(+)-induced Ins(1,4,5)P3 formation and increase in [Ca2+]i were inhibited dose-dependently by the L-type voltage-sensitive Ca2+ channel closer, (R+)-BayK8644, with IC50 values of 53.4 nM and 87.9 nM respectively. 5. These data show a close temporal and dose-response relationship between Ca2+ entry via L-type voltage-sensitive Ca2+ channels and Ins(1,4,5)P3 formation following depolarization with K+, indicating that Ca2+ influx can activate phospholipase C in SH-SY5Y cells.  相似文献   

20.
Nordihydroguaiaretic acid (NDGA) is widely used as a pharmacological tool to inhibit lipoxygenases; however, recent evidence suggests that it increases renal intracellular [Ca2+]i via novel mechanisms. Here the effect of NDGA on Ca2+ signaling in MG63 osteoblastic cells was explored using fura-2 as a Ca2+ indicator. NDGA (2-50 microM) increased [Ca2+]i in a concentration-dependent manner. The signal comprised an initial rise and an elevated phase over a time period of 4 min. Removing extracellular Ca2+ reduced 2-50 microM NDGA-induced signals by 62+/-2%. After incubation with 50 microM NDGA in Ca2+-free medium for several minutes, addition of 3 mM CaCl2 induced an increase in [Ca2+]i. NDGA (50 microM)-induced [Ca2+]i increases were not changed by pretreatment with 10 microM of verapamil, diltiazem, nifedipine, nimodipine and nicardipine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (1 microM) inhibited 50 microM NDGA-induced [Ca2+]i increases by 69+/-3%. Inhibition of phospholipase C with 2 microM U73122 had little effect on 50 microM NDGA-induced Ca2+ release. Several other lipoxygenase inhibitors had no effect on basal [Ca2+]i. At a concentration that did not increase basal [Ca2+]i, NDGA (1 microM) did not alter 10 microM ATP- or 1 microM thapsigargin-induced [Ca2+]i increases. Alteration of protein kinase C activity with 1 nM phorbol 12-myristate 13-acetate or 2 microM GF 109203X did not affect 50 microM NDGA-induced [Ca2+]i increases. Together, the results show that NDGA increased [Ca2+]i in osteoblasts in a lipoxygenase-independent manner, by releasing stored Ca2+ in a fashion independent of phospholipase C activity, and by causing Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号