首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of the K+ channel opening drugs minoxidil sulphate and cromakalim, on 42K+ and 86Rb+ efflux and on vasorelaxation in rat isolated aorta, were compared. In rat aortic rings precontracted with noradrenaline (100 nmol/l), minoxidil sulphate and cromakalim concentration-dependently inhibited induced tension by up to 90%, with pD2 values of 7.35±0.1 and 7.17±0.1, respectively. Glibenclamide (300 nmol/l), produced 2200- and 19-fold rightward shifts in the concentration-relaxation curves to minoxidil sulphate and cromakalim, respectively, without an effect on the maximum relaxation.Both minoxidil sulphate and cromakalim increased the efflux of 42K+ and 86Rb+ from aorta in a concentration-dependent manner, with midpoints in the µmol/l range; the maximum efflux induced by minoxidil sulphate being approximately one tenth of that induced by cromakalim. The ratio of stimulated 86Rb+/42K+ efflux increased from 0.22 to 0.48 with increasing cromakalim concentrations, but was approximately constant (0.39) when the minoxidil sulphate concentration was varied. In the presence of minoxidil sulphate, the effects of cromakalim on 42K+ and 86Rb+ efflux were inhibited in a concentration-dependent manner, by up to 60%. In the continuing presence of cromakalim (300 nmol/l), minoxidil sulphate (10 µmol/l)-induced increases in 42K+ and 86Rb+ efflux were inhibited by 45%, whereas conditioning with cromakalim (1 µmol/l) inhibited the 86Rb+ efflux stimulated by additional superfusion of cromakalim (1 µmol/l) by 85%. Glibenclamide inhibited minoxidil sulphate (10 µmol/l)- and cromakalim (1 µmol/l)-induced increases in 42K+ and 86Rb+ efflux in a concentration-dependent manner with IC50 values of approximately 80 nmol/l.In conclusion, the efflux data suggest that considerable overlap exists between the channels opened by minoxidil sulphate and those opened by cromakalim in rat aorta. Minoxidil sulphate has a weak efficacy as a K+ channel opener, and may act to open a homogeneous population of K+ channels. In contrast, the actions of cromakalim (1 µmol/l) are associated with large increases in tracer efflux, which are probably mediated via a heterogeneous population of K+ channels. However, only a small proprtion of this induced efflux appears to be required for relaxation. The differential inhibition by glibenclamide of the vasorelaxant effects of minoxidil sulphate and cromakalim may result from (a) the partial agonist properties of minoxidil sulphate in opening K+ channels and/or (b) additional mechanisms of vasorelaxation, which differ in their sensitivity to glibenclamide. Send offprint requests to U. Quasi at the above address  相似文献   

2.
Summary The effects of K+ channel openers, cromakalim and an acetoxyl derivative of KRN 2391 (Ki 4032), were studied on force of contraction, increases in intracellular calcium concentration ([Ca2+]i) measured by fura-2 and inositol 1,4,5-trisphosphate (IP3) production induced by the thromboxane A2 analogue, U46619, in canine coronary arteries. Upon single dose applications of U46619 at 300 nmol/l, phasic and tonic increases in [Ca2+]i and force were seen, which were almost abolished by cromakalim (10 mol/l) and Ki4032 (100 mol/l).In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction. Cromakalim (0.01–10 mol/l) and Ki4032 (0.1–100 mol/l) concentration-dependently inhibited the increases in [Ca2+]i and contraction. The inhibitory effects of cromakalim and Ki4032 were blocked by the K+ channel blocker tetrabutylammonium (TBA) and counteracted by 20 mmol/l KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production significantly and TBA blocked this inhibitory effect. These results suggest that the hyperpolarization of the plasma membrane by K+ channel openers inhibits the production of IP3 and Ca 2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.Correspondence to T. Yanagisawa at the above address  相似文献   

3.
Summary The effects of the K+ channel activators cromakalim, pinacidil, and nicorandil were investigated in endothelium intact, 5-hydroxytryptamine (5-HT) precontracted rat isolated basilar artery. Cromakalim, pinacidil, and nicorandil produced concentration-dependent relaxation of rat isolated basilar artery precontracted with 5-HT with a rank order of potency of cromakalim > pinacidil > nicorandil. All compounds produced full or nearly full relaxation. The calculated Hill coefficients for cromakalim-, pinacidil-, and nicorandil-induced relaxation of 5-HT-precontracted rat isolated basilar artery were 2.20 ± 0.36, 1.30 ± 0.07, and 1.00 ± 0.01, respectively. Under conditions of increased tone produced by 50 mmol/1 KCl (which inhibits cromakalim-induced relaxation) pinacidil and nicorandil produced marked reversal of spasm, with pinacidil being more potent than nicorandil. In arteries precontracted with 5-HT, preincubation with glibenclamide (0.1–1 mol/1) produced concentration-related inhibition of relaxation with calculated mean pA 2 values (and slopes of Schild regression) ± SEM of 6.84 ± 0.20 (1.1 ± 0.20) against cromakalim, 6.60 ± 0.14 (0.95 ± 0.23) against nicorandil,and6.57 ± 0.26(1.04 ± 0.18) against pinacidil. For cromakalim, pinacidil, and nicorandil the slopes of Schild regression were not significantly different from unity. Tolbutamide 10 mol/l was without effect against the cromakalim-, pinacidil-, or nicorandil-induced relaxation. Tetraethylammonium (TEA; 1–10 mmol/l) produced noncompetitive inhibition of the cromakalim-induced relaxation, but appeared to produce competitive inhibition of the pinacidil- and nicorandil-induced relaxations. We conclude that cromakalim, pinacidil, and nicorandil produce relaxation of the 5-HT precontracted rat basilar artery by similar mechanisms to those identified in other peripheral vascular and visceral smooth muscle. Furthermore, pinacidil and nicorandil differ from cromakalim in possessing marked spasmolytic activity in 50 mmol/l KCl precontracted arteries. Send offprint requests to M. Wahl at the above address  相似文献   

4.
Summary The cromakalim-induced effluxes of 42K+ and 86Rb+ were compared in rat aortic segments and in guinea-pig portal vein. In both vessels, low concentrations of cromakalim (0.1 M) increased the permeability to 86Rb+ 3–4 times less than that to 42K+; at 10 M the difference was about a factor of 1.3–2. In rat aorta, the threshold concentration of cromakalim for 42K+ efflux was 0.03 M; with 86Rb+ as the tracer ion it was 0.1 M. At similar concentrations, cromakalim relaxed the tension of aortic segments precontracted with 23 mM KCl (IC50 = 0.06 ± 0.01 M). However, no concomitant increase in 42K+ or 86Rb+ efflux could be detected from this stimulated preparation at these concentrations. In guinea-pig portal vein, 42K+ efflux measurements were performed in the presence and absence of the dihydropyridine Ca2+ entry blocker PN 200-110 (isradipine) yielding comparable results. In the presence of PN 200-110, where spontaneous activity and the K+ efflux associated with it were abolished, the threshold concentration of cromakalim for 42K+ efflux was 0.02 M as compared to 0.06 M for 86Rb+ efflux. In the absence of PN 200-110, spontaneous activity of the portal vein was inhibited by 70% and 90% at these concentrations. In double isotope experiments, the K+ channel inhibitor tetraethylammonium did not discriminate between the effluxes of 42K+ and 86Rb+ stimulated by cromakalim.It is concluded that in the two vascular tissues examined, cromakalim increased the permeability to 42K+ more than to 86Rb+, the difference being more marked at low cromakalim concentrations. The use of 42K+ as the tracer ion narrows the apparent gap between the concentrations of cromakalim which elicit vasorelaxant effects and those which induce an observable increase in K+ permeability; however a significant difference persists.Part of the data was presented at the Winter Meeting of the British Pharmacological Society London 1988 [Br J Pharmacol 93 (1988) p 19] Send offprint requests to U. Quasi at the above address  相似文献   

5.
Summary Ouabain (10–7 to 10–4 M) elicited concentration-dependent contractile responses in human placental arteries. The contractions were reduced by 10–4 M amiloride and Ca2+-free medium, but not affected by 10–6 M nifedipine or 10–6 M Bay-K-8644, which markedly reduced or potentiated 75 mM K+-induced contractions, respectively. After contracting the vessels with 10–6 M prostaglandin F2 in a K+-free medium, the subsequent addition of 7.5 mM K+ induced a marked relaxation, which was blocked by 10–6 M ouabain. This glycoside (10–8 to 10–4 M) also produced a concentration-dependent reduction of 86Rb+ uptake. Scatchard analysis of the [3H]-ouabain binding to membrane fractions from human placental arteries suggests a single class of binding sites with a KD of 88.3 nM and a Bmax of 345 fmol/mg. 5-Hydroxytryptamine (5-HT; 10–9 to 10–5 M) caused concentration-dependent contractions. Single concentrations produced transient responses composed of an initial contraction, followed by a slow fall in tension. Ouabain (10–8 to 10–6 M), K+-free medium or the reduction of bath temperature (28°C) did not modify contractions but inhibited the relaxant phase of the response. 5-HT (10–8 to 10–6 M) increased both total and ouabain-insensitive 86Rb+ uptake, but the difference between them was not modified. These data indicate that: (1) human placental arteries possess an important sodium pump activity, inhibition or stimulation of which markedly alters vascular tone, (2) ouabain-evoked contractions are produced by Ca2+ entry mainly through Na+-Ca2+ exchange, secondary to intracellular Na+ accumulation, (3) the relaxant component of 5-HT response is dependent on the activity of the sodium pump, (4) the activation of Na+,K+-ATPase activity by this amine is not apparently due to direct effect, and (5) the inhibition of the sodium pump can cause long lasting increases of placental vascular resistance in the presence of physiological concentrations of 5-HT. Send offprint requests to J. Marin at the above address  相似文献   

6.
Summary Rat cerebral cortex slices or synaptosomes were labelled with 3H-5-hydroxytryptamine (3H-5-HT) and subsequently superfused. They were depolarized by electrical stimulation (slices) or with high K+ (slices and synaptosomes). Continuous electrical stimulation (2 Hz, 24 mA, 2 ms) and continuous or discontinuous K+ depolarization (15–25 mM) were used. 1. Continuous electrical stimulation or continuous K+-depolarization of slices evoked a steady overflow of tritium that slowly decayed with time. 2. Exposure to increasing concentrations of 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole succinate (RU 24969) (0.001–0.1 M) during continuous electrical stimulation produced a concentration-dependent decrease in tritium overflow. Citalopram (1 M) counteracted the effect of RU 24969. 3. RU 24969 inhibited the evoked 3H-overflow and citalopram reduced the effect of RU 24969 also during continuous depolarization of slices with 20 mM K+. Similar results were obtained by using 5-methoxytryptamine or LSD. 4. In slices 1 M citalopram increased significantly the tritium overflow evoked by electrical stimulation or by 20 mM K+-depolarization. 5. Increasing the K+ concentration from 20 mM to 25 mM mimicked the effects of 1 M citalopram both on the RU 24969 activity and on the evoked tritium overflow. 6. RU 24969 (0.001–0.1 M) decreased in a concentration-dependent way the release of tritium from cortical synaptosomes depolarized with K+ (15–20 mM). The presence of 1 M citalopram did not modify significantly the effect of the agonist. Citalopram was ineffective also when the serotonin uptake carrier in superfused synaptosomes was activated by tryptamine. In conclusion, in slices of rat cerebral cortex, the action of exogenous 5-HT autoreceptor agonists is inhibited by 5-HT uptake blockers independently of the depolarizing agent (electrical stimulation or high-K+) used to elicit 3H-5-HT release. Increasing K+-concentration, which probably increases serotonin in the biophase, mimics the presence of the reuptake inhibitor. These data together with the finding that, in superfused synaptosomes, 5-HT uptake inhibition did not affect the potency of autoreceptor agonists, favours the idea that, in cerebral cortex slices, inhibitors of 5-HT reuptake prevent activation of autoreceptors by exogenous agonists by increasing the concentration of 5-HT in the autoreceptor biophase. Send offprint requests to M. Raiteri at the above address  相似文献   

7.
Alinidine, and eight derivatives, were synthesized and tested for their ability to antagonise the actions of the K+ channel opener cromakalim in rat thoracic aorta, and for their ability to induce bradycardia in rat isolated spontaneously beating right atria. Ring segments of rat thoracic aorta were suspended in organ baths to record isometric tension. Tissues were precontracted with K+(20 mM), and full concentration-relaxation curves constructed to cromakalim (0.01–30 M) in the absence and presence of increasing concentrations of alinidine/derivative. The majority of the compounds tested caused rightward shifts in the cromakalim concentration-effect curves. Rat spontaneously beating right atria were suspended in organ baths to record rate of contraction. Addition of alinidine/derivative caused a concentration-dependent negative chronotropic response. In terms of structure-activity relationships, increasing the length of the N-allyl side-chain on the alinidine molecule (from 3 carbon (3C), to 5 C) resulted in a significant increase in the activity of the compounds as both bradycardic agents and cromakalim antagonists. The most potent compounds in both cases (bradycardic agent and cromakalim antagonist) had no double bond in the side chain. The results suggest that the carbon side-chain influences the activity of alinidine-related compounds both as cromakalim antagonists and as bradycardic agents. However, while similar structure-activity relationships appear to apply for both effects in some instances, there was no significant correlation between the two actions of the alinidine analogues. The results suggest that the ability of alinidine-derivatives to induce bradycardia or to block K+ channels opened by cromakalim can be differentiated on the basis of structure. Correspondence to: G. A. McPherson at the above address  相似文献   

8.
The influence of several K+ channel-acting drugs on antinociception induced by the adenosine A1 receptor agonist (–)-N6-(2-phenylisopropyl)-adenosine (R-PIA) was evaluated with a tail flick test in mice. The subcutaneous administration of R-PIA (0.5–8 mg/kg) induced a dose-dependent antinociceptive effect. The ATP-sensitive K+ (KATP) channel blocker gliquidone (2–8 g/mouse, i.c.v.) produced a dose-dependent displacement to the right of the R-PIA dose-response line, whereas the KATP channel opener cromakalim (32 g/mouse, i.c.v.) shifted it to the left. Several KATP channel blockers dose-dependently antagonized the antinociceptive effect of R-PIA, the order of potency being gliquidone > glipizide > glibenclamide (i.e., the same order of potency shown by these drugs in blocking KATP channels in neurons). In contrast, the K+ channel blockers 4-aminopyridine and tetraethylammonium did not antagonize the effect of R-PIA. These data suggest that antinociception produced by adenosine A1 receptor agonists is mediated by the opening of ATP-sensitive K+ channels. The present results, together with those of previous studies, further support a role for K+ channel opening in the antinociceptive effect of agonists of receptors coupled to Gi/Go proteins. Correspondence to: José M. Baeyens at the above address  相似文献   

9.
1-Methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is efficiently taken up and accumulated by rat hepatocytes. However, the nature of the mechanism(s) involved in the hepatic uptake of MPP+ remains partially unknown. The aim of the present study was to further characterize the hepatic uptake of 3H-MPP+, namely by investigating the interactions of catecholamines (which are also efficiently taken up by rat hepatocytes) with MPP1 transport.The accumulation of 3H-MPP+ in isolated rat hepatocytes occurred through saturable and non-saturable mechanisms. The kinetics of the saturable component of 3H-MPP+ uptake was as follows: Vmax = 181.3 ± 11.1 pmol mg protein–1 min–1 and Km = 47.1 M (27.9, 66.3) (n = 5). The diffusion constant (in ml mg protein–1 min–1) for the non-saturable uptake of 3H-MPP+ was 0.00068 (0.00052, 0.00083) (n = 5). From the analysis of the time course of 3H-MPP+ accumulation at a substrate concentration of 100 nM 3H-MPP+, it was found that the rate constant of inward transport of 3H-MPP+ into hepatocytes (kin) was 15.7 ± 3.8 l mg protein–1 min–1, the rate constant of outward transport of 3H-MPP+ from hepatocytes (kout) was 0.077 ± 0.023 min–1 and the equilibrium accumulation (Amax) of 3H-MPP+ was 20.2 ± 2.0 pmol mg protein–1 (n = 36). Decynium22 (1,1-diethyl-2,2-cyanide; 1 M) significantly reduced kin to 6.1 ± 1.8 l mg protein–1 min–1 (P < 0.05) and the equilibrium accumulation (Amax) of 3H-MPP+ to 9.6 ± 1.3 pmol mg protein–1 (P < 0.005) (n = 36). 3H-MPP+ accumulation (in cells incubated with 200 nM 3H-MPP+) was sensitive to (–)-adrenaline, (–)-isoprenaline, (–)-dopamine, (±)-adrenaline and (–)-noradrenaline. The most potent catecholamine in inhibiting 3H-MPP+ uptake was (–)-adrenaline, with an IC50 of 99 (22, 449) M (n = 6). (–)-Adrenaline competitively inhibited 3H-MPP+ uptake, as it significantly increased the Km value of 3H-MPP+ uptake (to 125.4 M (63.6; 187.1); P < 0.02; n = 3) but did not change the Vmax value. The cyanide-derivatives decynium22 and cyanine863 (1-ethyl-2-([1,4-dimethyl-2-phenyl-6-pyrimidinylidene]methyl)quinolinium), which inhibit uptake2 as well as the apical type of the renal transporter for organic cations, potently inhibited 3H-MPP+ uptake with IC50's of 1.4 (0.4–5.3) (n = 6) and 6.5 (2.6–16) (n = 4) M, respectively. Under conditions of monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT) inhibition with either pargyline (500 M + Ro01-2812) (3,5-dinitropyrocatechol; 2 M) or pargyline (500 M) + U-0521(3,4-dihidroxy-2-methyl-propiophenone; l2 M)), (–)-adrenaline (up to 1 mM) had no inhibitory effect on the uptake of 3H-MPP+. Moreover, the uptake of 3H-MPP+ in the presence of pargyline + Ro 01-2812 was significantly lower (66.9 ± 30.4%; P < 0.05; n = 4) than in the absence of these compounds. Therefore, the effect of these MAO and COMT inhibitors on 3H-MPP+ uptake was examined. Interestingly enough, pargyline, Ro 01-2812 and U-0521 were found to inhibit the uptake of 3H-MPP+ (in cells incubated with 200 nM 3H-MPP+): 500 M pargyline, 2 M Ro 012812 and 100 M U-0521 decreased the accumulation of 3H-MPP+ to 38.1 ± 6.8 (n = 5), 60.5 ± 10.1(n = 7) and 71.3 ± 14.5 (n = 7) % of control, respectively.It is concluded that 3H-MPP+ is efficiently taken up by rat hepatocytes by a carrier-mediated mechanism sensitive to catecholamines, decynium22 and cy anine863, and to the enzyme inhibitors pargyline, Ro 01-2812 and U-0521.  相似文献   

10.
Summary The relaxant mechanisms of action of cromakalim, pinacidil and nicorandil, potassium channel openers, on large epicardial coronary arteries were investigated in isolated canine left circumflex arteries contracted by 10–7 mol/l U46619, a thromboxane A2 analogue, or addition of 25 mmol/l KCl in comparison with nitroglycerin.Cromakalim (3 × 10–8–3 × 10–5 mol/l), pinacidil (10–6–10–4 mol/l), nicorandil (3 × 10–6–10–3 mol/l) and nitroglycerin (3 × 10–8–10–5 mol/l) all produced a concentration-dependent relaxation in both U46619- or KCl-contracted arteries. At their maximum effects pinacidil, nicorandil and nitroglycerin produced full relaxation in arteries contracted by either means. In contrast, cromakalim produced about a 73% relaxation in KCl-contracted arteries, although it caused full relaxation in U46619-contracted ones. In the presence of glibenclamide the concentration-relaxation curves for cromakalim in U46619- or KCl-contracted arteries underwent rightward parallel shifts. Schild regression had a slope of 1.00 and yielded a pA2 of 7.47 for glibenclamide in U46619-contracted arteries, and corresponding values obtained in KCl-contracted arteries were 0.86 (not significantly different from unity) and 7.28. The concentration-relaxation curves for pinacidil in U46619-contracted arteries also underwent rightward parallel shifts in the presence of glibenclamide, however, Schild regression had a slope of 0.60. The concentration-relaxation curves for pinacidil in KCl-contracted arteries underwent rightward parallel shifts only to a limited extent in the presence of glibenclamide. The concentration-relaxation curves for nicorandil and nitroglycerin in U46619- or KCl-contracted arteries were not affected by glibenclamide in concentrations which antagonized cromakalim. The concentration-relaxation curves for nicorandil or nitroglycerin in U46619-contracted arteries were shifted by methylene blue (10–5 mol/l) to the right without suppression of the their maximum effects. Similar curves for cromakalim were not affected at all by this concentration of methylene blue. The concentration-relaxation curves for nicorandil in U46619-contracted arteries determined in the presence of methylene blue (10–5 mol/l) and glibenclamide (3 × 10–7, 10–6 and 3 × 10–6 mol/l) were not significantly different from those in the presence of methylene blue alone.These results indicate the following: In canine large epicardial coronary arteries (1) cromakalim produced relaxation by the mechanism antagonized by glibenclamide, probably opening ATP-sensitive potassium channels, (2) pinacidil did so by the mechanism shared with cromakalim and by one not antagonized by glibenclamide as well, and (3) nicorandil did so exclusively by the mechanism of action as a nitrate. Send offprint requests to N. Taira at the above address  相似文献   

11.
Summary Iminodibenzyl-, iminostilbene-, dibenzocycloheptadiene-, dibenzooxepine- and dibenzothiepine-derivatives of tricyclic antidepressant drugs were able to inhibit Na+-stimulated Mg2+ efflux in human erythrocytes at concentrations of 10–5–10–3 mol/l. Tricyclic antidepressant drugs belonging to other chemical groups, non-tricyclic antidepressant drugs and phenothiazines were less potent inhibitors (IC50 of 10–4 mol/l or higher).Imipramine and dothiepine, the most potent compounds, inhibited the Mg" carrier with IC50 of 2.5 and 4 × 10–5 mol/1 respectively. These IC50 are of similar order of magnitude to those of some classical transport inhibitors (such as furosemide for the [Na+K+,Cl]-cotransport system). In addition, these concentrations of imipramine and dothiepine were free of: i) side effects on other erythrocyte Na and K+ transport pathways (with the exception of a slight inhibition of Ca2+-sensitive K+-channels and [Na+,K+,Cl]- and [K+,Cl]-cotransport systems) and ii) toxic effects on the membrane leak for divalent or monovalent cations. Therefore, we selected imipramine as an useful tool for investigating fluxes catalyzed by the Na+-stimulated Mg2+ carrier.Imipramine was tested on the initial rate of ouabain and bumetanide-resistant net Na+ influx in Na+-depleted, Mg2+-loaded erythrocytes. The compound was able to inhibit a Na+ influx of about 300–500 mol (l · cells × h)–1 with an IC50 of about 3 x 10–5 mol/1. This imipramine-sensitive Na+ influx was coupled with an imipramine-sensitive Mg2+ efflux in a stoichiometry of 3.03±0.34 (mean±SEM of 7 experiments).Abbreviations MOPS 4-morpholinopropanesulfonic acid - PCMBS p-chloromercuribenzenesulfonate - EGTA ethylene glycol bis-(beta-aminoethyl ether)N,NNN-tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Send offprint requests to R. Garay at the above address  相似文献   

12.
The degradation of lidocaine in aqueous solution obeys the expression k obs = (k H+[H +] + k o ) [H+]/([H + ] + K a + ko K a([H + ] + K a) where k H+ is the rate constant for hydronium ion catalysis, and k o and ko are the rate constants for the spontaneous (or water-catalyzed) reactions of protonated and free-base lidocaine. At 80°C, the rate constants for these processes are 1.31 × 10–7 M –l sec–1, 1.37 × 10–9 sec–1, and 7.02 × 10–9sec–1; the corresponding activation energies are 30.5, 33.8, and 26.3 kcal mol–1, respectively. It was found that the room temperature pH of maximum stability is 3–6 and that lidocaine is more reactive in the presence of metal ions such as Fe2+ and Cu2+. The dissociation constant, K a, for lidocaine at 25–80°C was also measured at 0.1 M ionic strength and a plot of pK a versus 1/T gave a slope of (1.88 ± 0.05) × 103 K–1 and intercept 1.56 ± 0.16.  相似文献   

13.
Summary Endogenous kidney dopamine (DA) causes natriuresis and diuresis, at least partly, via inhibition of proximal tubular Na+,K+-ATPase. The present study was done to identify the dopamine receptor subtype(s) involved in dopamine-induced inhibition of Na+,K+-ATPase activity. Suspensions of renal proximal tubules from Sprague-Dawley rats were incubated with dopamine, the DA-1 receptor agonist fenoldopam or the DA-2 receptor agonist SK&F 89124 in the presence or absence of either the DA-1 receptor antagonist SCH 23390 or the DA-2 receptor antagonist domperidone. Dopamine and fenoldopam (10–5 to 10–8 mol/1) produced a concentration-dependent inhibition of Na+,K+-ATPase activity. However, SK&F 89124 failed to produce any significant effect over the same concentration range. Incubation with fenoldopam (10–5 to 10–8 mol/1) in the presence of SK&F 89124 (10–6 mol/l) inhibited Na+,K+-ATPase activity to a degree similar to that with fenoldopam alone. Furthermore, DA-induced inhibition of Na+,K+-ATPase activity was attenuated by SCH 23390, but not by domperidone. Since -adrenoceptor activation is reported to stimulate Na+,K+-ATPase activity and, at higher concentrations, dopamine also acts as an a-adrenoceptor agonist, the potential opposing effect from -adrenoceptor activation on DA-induced inhibition of Na+,K+-ATPase activity was investigated by using the -adrenoceptor blocker phentolamine. We found that, in the lower concentration range (10–5 to 10–7 mol/1), dopamine-induced inhibition of Na+,K+-ATPase activity in the presence of phentolamine was similar in magnitude to that observed with dopamine alone. However, at the highest concentration used (10–4 mol/1), dopamine produced a significantly larger degree of inhibition of Na+,K+-ATPase activity in the presence of phentolamine. These results indicate that the DA-1 dopamine receptor subtype, but not the DA-2 receptor subtype, is involved in dopamine-mediated inhibition of Na+,K+-ATPase. At higher concentrations of dopamine, the DA-1 receptor-mediated inhibitory effect on Na+,K+-ATPase activity may be partly opposed by a simultaneous -adrenoceptor-mediated stimulation of the activity of this enzyme.  相似文献   

14.
The anaesthetized allergic guinea-pig was used to assess changes in airway reactivity to four different inhaled spasmogens: methacholine, 5-hydroxytryptamine (5-HT), histamine and the thromboxane A2 mimetic, 9,11-dideoxy-9α,11α-methano-epoxy-PGF (U-46619). Reactivity was determined 18 to 24 h after challenge of ovalbumin-sensitized guinea-pigs with inhaled ovalbumin. This time coincides with the appearance of a late-phase bronchoconstriction in these animals. Sensitivity to the spasmogen was assessed from the concentration-response curve for the increase in pulmonary inflation pressure (PIP) in ovalbumin- and saline-challenged sensitized animals. When methacholine, 5-HT or histamine were the spasmogens there was no hyper-reactivity. The geometric mean EC50 values (i.e. the concentrations inducing half the maximum effect) obtained from the dose-response curves for methacholine (73 (42–129) and 94 (66–134) μg mL?1), 5-HT (1.5 (0.81–3.03) and 1.1 (0.51–2.24 μg mL?1) and histamine (39 (21–75) and 72 (32–162) μg mL?1) did not differ significantly (P > 0.05) between saline- and ovalbumin-challenged animals, respectively. However, when U-46619 was the spasmogen, ovalbumin-induced airway hyper-reactivity was observed as a leftwards shift of the concentration-response curve and the EC50 value for ovalbumin-challenged animals (8.1 (5.1–13) ng mL?1) was significantly (P < 0.05) less than the value for control animals (39 (21–75) ng mL?1). Our findings suggest that airway hyper-reactivity is not ‘non-specific’, but instead depends on the chosen spasmogen. The absence of hyper-reactivity with certain spasmogens was not a result of poor delivery, because all spamogens caused a bronchoconstriction by the inhaled route. It was also not associated with the model because ozone has been shown to induce hyper-reactivity to inhaled methacholine and 5-HT. Because airway hyper-reactivity to both inhaled histamine and agonists at muscarinic receptors is regularly seen in man, the anaesthetized guinea-pig might not be the ideal model for assessing airway hyper-reactivity after antigen challenge and its modification by anti-asthma drugs.  相似文献   

15.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

16.
Summary We have examined the effects of the potassium conductance enhancer cromakalim (BRL 34915) and the calcium entry blocker nimodipine upon 5-hydroxytryptamine (5-HT) induced contractions in ring preparations from rabbit basilar and mesenteric arteries, and from pig coronary arteries. Cumulative concentration-response (CR) curves to 5-HT were biphasic in basilar and mesenteric arteries, and monophasic in coronary arteries. Coronary artery 5-HT CR curves and the first component of the mesenteric artery 5-HT CR curve were antagonized by ketanserin (pK B values 8.9 and 8.8, respectively), whereas basilar artery CR curves were not. Prazosin antagonized the second component of the mesenteric 5-HT CR curve, but not that of the basilar artery. Cromakalim (0.1–10 mol/1) and nimodipine (0.001–1 mol/l) both caused reductions in resting tension in basilar and coronary arteries denuded of their endothelia, but this effect was not seen with mesenteric arteries. Procaine (5 mmol/1) abolished this vasorelaxant effect of cromakalim in basilar artery. Both agents concentration-dependently depressed the 5-HT CR curve in coronary artery, the effect of cromakalim was antagonized by lidocaine (100 mol/1). In basilar artery, only the first component was cromakalim sensitive unlike nimodipine which depressed both components of the CR curve. In mesenteric artery, 5-HT CR curves were depressed by cromakalim, but only slightly affected by nimodipine (1 mol/l). It is concluded that cromakalim, like nimodipine, possesses anti-vasospastic activity; however, differences exist in the sensitivity of the 5-HT mediated contractions of the three arterial preparations to the agents. Thus, although both cromakalim and nimodipine may have potential in the treatment of subarachnoidal haemorrhage and angina pectoris, differences in their therapeutic profiles are also likely to be found. Send offprint requests to C. R. Cain at the above address  相似文献   

17.
We examined the different vasodilatory effects of the K+ channel openers levcromakalim and 5-amino-N2-[2-(2-chlorophenyl)ethyl]-N-cyano-3-pyridinecarboxamidine (KRN4884), and the Ca2+ channel blocker nifedipine in the rat aorta. KRN4884 (10–10-10–5 M) and nifedipine (10–10–10–5 M) produced concentration-dependent relaxation in the rat aorta precontracted by 25 mM KCl. The K+ channel blocker glibenclamide (1 M) inhibited the relaxation induced by KRN4884 but did not influence nifedipine-induced relaxation. KRN 4884 had almost no effect on contraction induced by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl. These results indicate that KRN4884 is a K+ channel opener. We investigated the relaxant effects of KRN4884 (10–10-10–5 M), levcromakalim (10–9-10–5 M) and nifedipine (10–9-10–5 M) on A23187 (1 M)-induced contraction. KRN4884 and levcromakalim had a potent relaxant effect but nifedipine only a weak effect on the smooth muscle contracted by A23187. Glibenclamide (1 M) inhibited the relaxation induced by KRN4884 and levcromakalim, but did not influence the nifedipine-induced relaxation. KRN 4884 (1 M) produced a larger relaxation of A23187-induced contraction but had little effect on the increase in intracellular [Ca2+] induced by A23187. These results suggest that KRN4884 is a specific K+ channel opener and its vasodilating mechanisms involve not only deactivation of Ca2+ channels but also a decrease in the Ca2+ sensitivity of contractile elements.  相似文献   

18.
In the myocardium the inhibitory guanine nucleotide-binding regulatory proteins (Gi proteins) mediate negative chronotropic and negative inotropic effects by activation of K+ channels and inhibition of adenylyl cyclase. The concept of a uniform inhibitory action of Gi proteins on myocardial cellular activity has been questioned by the recent observations of adenosine-induced activation of the Na+/Ca2+ exchange and a carbachol-induced inhibition of the Na+/K+-ATPase activity in cardiac sarcolemmal membranes. The aim of the present study, therefore, was to reinvestigate the putative regulation of Na+/Ca2+ exchange and Na+/K+-ATPase activity in purified canine sarcolemmal membranes. These membranes were enriched in adenosine A1 (Maximum number of receptors, B max 0.033 pmol/mg) and muscarinic M2 (B max 2.9 pmol/mg) receptors and contained Gi2 and Gi3, two Gi protein isoforms, and Go, another pertussis toxin-sensitive G protein, as detected with specific antibodies. The adenosine A1-selective agonist, (–)-N 6-(2-phenylisopropyl)-adenosine, and the muscarinic agonist, carbachol, both inhibited isoprenaline-stimulated adenylyl cyclase activity by 25% and 35% respectively, and the stable GTP analogue 5-guanylylimidodiphosphate inhibited forskolin-stimulated adenylyl cyclase activity by 35% in these membranes. The characteristics of Na+/Ca2+ exchange and Na+/K+-ATPase activity as well as those of the ouabain-sensitive, K+-activated 4-nitrophenylphosphatase, an ATP-independent, partial reaction of the Na+/K+-ATPase, were in agreement with published data with regard to specific activity, time course of activity and substrate dependency. However, none of these activities were influenced by adenosine, (–)-N 6-(2-phenylisopropyl)-adenosine, carbachol, or stable GTP analogs, suggesting that Na+/Ca2+ exchange and Na+/K+-ATPase are not regulated by Gi proteins in canine cardiac sarcolemmal membranes.  相似文献   

19.
Summary The objective of this study was to explore the role of 5-HT3 receptors in modulating potassium (K+)-evoked release of [3H]-acetylcholine ([3H]-ACh) from superfused slices of rat entorhinal cortex previously loaded with [3H]-choline. Rat entorhinal cortices were cross-chopped into 300 m slices, superfused with oxygenated Krebs buffer containing 2.5 mmol/1 Ca2+ and stimulated with two consecutive exposures of 20 mmol/l K+ for 4 min (S1 and S2, respectively). Compounds were added 20 min before S2 stimulation and remained in the superfusion buffer for the duration of the experiment. The S2/S1 ratio was then calculated.Stimulated release of [3H]-ACh was dependent on extracellular Ca2+ and K+ concentration. In Sprague Dawley rats, 2-methyl-5-HT (10-9–10-6 mol/l), in the presence of 1 mol/l ritanserin or 1 gmmol/l ondansetron, had no influence on K+-evoked release of [3H]-ACh. In slices prepared from Hooded Lister rats, 2 mol/l 5-HT but not 2-Me-5-HT significantly (P<0.05) inhibited K+-evoked [3H]-ACh release only 17% in the presence of 1 mol/l ritanserin. However, 2 mol/l 2-Me-5-HT plus 1 nmol/l ondansetron had no effect. High performance liquid chromatography coupled to electrochemical detection (HPLC-ECD) was used to monitor endogenous release of ACh in the above conditions to confirm data from the radiolabelled experiments. No significant inhibition or increase in K+-evoked ACh release was observed with either 5-HT3 receptor agonists or antagonists. 2-Me-5-HT (10–9 – 10–5 mol/l) or 1-(m-chlorophenyl)-biguanide (10–9 – 10–5 mol/l), when added simultaneously at the S2 stimulation, in the presence of 1 l/l methysergide, also showed no effect on [3H]ACh release.In entorhinal cortex slices from aged Wistar rats, neither 1-(m-chlorophenyl)-biguanide (2 or 10 ol/l) nor 2-Me-5-HT (2 mol/l) in combination with ritanserin (1 mol/l) or ondansetron (1 nmol/l) elicited any effect on K+-evoked [3H]-ACh release. However, release of [3H]-ACh was inhibited by carbachol (10 mol/l) and adenosine (10 mol/l). DuP 996 (3,3-bis(4- pyridinyl-methyl)-1-phenylindolin-2-one) (10–7 – 10–5 mol/l), a known releaser of ACh, markedly augmented K+-evoked [3H]-ACh release.These studies have failed to confirm the postulated role of 5-HT3 receptors in modulating cortical ACh release in rat entorhinal cortex slices and suggest that a critical reexamination of the interaction of 5-HT3 receptor and cortical cholinergic function needs to be addressed.Abbreviations 5-HT serotonin - ACh acetylcholine - HPLC-ECD high performance liquid chromatography - electrical chemical detection - EGTA ethylene glycol bis(-aminoethyl ether)-N,N-tetraacetic acid - 2-ME-5-HT 2-methyl-5-hydroxytryptamine - DuP 996 (3,3-bis(4pyrindinylmethyl)-1-phenylindolin-2-one) A preliminary report of this work was presented at the 1992 Federation of American Societies for Experimental Biology, April 6–9, Anaheim, California, USA (The FASEB J 6A1559) Correspondence to R. M. Johnson at the above address  相似文献   

20.
Summary The purpose of the present study was to analyze the effects of cromakalim (BRL 34915), a potent drug from a new class of drugs characterized as K+ channel openers, on the electrical activity of human skeletal muscle. Therefore, intracellular recordings were used to measure the effects of cromakalim on the membrane potential and input conductance of fibres from human skeletal muscle biopsies. Cromakalim in a concentration above 1 mol/l induced an increase in membrane K+ conductance. This effect resulted in a membrane hyperpolarization. The magnitude of this polarization depended on the difference between resting and K+ equilibrium potential. The effect had a rapid onset and was quickly reversible after washing. Fibres from two patients with hyperkalaemic periodic paralysis showed an excessive membrane depolarization during and also after exposure to an slightly elevated extracellular K+ concentration. In the latter situation, cromakalim repolarized the fibres to the normal resting potential. Tolbutamide (1 mmol/l) and Ba2+ (3 mmol/l) strongly antagonized the effect of cromakalim. The data show that cromakalim hyperpolarizes depolarized human skeletal muscle fibres maintained in vitro. The underlying mechanism is probably an activation of otherwise silent, ATP-regulated K+ channels. Such an effect may be of therapeutic benefit in a situation in which a membrane depolarization causes muscle paralysis. Send offprint requests to A. Spuler at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号