首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical coherence tomography (OCT) is an imaging modality that enables assessment of tissue structural characteristics. Studies have indicated that OCT is a useful method to assess both blood vessel morphology and the response of a vessel to a deployed stent. We evaluated the ability of OCT to visualize the cellular lining of a tissue-engineered blood vessel mimic (BVM) and the response of this lining to a bare metal stent. We develop a side-firing endoscope that obtains intraluminal, longitudinal scans within the sterile bioreactor environment, enabling time-serial assessment. Seventeen BVMs are imaged with the endoscopic OCT system. The BVMs are then evaluated via fluorescence microscopy and/or standard histologic techniques. We determine that (1) the OCT endoscope can be repeatedly inserted without visible damage to the BVM cellular lining, (2) OCT provides a precise measure of cellular lining thickness with good correlation to measurements obtained from histological sections, and (3) OCT is capable of monitoring the accumulation of cellular material in response to a metallic stent. Our studies indicate that OCT is a useful technique for monitoring the BVM cellular lining, and that OCT may facilitate the use of BVMs for early stage device assessment.  相似文献   

2.
Coronary stents that are developed for use with balloon angioplasty are known to cause acute occlusion and long-term stenosis. It is likely that a controlled release of drugs at the site of stent implantation might inhibit the proliferation of vascular smooth muscle cells (VSMC) and reduce restenosis. However, if the drug is necrotic and affects cell survival near the implant, it may interrupt the local tissue regeneration. Different methods have been used for the immobilization of drugs with stents to get an effective concentration that inhibits cell proliferation. The objective of this study is to assess the effectiveness of Paclitaxel-loaded stents by immobilization with a biodegradable polymer, to inhibit cell proliferation. The cells used for the evaluation are human umbilical vein endothelial cells (HUVEC) and the proliferation rate of these cells on the drug-coated stent is compared against an uncoated stent for a 72-h period. Evaluations were also made to differentiate between cell apoptosis and necrosis to prove that the drug released is not deleterious to the surrounding tissue.While a similar initial cell adhesion is observed in bare and coated stents, the proliferation of HUVEC is negligible when grown on a drug-coated stent (p < 0.001). By specific staining techniques, the cells on the drug-coated stents are found to be apoptotic and not necrotic, throughout the evaluation period. In vitro leukocyte adhesion and platelet deposition on the drug-coated stents are found to be low when they are exposed to human blood and platelet-rich plasma (PRP), suggesting that the coated stents may not be thrombogenic in vivo. Therefore, drug coating of stents using the described technique may have a considerable promise for the prevention of neointimal proliferation, restenosis, and associated failure of angioplasty.  相似文献   

3.
Lu J  Yao C  Yang L  Webster TJ 《Tissue engineering. Part A》2012,18(13-14):1389-1398
Endothelialization of a vascular stent is a critical step to prevent late stent thrombosis. In this study, electron beam deposition was utilized to create different scales of roughness on titanium stents, including flat features (F-Ti), a mixture of nanometer and submicron features (S-Ti), and nanometer features (N-Ti). The role of stent surface roughness on initial protein adsorption, platelet adhesion, rat aortic endothelial cell adhesion, migration, and nitric acid/endothelin-1 secretion was investigated in vitro. Results revealed the highest endothelial cell attachment on S-Ti after 4?h. Moreover, under flow conditions, the endothelial cell layer remained the most intact on S-Ti. These results were positively correlated with improved vitronectin adsorption on S-Ti. Endothelial cells also showed the fastest migration on S-Ti of all the samples over a 96?h time period. Endothelial cells on S-Ti exhibited the highest nitric acid/endothelin-1 ratio of all the samples, indicating potentially the best antithrombic endothelial cellular phenotype. This study also revealed the lowest platelet adhesion on S-Ti of all the samples. In summary, without using pharmaceutical agents, significantly less platelet and greater endothelial responses on nanometer to submicron rough titanium were observed in this study compared to flat titanium and, thus, nanometer to submicron surface features on titanium should be further studied for vascular stent applications.  相似文献   

4.
5.
This study examined the utility of a stabilized cyclic RGD peptide chemically modified to selectively bind to titanium-oxide for enhanced biocompatibility of self-expanding nitinol stents. Endothelial cells express integrin receptors that promote attachment to subendothelial matrix proteins. Integrin binding to arginine-glycine-aspartic acid (RGD) peptide derivatives mimic naturally occurring adherent interactions. Irreversible covalent surface coating of conventional nitinol stents with a cyclic RGD (cRGD) peptide highly specific for integrin alpha v beta 3 might foster endothelialization after stent implantation. A selective cRGD peptide was irreversibly immobilized onto titanium oxide-rich nitinol coupons or self-expanding stents. Functionality of the engrafted RGD peptide was demonstrated using in vitro endothelial bioassays. A subsequent 7-day in vivo endothelialization study was performed using cRGD-coated self-expanding nitinol stents in rabbits. cRGD peptide coating effectively promoted endothelial cell anchorage, migration, and proliferation confirmed by increased focal adhesions. Proof-of-concept studies of rabbit cRGD stent implants showed a significant increase in endothelial coverage above stent struts relative to stents coated with BSA (cRGD = 70.1 ± 21.9 vs. BSA = 49.9 ± 21.8%, p < 0.03). Immobilization of cRGD peptides on strut surfaces represents an innovative strategy to improve endothelialization, which may facilitate vascular healing after stent implantation.  相似文献   

6.
Hypersensitivity and inflammatory responses to polymers may be responsible for late stent thrombosis after implantation of a drug-eluting stent (DES). Polymer-free DES may reduce the prevalence of these adverse reactions in vessels. We evaluated a polymer-free paclitaxel-eluting-stent with a nanoporous surface (nano-PES) for endothelialization and inhibition of neointimal hyperplasia by optical coherence tomography (OCT) and pathology in a porcine model. Nano-PES with high-dose (HD) and low-dose (LD) paclitaxel (1.0 μg/mm(2) and 0.4 μg/mm(2), respectively) was compared with a sirolimus-eluting stent (SES) and bare-metal stent (BMS) in a porcine model. Fifty-three stents (14 HD, 14 LD, 14 SES, 11 BMS) were implanted in 18 minipigs. At 14 days, nano-PES with HD and LD showed more complete endothelialization compared with SES. BMS had 100% endothelial coverage. At 28 days, a significant reduction in neointimal hyperplasia was detected by OCT in the nano-PES HD group compared with BMS. No benefit in prevention of the neointimal hyperplasia was observed in the nano-PES LD group. Nano-PES stents showed decreased deposition of fibrin and inflammation compared with SES. Pharmacokinetic studies revealed that nano-PES could effectively deliver the drug to the local coronary artery and it released the drug more rapidly than SES. Such a release profile was favorable for rapid endothelialization of nano-PES. The present study showed the nano-PES to be a new drug-delivery technology; that it used a nanoporous stent surface; that it offered desirable drug-elution properties without the use of polymers; that it may translate into an improved safety profile for next-generation DES.  相似文献   

7.
Vascular tissue possesses numerous nanostructured surface features, but most metallic vascular stents proposed to restore blood flow are smooth at the nanoscale. Thus, the objective of the present study was to determine in vitro vascular cell functions on nanostructured titanium (Ti) compared to conventional commercially pure (c.p.) Ti. Results of this study showed for the first time greater competitive adhesion of endothelial versus vascular smooth muscle cells on nanostructured Ti compared to conventional Ti after 4 hours. Moreover, when cultured separately, increased endothelial and vascular smooth muscle cell density was observed on nanostructured Ti compared to conventional c.p. Ti after 1, 3, and 5 days; endothelial cells formed confluent monolayers before vascular smooth muscle cells on nanostructured Ti. Results also showed greater total amounts of collagen and elastin synthesis by vascular cells when cultured on nanostructured Ti. Since a major mode of failure of conventional vascular stents is the overgrowth of smooth muscle cells compared to endothelial cells, these results suggest that while the functions of both types of vascular cells were promoted on nanostructured c.p. Ti, endothelial cell functions (of particular importance, cell density or confluence) were enhanced over that of vascular smooth muscle cells. Thus, the present in vitro study showed that vascular stents composed of nanometer c.p. Ti particles may invoke advantageous cellular responses for improved stent applications.  相似文献   

8.
Shirota T  Yasui H  Shimokawa H  Matsuda T 《Biomaterials》2003,24(13):2295-2302
Rapid re-endothelialization at an atherosclerotic lesion after balloon inflation or stent deployment may be essential for reducing or preventing local thrombus formation and restenosis. In order to prevent these complications via enhanced rapid re-endothelialization, we fabricated two types of endothelial progenitor cell (EPC)-seeded intravascular stent devices. One was a photocured gelatin-coated metallic stent, and the other was a microporous thin segmented polyurethane (SPU) film-covered stent on which photocured gelatin was coated. Both devices were seeded with ex vivo expanded EPCs obtained from canine peripheral blood. Seeded EPCs formed confluent monolayers onto surfaces of both photocured gelatin-coated stent struts and SPU film, and a majority of cells remained on surfaces of stents after stent expansion. The EPC-seeded stent was expanded in a tubular hybrid vascular medial tissue composed of vascular smooth muscle cells and collagen as an arterial media mimic. After 7-day culture, EPCs, which migrated from the stent struts, proliferated and endothelialized the luminal surfaces of the hybrid vascular medial tissue. This in vitro pilot study prior to in vivo experiments suggests that on-stent cell delivery of EPCs may be novel therapeutic devices for re-endothelialization or endothelium lining or paving at an atherosclerotic arterial wall, resulting in the prevention of on-stent thrombus formation and in-stent restenosis, as well as the rapid formation of normal tissue architecture.  相似文献   

9.
In-stent restenosis remains a significant problem associated with bare metal stents. This drawback has prompted research into improving stent design and the development of novel coatings, including drug-eluting stents. A number of drug-eluting stents are currently on the market; however, the success rate of these stents in complex situations has been found to be quite low. Thus, there remains potential for the development of more suitable drug-eluting stents. The aims of this study were to use a thermoresponsive polymer to develop a system to locally deliver vinblastine, an antimitotic agent currently used as an anticancer drug, and in addition, assess the effects of this drug at the gene expression level in vitro. An N-isopropylacrylamide/N-tert-butylacrylamide (NiPAAm/NtBAAm) copolymer solution in the ratio 65:35 was prepared and appropriate volumes of vinblastine were added to generate two final drug concentrations of 22 nanomoles/film or 0.022 nanomoles/film. Stainless steel discs (316) were coated with the copolymer solution or this solution containing drug. Human endothelial cells were cultured on collagen type 1 gels and then incubated with the coated discs for 24 h. Gene expression studies using oligonucleotide microarray analysis and quantitative RT-PCR were then performed. Microarray analysis revealed that vinblastine causes the differential expression of a range of genes involved in a variety of different functions, including cell cycle and apoptosis. The changes in expression of some of these genes culminate in cell cycle arrest and apoptotic pathways.  相似文献   

10.
Inspired by the adhesion strategy of marine mussels, self-polymerization of dopamine under alkaline condition has been proven to be a simple and effective method for surface modification of biomaterials. However, this method still has many drawbacks, such as the use of alkaline aqueous medium, low poly(dopamine) deposition rate, and inefficient utilization of dopamine, which greatly hinder its practical application. In the present study, we demonstrate that electropolymerization of dopamine is a facile and versatile approach to surface tailoring of metallic cardiovascular stents, such as small and complex-shaped coronary stent. Electropolymerization of dopamine leads to the formation of a continuous and smooth electropolymerized poly(dopamine) (ePDA) coating on the substrate surface. This electrochemical method exhibits a higher deposition rate and is more efficient in dopamine utilization compared with the typical self-polymerization method. The ePDA coating facilitates the immobilization of biomolecules onto substrates to engineer biomimetic microenvironments. In vitro and in vivo experiments demonstrate that ePDA coating functionalized with vascular endothelial growth factor can greatly enhance the desired cellular responses of endothelial cells and prevent the neointima formation after stent implantation. The proposed methodology may find applications in the area of metallic surface engineering, especially for the cardiovascular stents and potentially all biomedical devices with electroconductive surface as well.  相似文献   

11.
邬瑾 《中国组织工程研究》2016,20(38):5770-5776
BACKGROUND: Drug-eluting stents have achieved better treatment outcomes, but late stent thrombosis shakes its status. With the development of drug-eluting stents, loaded drugs are the key to reduce stent thrombosis. OBJECTIVE: To analyze the screening and application of drug-eluting stents. METHODS: A computer-based search was performed for literatures published from 2010 to 2016 in databases of PubMed and WanFang using the keywords of “drug eluting stents; rapamycin (sirolimus); paclitaxel; heparin; zotarolimus; everolimus” in English and Chinese, respectively. According to inclusion and exclusion criteria, 30 eligible literatures were included for analysis. RESULTS AND CONCLUISON: An ideal drug-eluting stent can selectively inhibit vascular smooth muscle and is expected to be anti-coagulated, but makes no effects on vascular endothelial cells or promoting the cell proliferation. Most of the loaded drugs are antithrombotic and anti-proliferative drugs, among which, rapamycin-eluting and paclitaxel-eluting stents are extensively used. Regardless of delaying the proliferation of vascular endothelial cells and increasing the thrombosis risk, most of drug-eluting stents are still loaded with these two drugs, and only few stents loaded with rapamycin derivatives, such as everolimus, zotarolimus, tacrolimus and pimecrolimus. Current research focuses on developing a stent with rapid drug releasing and anti-proliferative capacity. Meanwhile, the combination of drugs and biphasic releasing are another novel idea.   相似文献   

12.
Nondegradable synthetic polymer vascular grafts used in cardiovascular surgery have shown serious shortcomings, including thrombosis, calcification, infection, and lack of growth potential. Tissue engineering of vascular grafts with autologous stem cells and biodegradable polymeric materials could solve these problems. The present study is aimed to develop a tissue-engineered vascular graft (TEVG) with functional endothelium using autologous bone marrow-derived cells (BMCs) and a hybrid biodegradable polymer scaffold. Hybrid biodegradable polymer scaffolds were fabricated from poly(lactide-co-epsilon-caprolactone) (PLCL) copolymer reinforced with poly(glycolic acid) (PGA) fibers. Canine bone marrow mononuclear cells were induced in vitro to differentiate into vascular smooth muscle cells and endothelial cells. TEVGs (internal diameter: 10 mm, length: 40 mm) were fabricated by seeding vascular cells differentiated from BMCs onto PGA/PLCL scaffolds and implanted into the abdominal aorta of bone marrow donor dogs (n = 7). Eight weeks after implantation of the TEVGs, the vascular grafts remained patent. Histological and immunohistochemical analyses of the vascular grafts retrieved at 8 weeks revealed the regeneration of endothelium and smooth muscle and the presence of collagen. Western blot analysis showed that endothelial nitric oxide synthase (eNOS) was expressed in TEVGs comparable to native abdominal aortas. This study demonstrates that vascular grafts with significant eNOS activity can be tissue-engineered with autologous BMCs and hybrid biodegradable polymer scaffolds.  相似文献   

13.
Successful construction of a small-diameter bioartificial vascular graft remains a great challenge. This study reports on novel tissue engineering vascular grafts (TEVGs) constructed by endothelial progenitor cells and heparin-coated decellularized vessels (DV). The DVs were fabricated from canine carotid arteries with observable depletion of cellular components. After heparin coating, the scaffolds possessed excellent antithrombogeneity. Canine endothelial progenitor cells harvested from peripheral blood were expanded and seeded onto heparin-coated DVs and cocultured in a custom-made bioreactor to construct TEVGs. Thereafter, the TEVGs were implanted into the carotid arteries of cell-donor dogs. After 3 months of implantation, the luminal surfaces of TEVGs exhibited complete endothelium regeneration, however, only a few disorderly cells and thrombosis overlaid the luminal surfaces of control DVs grafts, and immunofluorescent staining showed that the seeded cells existed in the luminal sides and the medial parts of the explanted TEVGs and partially contributed to the endothelium formation. Specifically, TEVGs exhibited significantly smaller hyperplastic neointima area compared with the DVs, not only at midportion (0.64 ± 0.08 vs. 2.13 ± 0.12 mm(2) , p < 0.001), but also at anastomotic sites (proximal sites, 1.03 ± 0.09 vs. 3.02 ± 0.16 mm(2), p < 0.001; distal sites, 1.84 ± 0.15 vs. 3.35 ± 0.21 mm(2), p < 0.001). Moreover, TEVGs had a significantly higher patency rate than the DVs after 3 months of implantation (19/20 vs. 12/20, p < 0.01). Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and high patency rate.  相似文献   

14.
Recent research has suggested that endothelialization of vascular stents is crucial to reducing the risk of late stent thrombosis. With a resolution of approximately 10 microm, optical coherence tomography (OCT) may be an appropriate imaging modality for visualizing the vascular response to a stent and measuring the percentage of struts covered with an anti-thrombogenic cellular lining. We developed an image analysis program to locate covered and uncovered stent struts in OCT images of tissue-engineered blood vessels. The struts were found by exploiting the highly reflective and shadowing characteristics of the metallic stent material. Coverage was evaluated by comparing the luminal surface with the depth of the strut reflection. Strut coverage calculations were compared to manual assessment of OCT images and epi-fluorescence analysis of the stented grafts. Based on the manual assessment, the strut identification algorithm operated with a sensitivity of 93% and a specificity of 99%. The strut coverage algorithm was 81% sensitive and 96% specific. The present study indicates that the program can automatically determine percent cellular coverage from volumetric OCT datasets of blood vessel mimics. The program could potentially be extended to assessments of stent endothelialization in native stented arteries.  相似文献   

15.
16.
There are some technical difficulties in treating for a broad necked aneurysm and a higher incidence of recurrence. Because of these drawbacks, more innovative techniques for superior endovascular reconstructive treatment are required. We developed a novel covered stent employing electrospinning to deposit fine polyurethane (PU) fibers onto stents. An in vitro water leak test was designed and applied prior to animal testing to estimate the performance of covered stents and to determine the appropriate amount of PU fibers on a stent. Two tenths of a milligram of PU fibers proved to be sufficient to prevent water leakage. Then, the efficacy of the covered stents to that of bare stents was compared using 10 rabbits in which model aneurysms had been formed at the right common carotid artery by the elastase method. Angiographic evaluation on day 1 posttreatment (acute phase) revealed complete occlusion of the aneurysms and the patency of the parent arteries in animals treated with covered stents. At 10 days poststenting (subacute phase), the aneurysm neck was completely covered with neointimal layer as shown by scanning electron microscopic examination. The PU-covered stent holds promise as a device for treating cerebral aneurysms.  相似文献   

17.
Novel polymer-free drug-eluting stents have been developed to reduce polymer-related adverse events. However, neointimal coverage after polymer-free DES implantation is unclear and validation between optical coherence tomography (OCT) and histology is required. Sixteen polymer-free sirolimus-eluting stents were randomly implanted into coronary arteries of 8 normal swine. OCT and histological measurement were conducted at 3 or 6 months after stent placement. For quantitative measures, lumen area, stent area, neointimal area and neointimal thickness were validated in every single OCT and histology matched cross-section. Moreover, for qualitative analysis, OCT signal patterns of neointimal tissue were classified as homogeneous, layered and heterogeneous patterns based on optical intensity and backscatter pattern and peri-strut inflammation was also determined by histology. In total, 70 OCT and histology matched cross-sections were analyzed. At quantitative analysis, good correlations and agreements were found in the measurement of lumen area (ICC = 0.67, P<0.001), neointimal area (ICC = 0.89, P<0.001) and neointimal thickness (ICC = 0.94, P<0.001) except for stent area (ICC 0.19, P = 0.13) between OCT and histology. At qualitative analysis, lymphocyte infiltrations of peri-strut were more frequently seen in heterogeneous sections than in homogeneous sections (10/14 sections, 71.4% vs. 12/50 sections, 24%; P = 0.003). In conclusion, OCT has proper correlation and agreement with histology in assessment of neointimal formation and heterogeneous neointima assessed by OCT may also be associated with peri-strut inflammation detected in histology after polymer-free sirolimus-eluting stents implantation, supporting the use of OCT to evaluate neointimal coverage after polymer-free stent implantation in clinical practice.  相似文献   

18.
Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (~4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of in vitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may contribute to safety-criteria as to first-in-man clinical-trials.  相似文献   

19.
In this study, to improve the attachment, growth and adhesion of endothelial cells (ECs) and thus accelerate the re-endothelialization of stents, a synthesized mussel adhesive polypeptide mimics containing dihydroxyphenylalanine and l-lysine (MAPDL) was immobilized onto 316L stainless steel (316LSS) with polyethylene glycol (PEG) molecule as spacer arm by using cold plasma-induced grafting technique. To immobilize MAPDL effectively, ethylene vinyl acetate (EVA) was first coated onto 316LSS. Different molecular weights of PEG and grafting times were tested to obtain the optimal cell bioactivity. XPS and water contact angles measurement indicated the successful immobilization of MAPDL. In vitro cell culture results showed that compared with the control of 316LSS, the attachment, adhesion and growth of cells on the MAPDL-coated EVA surface, in particular with PEG as spacer arm, were significantly enhanced, and a confluent endothelial cells layer was formed after a 2-day culture. A platelet adhesion experiment revealed that the platelet adhesion was also reduced on the MAPDL-coated EVA surface. The in vitro inflammatory assessment showed that the MAPDL coating inhibited the TNF-α and IL-1β release from monocyte cells, indicative of good anti-inflammation property. Therefore, it is concluded that the MAPDL coating developed here appeared to be a promising strategy for rapid re-endothelialization of intravascular stent devices.  相似文献   

20.
《Acta biomaterialia》2014,10(2):688-700
Despite the development of new coronary stent technologies, in-stent restenosis and stent thrombosis are still clinically relevant. Interactions of blood and tissue cells with the implanted material may represent an important cause of these side effects. We hypothesize material-dependent interaction of blood and tissue cells. The aim of this study is accordingly to investigate the impact of vascular endothelial cells, smooth muscle cells and platelets with various biodegradable polymers to identify a stent coating or platform material that demonstrates excellent endothelial-cell-supportive and non-thrombogenic properties. Human umbilical venous endothelial cells, human coronary arterial endothelial cells and human coronary arterial smooth muscle cells were cultivated on the surfaces of two established biostable polymers used for drug-eluting stents, namely poly(ethylene-co-vinylacetate) (PEVA) and poly(butyl methacrylate) (PBMA). We compared these polymers to new biodegradable polyesters poly(l-lactide) (PLLA), poly(3-hydroxybutyrate) (P(3HB)), poly(4-hydroxybutyrate) (P(4HB)) and a polymeric blend of PLLA/P(4HB) in a ratio of 78/22% (w/w). Biocompatibility tests were performed under static and dynamic conditions. Measurement of cell proliferation, viability, glycocalix width, eNOS and PECAM-1 mRNA expression revealed strong material dependency among the six polymer samples investigated. Only the polymeric blend of PLLA/P(4HB) achieved excellent endothelial markers of biocompatibility. Data show that PLLA and P(4HB) tend to a more thrombotic response, whereas the polymer blend is characterized by a lower thrombotic potential. These data demonstrate material-dependent endothelialization, smooth muscle cell growth and thrombogenicity. Although polymers such as PEVA and PBMA are already commonly used for vascular implants, they did not sufficiently meet the criteria for biocompatibility. The investigated biodegradable polymeric blend PLLA/P(4HB) evidently represents a promising material for vascular stents and stent coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号