共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In homogenates of female rat anterior pituitary, the azepine derivative B-HT 920 inhibited the forskolin-stimulated adenylate cyclase activity with an EC 50 value of 0.35 M. In male rat anterior pituitary, B-HT 920 curtailed the stimulation of adenylate cyclase activity by vasoactive intestinal peptide with an EC 50 of 0.20 M. In synaptic plasma membranes of rat striatum, B-HT 920 significantly reduced basal adenylate cyclase activity with an EC 50 of 0.68 M. Both in pituitary and striatum, the B-HT 920 inhibition was counteracted by the dopamine (DA) D 2 receptor antagonist 1-sulpiride, but not by the 2-adrenergic antagonist yohimbine. These results indicate that B-HT 920 is capable of activating DA D 2 receptors negatively coupled to adenylate cyclase activity. 相似文献
2.
Summary Buspirone, a putative serotonin (5-HT) 1A partial agonist, did not produce hypothermia in 17 normal volunteers in a placebo controlled, single blind study. Thus, buspirone may be a weaker agonist at those 5-HT 1A receptors which mediate hypothermia compared to ipsapirone or gepirone, two other 5-HT 1A partial agonists which have been reported to produce hypothermia by a 5-HT 1A-mediated mechanism. 相似文献
3.
Objective: To determine serotonin system abnormalities related to major depression or previous suicidal behavior. Methods: [11C]WAY100635, [18F]altanserin and positron emission tomography were used to compare 5-HT1A and 5-HT2A binding in MDD patients divided into eight past suicide attempters (>4yrs prior to scanning) and eight lifetime non-attempters, and both groups were compared to eight healthy volunteers. Results: The two receptor types differed in binding pattern across brain regions from each other, but there were no differences in binding between healthy volunteers and the two depressed groups or between depressed suicide attempters and non-attempters. No effects of depression severity or lifetime aggression were observed for either receptor. Conclusion: Limitations of this study include small sample size and absence of high lethality suicide attempts in the depressed attempter group. No trait-like binding correlations with past suicide attempt or current depression were observed. Given the heterogeneity of nonfatal suicidal behavior, a larger sample study emphasizing higher lethality suicide attempts may find the serotonin biological phenotype seen in suicide decedents. 相似文献
4.
Summary Brain regional 5-hydroxytryptamine (5-HT) and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations tended to be slightly higher in female rats than in males but differences were substantial only in the hippocampus where female values were 34% and 36% higher respectively. These findings were consistent with the synthesis rates of 5-HT as this was 53% greater in the female than in the male hippocampi. Other regions did not show significant sex differences. The 5-HT[n1A] agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 1 mg/kg sc) caused comparable decreases of 5-HT synthesis rate in both sexes and in all regions studied except the hippocampus where the percentage decrease was twice as large in the females (–64%) as in the males (–32%) so that the sex difference in 5-HT synthesis in this region largely disappeared. The results are discussed in relation to sex differences in behaviour and hippocampal function. 相似文献
5.
Summary In vivo microdialysis was used to determine the effects of chronic electroconvulsive shock (ECS), given daily for 10 days, on basal 5-HT levels in rat frontal cortex and hippocampus and on the effect of systemic administration of the 5-HT-la receptor agonist, 8-OH-DPAT (0.2 mg/kg), to reduce 5-HT levels in these areas by activation of somatodendritic autoreceptors. Neither basal 5-HT levels nor the effects of 8-OH-DPAT on 5-HT levels were altered after chronic ECS. The effect of systemic administration of the 5-HT 1A and 5-HT 1B antagonist, (±)-pindolol (10mg/kg), to increase 5-HT levels in hippocampus, was also not affected by chronic ECS. 相似文献
6.
The existence of multiple 5-HT autoreceptors in the central nervous system is now firmly established and they have been pharmacologically identified as belonging to the 5-HT(1A), 5-HT(1B), and 5-HT(1D) receptor subtypes. In addition, 5-HT(1F), 5-HT(5A), and 5-HT(7) receptors remain as potential candidates for additional autoreceptors. The emergence of selective ligands, such as SB-224289 (5-HT(1B) receptor antagonist), BRL 15572 (5-HT(1D) receptor antagonist), GR 127935 (a mixed 5-HT(1B/1D) receptor antagonist), LY 334370 (5-HT(1F) receptor agonist), and SB-269970 (5-HT(7) receptor antagonist), has aided the characterisation of 5-HT autoreceptors and has highlighted the complexity of mechanisms which modulate the release of 5-HT. 相似文献
7.
BACKGROUND: Serotonin 5-HT(2A) receptors play an important role in the regulation of many functions that are disturbed in patients with major depressive disorder. Postmortem and positron emission tomography studies have reported both increased and decreased 5-HT(2A) receptor binding in different limbic and paralimbic regions. METHODS: We conducted a quantitative 5-HT(2A) receptor binding study using positron emission tomography and [(18)F]altanserin of four regions hypothesized to have altered levels of 5-HT(2A) receptors in major depressive disorder. Using a four-compartment model, the 5-HT(2A) receptor distribution was estimated by calculating the regional [(18)F]altanserin k(3)/k(4) ratio in which k(3) is the rate of binding to the receptor and k(4) is the rate of dissociation from the receptor. Forty-six antidepressant-free patients with major depressive disorder and 29 healthy control subjects were enrolled. RESULTS: 5-HT(2A) receptor binding in the hippocampus was reduced by 29% in depressed subjects (p =.004). In other regions, 5-HT(2A) receptor binding was decreased (averaging 15%) but not significantly. Both groups had similar age-dependent decreases in 5-HT(2A) receptors throughout all brain regions. CONCLUSIONS: Altered serotoninergic function in the hippocampus is likely involved in the disturbances of mood regulation in major depressive disorder, although the specific role of the 5-HT(2A) receptor changes is still unclear. 相似文献
8.
A selective 5-HT reuptake inhibitor, fluvoxamine (10 and 30 mg/kg, i.p.) suppressed long-term potentiation (LTP) in the hippocampal CA1 field of anesthetized rats. Fluvoxamine (30 mg/kg, i.p.)-induced suppression of LTP was completely reversed by the 5-HT(1A) receptor antagonist NAN-190 (0.5 mg/kg, i.p), but not by the 5-HT(4) receptor antagonist GR 113808 (20 microg/rat, i.c.v.) and the 5-HT(7) receptor antagonist DR 4004 (10 microg/rat, i.c.v.). These data suggest that the inhibitory effect of fluvoxamine on LTP induction is mediated via 5-HT(1A) receptors. 相似文献
9.
Summary Recently, it has been suggested that antidepressant drugs exert their pharmacological action through functional changes in the adrenergic-receptor coupled adenylate cyclase system. In the present research, we examined the direct effects of antidepressants on adenylate cyclase (A-cyclase) activity by in vitro incubation of cell membranes from the cerebral cortex of rats with these drugs. All antidepressants examined, such as imipramine, clomipramine, amitriptyline, desipramine, mianserin and zimelidine inhibited A-cyclase in a dose dependent manner. Antidepressants did not exert any influence on Mn 2+-induced elevation of A-cyclase, but significantly suppressed F –-stimulated A-cyclase activity. GTP-induced elevation of A-cyclase was completely inhibited by prior incubation with antidepressants. Our conclusion, therefore, is that antidepressants may reduce A-cyclase activity not by inhibiting the function of the catalytic unit of A-cyclase, but by supressing the N-protein function. 相似文献
10.
Using intracellular recordings, we have studied the action of 5-hydroxytryptamine (5-HT) on slices of human temporal, occipital and frontal cortex maintained in vitro. The recordings were usually made 1.2 to 1.5 mm down from the pial surface, in or around layer III. The action of 5-HT (30–50 μM) was studied on 21 cells (from 12 individuals) which had electrophysiological characteristics of glutamatergic pyramidal neurones. 5-HT depolarised the majority (11) of these cells with a median response of 5 mV. It produced a hyperpolarising response in five neurones (median=−4 mV) and a combined hyperpolarising/depolarising response in two others. No response was detected in three cells. The depolarising response was probably mediated by reducing a resting potassium conductance. Ketanserin (0.1 and 1.0 μM) and spiperone (1 μM) reduced the response indicating that it was likely mediated by 5-HT 2A receptors. The hyperpolarising response was associated with the opening of ion channels and was blocked by the selective 5-HT 1A receptor antagonist WAY-100635 (100 nM). 5-HT inhibited spontaneous synaptic potentials. This effect was reduced by ketanserin (1 μM) but not by WAY-100635 (100 nM). It is concluded that human neocortical neurones in vitro can be depolarised via 5-HT 2A receptors and hyperpolarised via 5-HT 1A receptors. 相似文献
11.
The aims of this work were to determine the influence of chronic electroconvulsive shock (ECS) on presynaptic 5-HT(1A) receptor function, postsynaptic 5-HT(1A) receptor function in hippocampus and hypothalamus, and presynaptic 5-HT(1B) receptor function in hippocampus and hypothalamus. This represents part of an on-going study of the effects of ECS on serotonergic receptor activity in selected brain areas which may be relevant to the effects of electroconvulsive therapy (ECT) in humans. Chronic ECS reduced the ability of the 5-HT(1A) receptor agonist 8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) (0.2 mg/kg s.c.) to decrease 5-HT levels in hypothalamus as shown by in vivo microdialysis, indicative of a reduction in sensitivity of presynaptic 5-HT(1A) autoreceptors. The ability of the 5-HT(1B) receptor antagonist GR 127935 (5 mg/kg s.c.) to increase 5-HT levels in both hippocampus and hypothalamus was unaffected by chronic ECS. 8-OH-DPAT (0.2 mg/kg s.c.) increased cyclic AMP levels in hippocampus measured by in vivo microdialysis approximately 2-fold. The degree of stimulation of cyclic AMP formation was not altered by chronic ECS. However the cyclic AMP response to forskolin (50 micro M) administered via the microdialysis probe, which was approximately 4-fold of basal in sham-treated rats, was almost completely abolished in ECS-treated rats. Since this indicates that either adenylate cyclase catalytic unit activity or Gs protein activity is reduced in the hippocampus after chronic ECS, the lack of change in 8-OH-DPAT-induced cyclic AMP formation may be taken as possible evidence of an increase in sensitivity of postsynaptic 5-HT(1A) receptors in the hippocampus by chronic ECS. Chronic ECS increased basal plasma levels of corticosterone, ACTH and oxytocin. The ACTH response to s.c. injections of 0.2 mg/kg or 0.5 mg/kg 8-OH-DPAT was reduced by chronic ECS. Postsynaptic 5-HT(1A) receptor activity in the hypothalamus, in contrast to the hippocampus, thus appears to be desensitized after chronic ECS. We conclude that chronic ECS has regionally specific effects on both pre- and post-synaptic 5-HT(1A) receptors, but, in contrast to some antidepressant drugs, does not affect presynaptic 5-HT(1B) receptor activity. 相似文献
12.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT 1A receptor agonist, (+)8-hydroxy-2(di- N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC 50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose–response curve was completely reversed by 5-HT 1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT 1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders. 相似文献
13.
Summary Hypothermic responses to 5-HT 1A receptor activation by the selective ligand ipsapirone (IPS) were attenuated in depressed patients as compared to controls. Chronic treatment with amitriptyline (AMI) further impaired 5-HT 1Amediated hypothermia. The results indicate a subsensitive (presynaptic) 5-HT 1A receptor and/or a defective post-receptor signalling pathway in depression and are consistent with the hypothesis that 5-HT 1A receptors are down-regulted during AMI treatment. 相似文献
14.
The role of serotonin (5-hydroxytryptamine; 5-HT) in the treatment of depressive and anxiety disorders is underscored by the therapeutic action of selective 5-HT reuptake inhibitors acting to enhance the degree of activation of various 5-HT receptor subtypes. The 5-HT1A receptors are particularly relevant to the antidepressant and anxiolytic responses in human beings. They are located presynaptically in the raphe nuclei, where they act as cell body autoreceptors to inhibit the firing rate of 5-HT neurons, and are located postsynaptically in limbic and cortical regions, where they also attenuate firing activity. The azapirones are full agonists at 5-HT1A autoreceptors and are generally, but not exclusively, partial agonists at postsynaptic 5-HT1A receptors. Some of these drugs, including gepirone and other 5-HT1A agonists such as buspirone, have been reported to exert anxiolytic and antidepressive activity in double-blind, placebo-controlled, and comparative trials. Their delayed therapeutic activity is believed to result from increased activation of postsynaptic 5-HT1A receptors occurring only after 5-HT neurons regain their normal firing activity. The recovery of this parameter, which is attributable to 5-HT1A autoreceptor desensitization, also restores 5-HT release. At this point, the summed effects of a normalized level of synaptic 5-HT and the exogenous 5-HT1A agonist can be exerted on postsynaptic 5-HT1A receptors. The widespread recognition of the clinical efficacy of such agents has largely been hampered by their undesirable pharmacokinetic properties. Most 5-HT1A agonists are indeed readily absorbed but are also rapidly eliminated, thereby often producing either suboptimal therapeutic responses at low doses, or cumbersome adverse effects at higher doses. Extended-release formulations allow once-daily dosing regimens, thus avoiding sharp peak plasma concentrations. This improves compliance and permits the use of higher dosages, which may be associated with enhanced efficacy and better tolerability relative to the immediate-release formulations. In sum, 5-HT1A receptor agonism represents a valuable and efficacious therapeutic approach to major depression. 相似文献
15.
Summary (S)-UH-301 [(S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin, 0.5–4.0 mg/kg i.V.] did not significantly alter the firing rate of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN) as a group, although some individual cells were activated whereas others were depressed. However, (S)-UH-301 (2.0mg/kg i.v.) consistently reversed the inhibition of DRN-5-HT cells produced by the selective 5-HT 1A receptor agonist (R)-8-OH-DPAT (0.5 g/kg i.v.) and the dose-response curve for this effect of (R)-8-OH-DPAT was markedly shifted to the right by pretreatment with (S)-UH-301 (1.0mg/kg i.v.). These results support the notion that (S)-UH-301 acts as an antagonist at central 5-HT 1A receptors. 相似文献
16.
The purpose of the present study was to investigate the 5-HT(2C) receptor-mediated effects on the spinal monosynaptic mass reflex activities and also its functional interactions with 5-HT(1A) receptors in anesthetized, acutely spinalized mammalian adult spinal cord in vivo. Intravenous administration of (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) (0.1 mg/kg), an agonist of 5-HT(2A/2C) receptors, significantly increased the excitability of spinal motoneurons as reflected by an increase in the spinal monosynaptic mass reflex amplitude to 150-200% of the control. 5-HT(2A/2C) receptor-induced motoneuron excitability was slow, persistent and long-lasting for more than 2h that was significantly inhibited by 5-HT(2C) receptor specific antagonist SB 242084 administered 10 min prior to DOI. Simultaneous administration of DOI (0.1 mg/kg, i.v.) along with (+/-)-8-hydroxy dipropylaminotetraline hydrobromide (8-OH-DPAT) (0.1 mg/kg, i.v.) completely inhibited DOI-induced spinal monosynaptic mass reflex facilitation. In another separate study, administration of 8-OH-DPAT (0.1 mg/kg, i.v.) at the maximum response of DOI also inhibited the motoneuron's excitability; however, the inhibition lasted only for a period of 40-60 min after administration of 8-OH-DPAT, after which the spinal monosynaptic mass reflex amplitude reached its maximum level. These findings suggest that the 5-HT(2C) receptor is primarily involved in the mediation of the long-lasting excitability of spinal motoneurons and possibly interacts with its functional counterpart, 5-HT(1A) receptors in the mammalian adult spinal cord. 相似文献
17.
Summary The density of 5-HT 1A binding using 3H-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) as binding ligand, was studied in human frontal cortex of suicide victims and normal controls who died due to medical disease or accidentally. There was no difference in the maximum number of binding site (B max) or K d (an inverse measure of affinity) of 5-HT 1A receptor binding sites between normal controls and the entire group of suicide victims. However, nonviolent suicides had significantly higher B max (22—25%) compared to both controls and violent suicides. A negative correlation between age and B max of 5-HT 1A binding sites was found in male controls but not in female controls or suicide victims. This relationship was less apparent among the male controls over age 60. 相似文献
18.
We have studied effects of 5-hydroxytryptamine 1A (5-HT 1A) receptor-selective compounds on the extracellular noradrenaline (NA) level in the hippocampus of rats using microdialysis and on their locomotor activity. A selective 5-HT 1A receptor agonist, flesinoxan (5 mg/kg, i.p.) increased the extracellular NA level in the hippocampus, and increased the locomotor activity. Both responses were blocked by pretreatment with a 5-HT 1A receptor antagonist, WAY100635 (1 mg/kg, i.p.) and an α 2 adrenoceptor agonist, clonidine (50 μg/kg, i.p.). Bilateral intrahippocampal injection of flesinoxan (200 nmol in 2 μl, respectively) increased the locomotor activity of rats and the intrahippocampal perfusion of flesinoxan (1 mM, 2 μl/min) increased the extracellular NA level in the hippocampus. Bilateral intrahippocampal injections of a small amount of WAY100635 (0.1 nmol in 2 μl, respectively) blocked the flesinoxan (5 mg/kg, i.p.)-induced hyperactivity. Flesinoxan (5 mg/kg, i.p.) did not significantly influence the level of serotonin or its major metabolite in the hippocampus, or dopamine or its metabolites in the striatum. In conclusion, these behavioral as well as pharmacological results indicate that postsynaptic 5-HT 1A receptor activation by flesinoxan increase the extracellular NA level in the hippocampus, which may be the cause of the increase of the locomotor activity. 相似文献
19.
BACKGROUND: Acute stress has profound effects on serotonergic activity, but it is not known whether alterations in the serotonin system can predispose individuals to exaggerated stress responses. We examined the regulation of 5-HT(1B) and 5-HT(1A) mRNA in two rodent models of differential sensitivity to stress: congenital learned helplessness (cLH) and handling and maternal separation (HMS). METHODS: 5-HT(1B) and 5-HT(1A) mRNAs in brain tissue sections were quantitated by in situ hybridization from control, stress-sensitive, and stress-resistant male rats in the HMS model and stress-sensitive and stress-resistant rats (both males and females) in the cLH model. Dorsal raphe nucleus, striatum, and hippocampus were examined. RESULTS: The main result was that dorsal raphe 5-HT(1B) mRNA was substantially elevated (63-73%) in male rats in the stress-resistant group of both models compared with stress-sensitive animals. 5-HT(1B) mRNA in female rats did not differ between groups in the cLH model. There were no differences in 5-HT(1A) mRNA between HMS groups. CONCLUSIONS: These findings suggest that 5-HT(1B) autoreceptor regulation is altered in animals with diminished stress reactivity. These results suggest that 5-HT(1B) autoreceptors in unstressed and acutely stressed animals differ, indicating the importance of state versus trait changes in serotonin function in animal models of anxiety and depression. 相似文献
20.
Modification of spinal serotonergic receptors caudal to spinal injury occurs in rats that received spinal cord transections as neonates. Evaluation of the serotonin syndrome, a group of motor stereotypies elicited by serotonergic (5-HT) agents in 5-HT-depleted animals, and open field locomotor behavior were used to assess behavioral consequences of injury and treatment. We extend these findings to show that a partial 5-HT(1A) agonist activity is revealed by the 5-HT(2C) receptor antagonist (SB 206,553) in this animal model, as measured by evaluation of serotonin syndrome behavior. Treadmill stimulation enhances this motor response, caudal to the injury, in the hindlimbs and tail. These results imply a broader modification of serotonergic receptors than previously thought and suggest a potential strategy by which serotonergic agents may enhance functional recovery following neonatal injury. 相似文献
|