首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arsenic-induced cell death in liver and brain of experimental rats   总被引:2,自引:0,他引:2  
Arsenic is a well established human carcinogen and is ubiquitous in the environment. The present study demonstrates the effect of acute arsenic administration at three different doses in liver and brain of Wistar rats. Sodium arsenite was administered orally at doses of 6.3 mg/kg, 10.5 mg/kg and 12.6 mg/kg of body weight on the basis of a lethal dose 50% (LD50) for 24 hr. After administration of arsenites, liver and brain were analyzed for various parameters of oxidative stress, histopathological changes and caspase-3 activity. Glutathione levels were decreased significantly in the liver at all doses. In liver the following biochemical changes were observed, a significant lipid peroxidation and cytochrome-P450 induction along with significant decrease in catalase and superoxide dismutase was observed at 10.5 mg/kg and 12.6 mg/kg. The activity of glutathione peroxidase was increased significantly at all doses. In brain, no significant change was observed at 6.3 mg/kg. However, a significant increase in lipid peroxidation and glutathione peroxidase activity along with significant decrease in the activity of glutathione, catalase and superoxide dismutase was observed at 10.5 mg/kg and 12.6 mg/kg. The activity of glutathione-S-transferase was decreased significantly in both liver and brain at 10.5 and 12.6 mg/kg. No significant alteration in the activity of glucose-6-phosphate dehydrogenase and glutathione reductase was observed in either liver or brain at any dose. Dose-dependent histopathological changes, observed in both liver and brain are also described. A significant increase in caspase-3 activity was observed at all doses in liver and at 10.5 and 12.6 mg/kg in brain. Sodium arsenite caused DNA cleavage into fragments and manifested as "DNA laddering", a hallmark of apoptosis.  相似文献   

3.
Recent advances in the imaging of programmed cell death   总被引:2,自引:0,他引:2  
A deficiency or an excess of programmed cell death (apoptosis) is an integral component of autoimmune disorders, organ and bone marrow transplant rejection, and cancer. A technique to image programmed cell death would be useful in the development of drugs to treat these and others diseases, and to monitor the effectiveness of therapy. The most widely studied agent for the in vivo study of apoptosis is radiolabeled annexin V, an endogenous protein labeled with technectium-99m, now undergoing clinical trials in both Europe and the United States. While annexin V has been studied extensively in humans the precise mechanism(s) of uptake of this agent in vivo is unclear and needs further study. Other agents are also underdevelopment including radiolabeled forms of Z-VAD.fmk, a potent inhibitor of the enzymatic cascade intimately associated with apoptosis. MR imaging techniques and tracers also hold promise as methods to monitor apoptotic cell death. In this article we will review these and other imaging technologies for the non-invasive imaging of cell death. The mechanism(s) and latest data on the conditions in which cellular stress and early apoptosis occur will also be discussed in detail including potential new strategies for the targeting and novel therapeutic interventions of tissues and organs undergoing stress or apoptosis when cell salvage is still possible.  相似文献   

4.
Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death.  相似文献   

5.
In a previous study, rats were treated with one injection of 500 mg kg(-1) bismuth subnitrate intraperitoneally and maintained for 2 weeks. Bismuth was observed in Leydig cells, with a subsequent reduction in serum testosterone levels. In the present study, stereological procedures were used to estimate the number of Leydig cells in the right testis from the retained rats used in the previously published study.The mean number of Leydig cells in the control group was estimated to be 18.7 x 10(6) (coefficient of variation = 0.11), which is comparable to previous estimations. In the group exposed to bismuth the mean was 15.5 x 10(6) (coefficient of variation = 0.18). The observed 17% difference between the two groups was statistically significant (2P = 0.019). The inter-individual variation was largest in the bismuth-exposed group. Testis weight and body weight were not significantly reduced after bismuth exposure. These findings support the hypothesis that bismuth has a direct toxic effect on rat Leydig cells and underscores the potential risks of bismuth on male reproduction.  相似文献   

6.
7.
Resistance to anticancer drugs is often related to deficient cell death execution pathways in cancer cells. Apoptosis, which denotes a form of cell death executed by caspases, was traditionally considered as the only physiological and programmed form of cell death. However, recent evidence indicates that programmed cell death (PCD) can occur in complete absence of caspase activation. Indeed, a large number of caspase-independent models are now defined and a key protein implicated in this type of PCD, apoptosis-inducing factor (AIF), has been identified. AIF is a mitochondrial protein with two faces looking in opposite life/death directions. Recently, the identification of five different isoforms allowed a better characterization of AIFs life/mitochondrial versus death/nuclear functions, as well as definition of its pro-apoptotic region and some of its nuclear partners. Importantly, much work on caspase-independent PCD has revealed that AIF participates in more PCD systems than initially thought. A wider molecular knowledge of AIF, and of the caspase-independent PCDs in which it is involved, are key to provide new insights into the role of PCD. There is no doubt that these insights will lead to the development of more selective and efficient drugs against cancer, degenerative diseases, and other pathological disorders implicating AIF.  相似文献   

8.
Apoptosis is a process that governs the elimination of unwanted, damaged, or infected cells in most organisms. Defects in its execution are associated with several diseases, including cancer. Herein, we discuss novel molecules with potential anti-tumor activity that target components of the apoptotic machinery, specifically Bcl-2 proteins, IAPs and caspases.  相似文献   

9.
目的:研究PDCD5在非小细胞肺癌中的表达及其相关性.探讨其在非小细胞肺癌发生、发展中的作用。方法:采用免疫组织化学方法,研究非小细胞肺癌组织中PDCD5的表达。结果:PDCD5阳性表达率随非小细胞肺癌组织学分级的降低和临床分期的上升而下降.染色强度也减弱。结论:PDCD5为非小细胞肺癌的负性调节因子,对抑制非小细胞肺癌的恶性转化和进展可能有重要的意义。  相似文献   

10.
环丙沙星致白细胞减少及肝功能异常   总被引:1,自引:0,他引:1  
患者男,27岁,因受凉后发热,咳嗽,胸痛,咯少量白色粘痰10d,于1999年1月14日收住我院.  相似文献   

11.
Melatonin, an indolamine derived from the amino-acid tryptophan, participates in diverse physiological functions and has great functional versatility related to the regulation of circadian rhythms and seasonal behaviour, sexual development, retinal physiology, tumour inhibition, as an antioxidant, immunomodulatory and anti-aging properties. In relation to its oncostatic properties, there is evidence that tumor initiation, promotion or progression may be restrained by the night-time physiological surge of melatonin in the blood or extracellular fluid. In addition, depressed nocturnal melatonin concentrations or nocturnal excretion of the main melatonin metabolite, 6-sulfatoxymelatonin, were found in individuals with various tumor types. In the majority of studies, melatonin was shown to inhibit development and/or growth of various experimental animal tumors and some human cell lines in vitro. Many tumors do not respond to drug treatment due to their resistance to undergo apoptosis thereby contributing to the development of cancer. Thus, given the importance of the apoptotic program in cancer treatment, the role of melatonin in influencing apoptosis in tumor cells attracted attention because it seems that it actually promotes apoptosis in most tumor cells, in contrast to the obvious inhibition of apoptotic processes in normal cells. Thus, this paper is also intended to provide to the reader an up-date of all the researches that have been carried out to date, which investigate the proapoptotic effects of melatonin in experimental preclinical models of cancer (in vitro and in vivo) and the underlying proposed action mechanism of this effects. If melatonin uniformly induces apoptosis in cancer cells, the findings could have important clinical implications to improve the quality of live while preventing the appearance of cancer.  相似文献   

12.
An unprecedented bloom of the cyanobacterium Microcystis aeruginosa Kütz. occurred in the St. Lucie Estuary, FL in the summer of 2005. Samples were analyzed for toxicity by ELISA and by use of the polymerase chain reaction (PCR) with specific oligonucleotide primers for the mcyB gene that has previously been correlated with the biosynthesis of toxic microcystins. Despite the fact that secreted toxin levels were relatively low in dense natural assemblages (3.5 microg l(-1)), detectable toxin levels increased by 90% when M. aeruginosa was stressed by an increase in salinity, physical injury, application of the chemical herbicide paraquat, or UV irradiation. The application of the same stressors caused a three-fold increase in the production of H(2)O(2) when compared to non-stressed cells. The application of micromolar concentrations of H(2)O(2) induced programmed cell death (PCD) as measured by a caspase protease assay. Catalase was capable of inhibiting PCD, implicating H(2)O(2) as the inducing oxidative species. Our results indicate that physical stressors induce oxidative stress, which results in PCD and a concomitant release of toxin into the surrounding media. Remediation strategies that induce cellular stress should be approached with caution since these protocols are capable of releasing elevated levels of microcystins into the environment.  相似文献   

13.
Extensive nerve cell death occurs during the development of the central nervous system as well as in episodes of trauma and in neurodegenerative disease. The mechanistic details of how these cells die are poorly understood. Here we describe a unique oxidative stress-induced programmed cell death pathway called oxytosis, and outline pharmacological approaches which interfere with its execution. Oxidative glutamate toxicity, in which exogenous glutamate inhibits cystine uptake through the cystine/glutamate antiporter leading to a depletion of glutathione, is used as an example of oxytosis. It is shown that there is a sequential requirement for de novo macromolecular synthesis, lipoxygenase activation, reactive oxygen species production, and the opening of cGMP-gated channels which allow the influx of extracellular calcium. The translation initiation factor elF2alpha plays a central role in this pathway by regulating the levels of glutathione. Finally, examples are given in which the reduction in glutathione, the production of reactive oxygen species, and calcium influx can be experimentally manipulated to prevent cell death. Data are reviewed which suggest that oxytosis may be involved in nerve cell death associated with nervous system trauma and disease.  相似文献   

14.
Regulation of programmed cell death in neuronal cells by nitric oxide   总被引:8,自引:0,他引:8  
Nitric oxide (NO), produced from L-arginine and molecular oxygen in a reaction catalyzed by one of three NO synthase isoenzymes, can prevent or induce neuronal apoptosis depending on its concentration and cellular redox state. This molecule affords neuroprotection by post-translational S-nitrosylation of NMDA receptor, caspases and p21ras, and increases the expression of cytoprotective genes such as HSP70, heme oxygenase and Bcl-2. Moreover, the NO/cGMP pathway activates the anti-apoptotic serine/threonine kinase Akt by protein kinase G-dependent activation of phosphatidylinositol 3-kinase. A high concentration of NO and peroxynitrite, a reaction product of NO with superoxide anion, can promote apoptotic pathways in neuronal cells through the indirect activation of caspases. We review the molecular mechanism by which NO exerts both pro- and anti-apoptotic actions in neuronal cells and the clinical implications for regulating neuronal apoptosis.  相似文献   

15.
The Diabetes Control and Complications Trial (DCCT) established the importance of hyperglyemia and other consequences of insulin deficiency in the pathogenesis of diabetic neuropathy, but the precise mechanisms by which metabolic alterations produce peripheral nerve fiber damage and loss remain unclear. Emerging data from human and animal studies suggest that glucose-derived oxidative stress may play a central role, linking together many of the other currently invoked pathogenetic mechanisms such as the aldose reductase and glycation pathways, vascular dysfunction, and impaired neurotrophic support. These relationships suggest combinations of pharmacological interventions that may synergistically protect the peripheral nervous system (PNS) against the metabolic derangements of diabetes mellitus.  相似文献   

16.
Resveratrol (RL), a natural polyphenol, is known for its diverse biological effects against various human cancer cell lines. But low aqueous solubility, poor bioavailability, and stability limit its efficacy against prostate cancer. In this study polymeric nanoparticles encapsulating resveratrol (RLPLGA) were designed and their cytotoxic and mode of apoptotic cells death against prostate cancer cell line (LNCaP) was determined. Nanoparticles were prepared by solvent displacement method and characterized for particle size, TEM, entrapment efficiency, DSC and drug release study. RLPLGA exhibited a significant decrease in cell viability with 50% and 90% inhibitory concentration (IC50 and IC90) of 15.6?±?1.49 and 41.1?±?2.19?μM respectively against the LNCaP cells. This effect was mediated by apoptosis as confirmed by cell cycle arrest at G1-S transition phase, externalization of phosphatidylserine, DNA nicking, loss of mitochondrial membrane potential and reactive oxygen species generation in LNCaP cells. Furthermore, significantly greater cytotoxicity to LNCaP cells was observed with nanoparticles as compared to that of free RL at all tested concentrations. RLPLGA nanoparticles presented no adverse cytotoxic effects on murine macrophages even at 200?μM. Our findings support the potential use of developed resveratrol loaded nanoparticle for the prostate cancer chemoprevention/ chemotherapy with no adverse effect on normal cells.  相似文献   

17.
18.
The molecular mechanism of cell death induced by AGS 115 and EFDAC, sesquiterpene analogs of paclitaxel, was investigated in human breast cancer MCF-7 cells. The study was carried out using laser scanning cytometry, homeostatic confocal microscopy, atomic force microscopy and electron microscopy. AGS 115 and EFDAC exhibited a microtubule-stabilizing effect as confirmed by a significant increase in alpha-tubulin aggregation. Both paclitaxel analogs also induced death in MCF-7 cells. Evaluation of biochemical and morphological features suggested that the major form of programmed cell death induced by AGS 115 and EFDAC was autophagy. This was confirmed by MAP I LC3 expression and the ultrastructural pattern revealed by electron microscopy. Surface images of cells undergoing autophagy showed that, unlike during apoptosis, the dimensions remained unchanged, but the surface of the cell was deformed. The occurrence of apoptosis was confirmed by the efflux of Smac/DIABLO from mitochondria, caspase-7 activation and DNA loss, and did not exceed 9.7%. Therefore, AGS 115 and EFDAC appear to be promising candidates for further investigation in anti-cancer therapy.  相似文献   

19.
2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.  相似文献   

20.
去甲斑蝥素降低人胃癌细胞程序性细胞死亡因子4的表达   总被引:2,自引:0,他引:2  
目的 研究去甲斑蝥素(NCTD)降低程序性细胞死亡因子4(PDCD4)表达的机制。方法MTT法测定NCTD 5~640 μmol·L-1与人胃癌BGC-823细胞作用24,48和72 h细胞存活率;Western蛋白质印迹法测定NCTD 0, 6, 30和60 μmol·L-1作用BGC-823细胞24 h PDCD4蛋白表达水平;NCTD 60 μmol·L-1作用20 h后加入MG132 10 μmol·L-1作用4 h对PDCD4蛋白表达的影响;逆转录PCR法测定NCTD 60 μmol·L-1作用BGC-823细胞24 h后PDCD4 mRNA表达的变化;实时荧光定量PCR(qRT-PCR)测定NCTD 60 μmol·L-1作用BGC-823细胞6, 12和24 h后microRNA-21(miR-21)的表达。Western蛋白质印迹法测定细胞转染miR-21抑制剂对PDCD4蛋白表达的影响。结果 NCTD作用后BGC-823细胞存活率明显下降,NCTD作用BGC-823细胞24, 48和72 h IC50分别为74.5, 35.0和10.3 μmol·L-1。NCTD 6, 30和60 μmol·L-1作用于BGC-823细胞24 h,PDCD4蛋白分别降低9%, 47%和62%。NCTD对PDCD4 mRNA表达无影响。与NCTD处理组相比,MG132和NCTD共处理对PDCD4蛋白表达无明显影响。NCTD 60 μmol·L-1作用BGC-823细胞12和24 h后,细胞中miR-21的表达显著升高(P<0.01)。细胞转染miR-21抑制剂后,可抑制NCTD降低PDCD4蛋白表达的作用。结论 NCTD通过调控miR-21降低PDCD4蛋白的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号