首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the recent couple of decades, pharmaceutical field has embarked most phenomenal noteworthy achievements in the field of medications as well as drug delivery. The rise of Nanotechnology in this field has reformed the existing drug delivery for targeting, diagnostic, remedial applications and patient monitoring. The convincing usage of nanotechnology in the conveyance of medications that prompts an extension of novel lipid-based nanocarriers and non-liposomal systems has been discussed. Present review deals with the late advances and updates in lipidic nanocarriers, their formulation strategies, challenging aspects, stability profile, clinical applications alongside commercially available products and products under clinical trials. This exploration may give a complete idea viewing the lipid based nanocarriers as a promising choice for the formulation of pharmaceutical products, the challenges looked by the translational process of lipid-based nanocarriers and the combating methodologies to guarantee the headway of these nanocarriers from bench to bedside.  相似文献   

2.
INTRODUCTION: Nanotechnology has gained increasing importance in the pharmaceutical and medical fields, beyond its importance in physics and technology. Targeting of the drug or active molecules can be achieved rather easily with some nanocarriers because of their unique properties; to program or control of delivery can also be possible. One of the smart nanosystems is carbon nanotubes (CNTs) because they are elecroconductive and they have very big surface area to deliver active molecules. There have been many drug delivery systems proposed to the scientific world using CNTs. One administration way which appears to be the most appropriate for drug delivery is transdermal application. AREAS COVERED: Performed experiments and proposed techniques with the use of CNTs are scrutinized and discussed in this review. EXPERT OPINION: In the light of current knowledge, a feasible way to use CNTs to deliver drug molecules is transdermally.  相似文献   

3.
The use of various pharmaceutical nanocarriers has become one of the most important areas of nanomedicine. Ideally, such carriers should be specifically delivered (targeted) to the pathological area to provide the maximum therapeutic efficacy. Among the many potential targets for such nanocarriers, tumors have been most often investigated. This review attempts to summarize currently available information regarding targeted pharmaceutical nanocarriers for cancer therapy and imaging. Certain issues related to some popular pharmaceutical nanocarriers, such as liposomes and polymeric micelles, are addressed, as are different ways to target tumors via specific ligands and via the stimuli sensitivity of the carriers. The importance of intracellular targeting of drug- and DNA-loaded pharmaceutical nanocarriers is specifically discussed, including intracellular delivery with cell-penetrating peptides.  相似文献   

4.
Nanotechnology is playing an increasing role in targeted drug delivery into pathological tissues. Drug-loaded pharmaceutical nanocarriers can be delivered into diseased sites by passive targeting (spontaneous accumulation of nanocarriers in the areas with affected vasculature) or by active targeting (via site-specific ligands attached to the surface of drug-loaded nanocarriers). Subsequent level of targeting requires cellular internalization of nanocarriers and their specific association with certain individual cell organelles. The control over intracellular distribution of pharmaceutical nanocarriers requires effective and noninvasive methods of their visualization inside cells. In an attempt to enhance cellular internalization of pharmaceutical nanocarriers and their association with mitochondria specifically, we have prepared three types of cationic liposomes and investigated their intracellular distribution. The analysis was performed using Raman microspectroscopy in order to provide morphological information as well as biochemical signatures of the sample. It was demonstrated that Raman microscopy allows evaluation of the extent of mitochondrial association depending on the liposome composition.  相似文献   

5.
This review illustrates how a random observation at the laboratory bench has helped pave the way towards the development of organelle-targeted pharmaceutical nanocarriers. A fortuitous discovery in the mid 1990s involving the self-assembly of a molecule, known to accumulate inside mitochondria, has lead to the development of subcellular nanocarriers suited for the selective delivery of biologically active molecules to mitochondria inside living mammalian cells. Applications for mitochondria-specific drug and DNA delivery are described, the current state-of-the-art of mitochondrial drug targeting technology is reviewed, and its future perspectives are discussed.  相似文献   

6.
Drug delivery to the central nervous system (CNS) is one of the most challenging fields of research and development for pharmaceutical and biotechnology products. A number of hydrophilic therapeutic agents, such as antibiotics, anticancer agents, or newly developed neuropeptides do not cross the blood brain barrier (BBB) after systemic administration. The BBB is formed by the tight junctions at the brain capillary endothelial cells, which strictly control drug transfer from blood to brain. Drug modification, osmotic opening of cerebral capillary endothelium, and alternative routes for administration (e.g., intracerebral delivery) have been successfully used to enhance drug transport to the CNS. The use of nanocarriers, such as liposomes and solid polymeric or lipid nanoparticles may be advantageous over the current strategies. These nanocarriers can not only mask the BBB limiting characteristics of the therapeutic drug molecule, but may also protect the drug from chemical/enzymatic degradation, and additionally provide the opportunity for sustained release characteristics. Reduction of toxicity to peripheral organs can also be achieved with these nanocarriers. This review article discusses the various barriers for drug delivery to the CNS and reviews the current state of nanocarriers for enhancing drug transport into the CNS.  相似文献   

7.
Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs–dendrimer, CNTs–nanoparticles, CNTs–quantum dots conjugate for delivery of bioactives, not discussed so far.  相似文献   

8.
Enhanced permeability and retention (EPR) effect is the physiology-based principal mechanism of tumor accumulation of large molecules and small particles. This specific issue of Advanced Drug Delivery Reviews is summing up multiple data on the EPR effect-based drug design and clinical outcome. In this commentary, the role of the EPR effect in the intratumoral delivery of protein and peptide drugs, macromolecular drugs and drug-loaded long-circulating pharmaceutical nanocarriers is briefly discussed together with some additional opportunities for drug delivery arising from the initial EPR effect-mediated accumulation of drug-containing macromolecular systems in tumors.  相似文献   

9.
Currently used pharmaceutical nanocarriers, such as liposomes, micelles, nanoemulsions, polymeric nanoparticles and many others demonstrate a broad variety of useful properties, such as longevity in the blood allowing for their accumulation in pathological areas with compromised vasculature; specific targeting to certain disease sites due to various targeting ligands attached to the surface of the nanocarriers; enhanced intracellular penetration with the help of surface-attahced cell-penetrating molecules; contrast properties due to the carrier loading with various contrast materials allowing for direct carrier visualization in vivo; stimuli-sensitivity allowing for drug release from the carriers under certain physiological conditions, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. What could be seen much more rare, however, are the pharmaceutical nanocarriers combining several from the listed abilities. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of few examples of this kind. At the same time, the enginnering of multifunctional pharmaceutical nanocarriers combinig several useful preoperties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration and contrast loading.  相似文献   

10.
Currently used pharmaceutical nanocarriers, such as liposomes, micelles, nanoemulsions, polymeric nanoparticles and many others demonstrate a broad variety of useful properties, such as longevity in the blood allowing for their accumulation in pathological areas with compromised vasculature; specific targeting to certain disease sites due to various targeting ligands attached to the surface of the nanocarriers; enhanced intracellular penetration with the help of surface-attahced cell-penetrating molecules; contrast properties due to the carrier loading with various contrast materials allowing for direct carrier visualization in vivo; stimuli-sensitivity allowing for drug release from the carriers under certain physiological conditions, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. What could be seen much more rare, however, are the pharmaceutical nanocarriers combining several from the listed abilities. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of few examples of this kind. At the same time, the enginnering of multifunctional pharmaceutical nanocarriers combinig several useful preoperties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration and contrast loading.  相似文献   

11.
Numerous nanotech arenas in therapeutic biology have recently provided a scientific platform to manufacture a considerable swath of unique chemical entities focusing on drugs. Recently, nanoparticulate drug delivery systems have emerged to deliver a specific drug to a specified site. Among all other carriers, lipids possess features exclusive to nanostructured dosage forms. The bioavailability of orally administered drugs is typically negatively affected by their poor water solubility, resulting from the unique chemical moieties introduced. Because of their unique advantages, lipid nanoparticles must become increasingly predictable as a robust delivery mechanism. The enhanced biopharmaceutical properties and significance of lipid-based targeting technologies such as liposomes, niosomes, solid lipid nanoparticles and micelles are highlighted in this review. Pharmaceutical implications of lipid nanocarriers for the transport and distribution of various therapeutic agents, such as biotechnological products and small pharmaceutical molecules, is a booming topic. Lipid nanoparticles as drug delivery systems have many appealing properties, including high biocompatibility, ease of preparation, tissue specificity, avoidance of reticuloendothelial systems, delayed drug release, scale-up feasibility, nontoxicity and targeted delivery. The use of lipid nanoparticles to enhance the transport of biopharmaceuticals is currently considered state-of-the-art. Similarly, we critically examine the upcoming guidelines that therapeutic scientists should handle.  相似文献   

12.
Abstract

Currently, nanotechnology-based products are gaining tremendous interest in the development of nanocarriers for drug delivery and nano-diagnostic devices. Nanodroplets (NDs) emerge as novel carriers for delivery of gases and actives with a wide range of applications in fields of theranostics, drug delivery and diagnostic devices. NDs are multifunctional carriers composed of an outer shell of drug and polymer that encapsulates the inner core of gases and liquid molecules. This review focuses on properties of NDs, mathematical theories, different polymers used in the preparation of NDs, characterisation, animal models, toxicity and applications of NDs. These nanocarriers are advantageous due to their cost-effectiveness and compatibility with both gaseous and liquid core molecules. NDs are increasingly utilised in the field of healthcare due to their properties like large effective surface area for drug loading and target specificity. These nanocarriers are also employed in the treatment of hypoxia, multiple sclerosis and cancer. In the near future, NDs will advance in fields of personalised medicine and precise theranostics.  相似文献   

13.
陈杏  宋金春 《中国药师》2018,(9):1640-1645
摘 要多西紫杉醇作为一种高效广谱的抗肿瘤药,临床上用于不同类型实体瘤的治疗,但是水溶性差限制了其制剂的开发。纳米载药系统在提高难溶性药物溶解度、靶向给药、减少药物不良反应等方面极具发展前景。因此,采用纳米载体传递多西紫杉醇的研究受到广泛关注。本文综述了近几年来多西紫杉醇纳米制剂的研究进展,包括脂质体、纳米粒、生物共轭物、聚合物胶束、纳米乳、纳米囊、树枝状聚合物等,以期为新型纳米制剂的开发和应用提供参考。  相似文献   

14.
A major challenge in the development of central nervous system drugs is to obtain therapeutic effective drug concentrations inside the brain. Many potentially effective drugs have never reached clinical application because of poor brain penetration. Currently, devices are being developed that may improve drug delivery into the brain. One approach involves the encapsulation of drugs into nanocarriers that are targeted to the brain, where the drug is released. Alternatively, living cells have been engineered to produce the pharmaceutical of interest at the target site. It is important to follow the fate of these drug delivery devices inside the body to verify their efficiency in reaching the brain. To this end, both ex-vivo approaches and in-vivo imaging techniques are used, including ex-vivo biodistribution, autoradiography, MRI, optical imaging, PET and SPECT. All these methods have their specific advantages and limitations. Consequently, selection of the tracking method should be based on the specific aims of the experiment. Here, we will discuss the methods that are currently applied for tracking brain drug delivery devices, including the most commonly used labels and labeling procedures for living cells and nanocarriers. Subsequently, we will discuss specific applications in tracking drug delivery devices.  相似文献   

15.
In the last decade, considerable attention has been devoted to the use of biodegradable polymeric materials as potential drug delivery carriers. However, bioavailability and drug release at the disease site remain uncontrollable even with the use of polymeric nanocarriers. To address this issue, successful methodologies have been developed to synthesize polymeric nanocarriers incorporated with regions exhibiting a response to stimuli such as redox potential, temperature, pH, and light. The resultant stimuli-responsive polymeric nanocarriers have shown tremendous promise in drug delivery applications, owing to their ability to enhance the bioavailability of drugs at the disease site. In such systems, drug release is controlled in response to specific stimuli, either exogenous or endogenous. This review reports recent advances in the design of stimuli-responsive nanocarriers for drug delivery in cancer therapy. In particular, the synthetic methodologies investigated to date to introduce different types of stimuli-responsive elements within the biomaterials are described. The sufficient understanding of these stimuli-responsive nanocarriers will allow the development of a better drug delivery system that will allow us to solve the challenges encountered in targeted cancer therapy.  相似文献   

16.
Lipid-based nanocarriers have proven successful in the delivery of mainly chemotherapeutic agents, and currently they are being applied clinically in the treatment of various types of cancer. These drug delivery systems achieve increased therapeutic efficacy by altering the pharmacokinetics and biodistribution of encapsulated drugs, resulting in decreased drug toxicity and enhanced accumulation in tumor tissue. This increased accumulation is due to the relatively leaky immature vasculature of a tumor. After the clinical relevance of such drug delivery systems was demonstrated, research in this area focused on optimization, both by cell specific targeting and including controlled and triggered release concepts within the carrier. These more advanced targeted nanocarriers in general have clearly shown their potential in various animal tumor models and await clinical application. The development of targeted nanocarriers in which therapeutic and imaging agents are merged into a single carrier will certainly be of importance in the near future. Indeed, scientists active in the field of imaging (e.g. nuclear and magnetic resonance imaging) have already started to exploit nanocarriers for molecular imaging. Image-guided drug delivery using these multifunctional nanocarriers, containing therapeutic and imaging agents, will ultimately allow for online monitoring of tumor location, tumor targeting levels, intratumoral localization and drug release kinetics prior and during radio- and/or chemotherapeutic treatment. This review describes the current status and challenges in the field of nanocarrier-aided drug delivery and drug targeting and discusses the opportunities of combining imaging probes with these drug carriers and the potential of these multifunctional lipid-based nanocarriers within image-guided drug delivery.  相似文献   

17.
Currently used pharmaceutical nanocarriers, such as liposomes, micelles, and polymeric nanoparticles, demonstrate a broad variety of useful properties, such as longevity in the body; specific targeting to certain disease sites; enhanced intracellular penetration; contrast properties allowing for direct carrier visualization in vivo; stimuli-sensitivity, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. In certain cases, the pharmaceutical nanocarriers combine several of the listed properties. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of the examples of this kind. The engineering of multifunctional pharmaceutical nanocarriers combining several useful properties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers the current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration, contrast loading, and stimuli-sensitivity.  相似文献   

18.
Chitosan is a natural polysaccharide which is generally biodegradable, biocompatible and mucoadhesive, thus, attracting considerable interest of scientific researchers. The application of chitosan as nanocarriers for drug delivery thrived. And some of their pharmacokinetics and biodistribution profiles were studied, which are crucial to develop a promising drug delivery system. In this article, we will first give an introduction for the chitosan as drug delivery system, especially as nanoparticles. Then, we focus on pharmacokinetics studies of various chitosan nanoparticles both in vitro and in vivo. In a following part, we refer to researches on biodistribution properties of chitosan nanoparticles. Here we crucially discuss the in vivo fate of chitosan nanoparticles. And finally, toxicity issue is discussed and conclusions are drawn.  相似文献   

19.
肿瘤免疫疗法通过重新激活宿主的抗肿瘤免疫系统以实现肿瘤治疗,尽管该策略目前已在一些患者中取得了显著的疗效,但响应率不高,以及耐药性、免疫相关副作用等问题极大地限制了该疗法的临床应用。为了应对这些挑战,已有研究开发了集靶向性与治疗性于一体的功能性免疫调节纳米载体。其在实现免疫药物对肿瘤部位的定向输送、减小毒性的同时,还能调动自身免疫调节,增强免疫疗效。基于此,通过以肿瘤免疫治疗基本原理为切入点,以制备材料的种类为分类依据,重点阐述这类纳米载体的设计原理及调控机制,系统性综述免疫调节纳米载体在协同增强免疫治疗方面的应用,以期对协同免疫治疗载体的进一步开发提供参考。  相似文献   

20.
Pharmaceutical research has been focussed on developing improved delivery systems while exploring new ways of using approved excipients. The present work investigated the potential of starch nanocapsules (StNC) as a topical delivery platform for hydrophilic antimicrobial drugs using minocycline hydrochloride (MH) as a model drug. Thus, a quality by design approach was used to assess the role of different factors that affect the main pharmaceutical properties of StNC prepared using an emulsification–solvent evaporation method. Full characterisation was performed in terms of particle size, encapsulation efficiency, morphology and physical stability at 5?±?3?°C. Results show the surfactant and lipid contents play a major role in StNC particle size distribution. The MH loading only promoted minor changes upon StNC properties. Formulations were stable without variations on physicochemical properties. All tested formulations presented a zeta-potential of +33.6?±?6.7?mV, indicating a good physical stability and evidencing that StNC are suitable nanocarriers for topical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号