首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs.

Methods

We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun NH2-terminal kinases (JNKs) and β-actin as the control group.

Results

Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, 1 µM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and 1 µM, p<0.05).

Conclusion

Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations.  相似文献   

2.
Objective Formaldehyde at high concentrations is a contributor to air pollution.It is also an endogenous metabolic product in cells,and when beyond physiological concentrations,has pathological effects on neurons.Formaldehyde induces mis-folding and aggregation of neuronal tau protein,hippocampal neuronal apoptosis,cognitive impairment and loss of memory functions,as well as excitation of peripheral nociceptive neurons in cancer pain models.Intracellular calcium([Ca2+]i) is an important intracellular messenger,and plays a key role in many pathological processes.The present study aimed to investigate the effect of formaldehyde on[Ca2+]i and the possible involvement of N-methyl-Z)-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.Methods Using primary cultured hippocampal neurons as a model,changes of[Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.Results Formaldehyde at 1 mmol/L approximately doubled[Ca2+]i.(2R)-amino-5-phosphonopentanoate (AP5,25μmol/L,an NMDAR antagonist) and mibefradil(MIB,1 umol/L,a T-type Ca2+channel blocker),given 5 min after formaldehyde perfusion,each partly inhibited the formaldehyde-induced increase of[Ca2+]i,and this inhibitory effect was reinforced by combined application of AP5 and MIB.When applied 3 min before formaldehyde perfusion,AP5 (even at 50μmol/L) did not inhibit the formaldehyde-induced increase of[Ca2+]i but MIB(1 umol/L) significantly inhibited this increase by 70%.Conclusion These results suggest that formaldehyde at a low concentration increases[Ca2+]i in cultured hippocampal neurons;NMDARs and T-type Ca2+ channels may be involved in this process.  相似文献   

3.
Objective To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. Methods HEK293 APPsw cells were cultured with different concentrations of glucose for different times. TheAβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. Results With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. Conclusion High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.  相似文献   

4.
Objective To determine whether sulforaphane (SFN) protects neurons against injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R) and, if so, to investigate the possible mechanisms. Methods Primary cultures of neurons were prepared from the cerebral cortex of 1-day-old Sprague-Dawley rats. On days 5-6 in vitro, the neurons were exposed to OGD for 1 h, followed by reoxygenation for 24 h. Cells were treated with 0, 0.1, 0.2, 0.5, 1, 2.5, or 5 μmol/L SFN, with or without 10 μmol/L LY294002, a PI3K-specific inhibitor, during OGD/R (a total of 25 h). After 24-h reoxygenation, MTT was used to assess viability and injury was assessed by Hoechst 33258/propidium iodide (PI) staining; immunofluorescence staining and Western blot were performed to detect molecular events associated with apoptosis. Results The MTT assay showed that 1 μmol/L SFN significantly increased viability, and Hoechst 33258/PI staining showed that the numbers of injured neurons were reduced significantly in the SFN group. Furthermore, immunofluorescence staining and Western blot showed that SFN increased Bcl-2 and decreased cleaved caspase-3 levels. Moreover, LY294002 inhibited the phosphorylated-Akt expression evoked by SFN, decreased Bcl-2 expression and increased cleaved caspase-3 expression. Conclusion SFN protects neurons against injury from OGD/R and this effect may be partly associated with an anti-apoptosis pathway.  相似文献   

5.

Background and Purpose

Recent studies have demonstrated that resveratrol (RSV) reduces the incidence of age-related macular degeneration, Alzheimer''s disease (AD), and stroke, while melatonin (MEL) supplementation reduces the progression of the cognitive impairment in AD patients. The purpose of this investigation was to assess whether the co-administration of MEL and RSV exerts synergistic effects on their neuroprotective properties against β-amyloid (Aβ)-induced neuronal death.

Methods

The neuroprotective effects of co-treatment with MEL and RSV on Aβ1-42-induced cell death, was measured by MTT reduction assay. Aβ1-42 caused an increase in intracellular levels of reactive oxygen species (ROS), as assessed by H2-DCF-DA dye, and a reduction of total glutathione (GSH) levels and mitochondrial membrane potential, as assessed using monochlorobimane and rhodamine 123 fluorescence, respectively. Western blotting was used to investigate the intracellular signaling mechanism involved in these synergic effects.

Results

We treated a murine HT22 hippocampal cell line with MEL or RSV alone or with both simultaneously. MEL and RSV alone significantly attenuated ROS production, mitochondrial membrane-potential disruption and the neurotoxicity induced by Aβ1-42. They also restored the Aβ1-42-induced depletion of GSH, back to within its normal range and prevented the Aβ1-42-induced activation of glycogen synthase kinase 3β (GSK3β). However, co-treatment with MEL and RSV did not exert any significant synergistic effects on either the recovery of the Aβ1-42-induced depletion of GSH or on the inhibition of Aβ1-42-induced GSK3β activation. Aβ1-42 treatment increased AMP-activated protein kinase (AMPK) activity, which is associated with subsequent neuronal death. We demonstrated that MEL and RSV treatment inhibited the phosphorylation of AMPK.

Conclusions

Together, our results suggest that co-administration of MEL and RSV acts as an effective treatment for AD by attenuating Aβ1-42-induced oxidative stress and the AMPK-dependent pathway.  相似文献   

6.
Objective Neuronal loss in the central nervous system is central to the occurrence of neurodegenerative diseases. Pharmaceutical companies have devoted much effort to developing new drugs against such diseases, since there are currently no effective drugs for neurodegenerative disease treatment. Promoting the capacity for nerve regeneration is an ideal treatment target. The present study aimed to investigate the neurotrophic effects of 7,8-dihydroxycoumarin (DHC) or daphnetin in primary cultured rat cortical neurons. Methods Cortical neurons were identified by microtubule-associated protein 2 (MAP2) immunostaining. Morphological observation was used to measure the average length of neurite outgrowth. MTT and lactate dehydrogenase assays were used to assess neuronal survival. The mRNA expression of MAP2 and brain-derived neurotrophic factor (BDNF) was measured by RT-PCR. Results MAP2 immunostaining showed that most of the cultured cells were neurons. Compared with the vehicle control group, DHC promoted neurite outgrowth and prolonged neuronal survival time at concentrations ranging from 2 to 8 μmol/L. Expression of both BDNF mRNA and MAP2 mRNAwas increased in the groups treated with 2, 4 and 8 μmol/L DHC. Conclusion DHC significantly increases neurite outgrowth and promotes neuronal survival in primary cultured rat cortical neurons. The neurotrophic effects of DHC are probably associated with increased BDNF expression.  相似文献   

7.

Background

The membrane permeability transition of mitochondria has been suggested to be involved in toxic and oxidative forms of cell injury. Mitochondrial dysfunction is considered to play a critical role in neurodegeneration in Parkinson''s disease. Despite the suggestion that indole β-carbolines may be neurotoxic, these compounds provide a protective effect against cytotoxicity of other neurotoxins. In addition, the effect of indole β-carbolines on change in the mitochondrial membrane permeability due to reactive nitrogen species (RNS), which may lead to cell death, has not been clarified.

Methods

Differentiated PC12 cells were used as the experimental culture model for the investigation of neuronal cell injury, which occurs in Parkinson''s disease. The effect of indole β-carbolines (harmalol and harmine) on differentiated PC12 cells against toxicity of S-nitroso-N-acetyl-DL-penicillamine (SNAP) was determined by measuring the effect on the change in transmembrane potential, cytochrome c release, formation of ROS, GSH contents, caspase-3 activity and cell viability, and was compared to that of R-(-)-deprenyl.

Results

Specific inhibitors of caspases (z-LEHD.fmk, z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell death in PC12 cells due to SNAP. β-Carbolines and R-(-)-deprenyl attenuated the SNAP-induced cell death and GSH depletion concentration dependently with a maximal inhibitory effect at 25-50 µM. The compounds inhibited the nuclear damage, decrease in mitochondrial transmembrane potential, cytochrome c release and formation of reactive oxygen species caused by SNAP in PC12 cells. β-Carbolines and R-(-)-deprenyl attenuated the H2O2-induced cell death and depletion of GSH.

Conclusions

The results suggest that indole β-carbolines attenuate the SNAP-induced viability loss in PC12 cells by inhibition of change in the mitochondrial membrane permeability, which may be caused by free radicals. Indole β-carbolines appear to exert a protective effect against the nitrogen species-mediated neuronal cell injury in Parkinson''s disease comparable to R-(-)-deprenyl.  相似文献   

8.

Objective

Glycogen synthase kinase-3β (GSK-3β) has become recognized as a broadly influential enzyme affecting diverse range of biological functions, including gene expression, cellular architecture, and apoptosis. The results of previous studies suggest that GSK-3β activity may be increased in the brain of patients with major depressive disorders (MDD). A recent animal study reported increased GSK-3β messenger ribonucleic acid (mRNA) level in the hippocampus of those with depression. However, few studies have investigated GSK-3β activity in the brain of patients with MDD.

Methods

In order to test whether patients with MDD have an increase in GSK-3β activity in the brain compared to normal controls, we explored GSK-3β expression level in all brain regions by using the Stanley Neuropathology Consortium Integrative Database (SNCID), which is a web-based method of integrating the Stanley Medical Research Institute data sets.

Results

The level of GSK-3β mRNA expression in the hippocampus was significantly increased in the MDD group (n=8) compared with the control group (n=12, p<0.05). Spearman''s test also reveals that GSK-3β mRNA expression levels were significantly correlated with nitric oxide synthase 1 (NOS1)(ρ=0.70, p<0.0001) and stathmin-like 3 (STMN3)(ρ=0.70, p<0.0001) in the hippocampus.

Conclusion

Our results correspond with the results of previous animal studies that reported increased GSK-3β activity in the hippocampus of those with depression. Our findings also suggest that oxidative stress-induced neuronal cell death and abnormal synaptic plasticity in the hippocampus may play important roles in the pathophysiology of major depression.  相似文献   

9.

Objective

The purpose of this study is to investigate serial changes of hypoxia-inducible factor 1α (HIF-1α), as a key regulator of hypoxic ischemia, and apoptosis of hippocampus induced by bilateral carotid arteries occlusion (BCAO) in rats.

Methods

Adult male Wistar rats were subjected to the permanent BCAO. The time points studied were 1, 2, 4, 8, and 12 weeks after occlusions, with n=6 animals subjected to BCAO, and n=2 to sham operation at each time point, and brains were fixed by intracardiac perfusion fixation with 4% neutral-buffered praraformaldehyde for brain section preparation. Immunohistochemistry (IHC), western blot and terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to evaluate HIF-1α expression and apoptosis.

Results

In IHC and western blot, HIF-1α levels were found to reach the peak at the 2nd week in the hippocampus, while apoptotic neurons, in TUNEL assay, were maximal at the 4th week in the hippocampus, especially in the cornu ammonis 1 (CA1) region. HIF-1α levels and apoptosis were found to fluctuate during the time course.

Conclusion

This study showed that BCAO induces acute ischemic responses for about 4 weeks then chronic ischemia in the hippocampus. These in vivo data are the first to show the temporal sequence of apoptosis and HIF-1α expression.  相似文献   

10.
Objective Glycine acts as a co-agonist for the activation of N-methyl-D-aspartate receptors (NMDARs) by binding to glycine sites, thus potentiating glutamate-elicited responses and inhibiting NMDAR desensitization in a dose-dependent manner. The present study aimed to characterize the glycine-dependent inactivation of NMDARs and to explore its pathophysiological significance. Methods Primary hippocampal cell cultures from embryonic days 17-18 rats were treated with NMDA or NMDA plus glycine. Patch-clamp recording and intracellular Ca 2+ imaging were performed to test the effects of glycine on NMDA-activated currents and increase of intracellular free Ca 2+ respectively. Immunofluorescence staining was conducted to examine NR1 internalization. Cell damage was tested with MTT method and lactate dehydrogenase leakage. Results Glycine reduced the peak current and Ca 2+ influx elicited by NMDA application at concentrations ≥300 μmol/L. This is a novel suppressive influence of glycine on NMDAR function, since it occurs via the NMDAR glycine-binding site, in contrast to the classic suppression, which occurs through the binding of glycine to glycine receptors. The level of membrane NMDARs was measured to evaluate whether internalization was involved. Immunohistochemical labeling showed that incubation with high concentrations of NMDA plus glycine did not change the expression of NMDARs on the cell surface when compared to the expression without glycine; hence the possibility of NMDAR internalization primed by glycine binding was excluded. Conclusion In summary, the novel suppressive effect of glycine on NMDARs was mediated via binding to the glycine site of the NMDAR and not by activation of the strychnine-sensitive glycine-receptor-gated chloride channel or by the internalization of NMDARs. The inhibitory influence of glycine on NMDARs adds a new insight to our knowledge of the complexity of synaptic transmission.  相似文献   

11.

Background and Purpose

The detection of α-synuclein in the body fluids of patients with synucleinopathy has yielded promising but inconclusive results, in part because of conformational changes of α-synuclein in response to environmental conditions. The aim of this study was to determine the feasibility of using α-synuclein as a biological marker for Parkinson''s disease (PD).

Methods

Twenty-three drug-naïve patients with PD (age 62.4±12.7 years, mean±SD; 11 males) and 29 age- and sex-matched neurologic control subjects (age 60.1±16.2 years; 16 males) were recruited. The levels of oligomeric and total α-synuclein in the cerebrospinal fluid (CSF) and plasma were measured using two simultaneous enzyme-linked immunosorbent assays.

Results

The level of α-synuclein oligomer in the CSF of PD patients was significantly higher in PD patients than in neurological controls, but other findings (plasma α-synuclein oligomer and total α-synuclein in CSF and plasma) did not differ significantly between the two groups. When the control subjects were divided into a symptomatic control group (11 patients who complained of parkinsonian symptoms and were diagnosed with hydrocephalus and drug-induced or vascular parkinsonism) and a neurologic control group (10 normal subjects and 8 patients with diabetic ophthalmoplegia), the level of α-synuclein oligomer in the CSF was still significantly higher in PD patients than in both of the control subgroups.

Conclusions

These findings provide further evidence for a pathogenic role of the α-synuclein oligomer and suggest that CSF levels of α-synuclein oligomer can be a reliable marker for PD.  相似文献   

12.
Objective To evaluate the frequency, distribution and clinical significance of the antibodies to the fetal and/or adult acetylcholine receptor (AChR) in patients with myasthenia gravis (MG). Methods AChR antibodies were detected by cell-based assay in the serum of ocular MG (OMG) (n = 90) and generalized MG (GMG) patients (n = 110). The fetal-type (2α: β: γ: δ) and adult-type (2α: β: ε: δ) AChR were used as antigens, and their relevance to disease presentation was assessed. Results The overall frequencies of anti-adult and anti-fetal AChR antibodies were similar in all 200 patients examined, with 14 having serum specific to the AChR-γ subunit, and 22 to the AChR-ε subunit. The overall sensitivity when using the fetal and adult AChR antibodies was higher than that when using the fetal AChR antibody only (P = 0.015). Compared with OMG patients, the mean age at disease onset and the positive ratio of antibodies to both isoforms of the AChR were significantly higher in patients who subsequently progressed to GMG. Older patients and patients with both anti-fetal and anti-adult AChR antibodies had a greater risk for developing generalized disease [odds ratio (OR), 1.03; 95% confidence interval (CI), 1.01-1.06 and OR, 5.09; 95% CI, 2.23-11.62]. Conclusion Using both fetal-and adult-type AChRs as the antigens may be more sensitive than using either subtype. Patients with serum specific to both isoforms are at a greater risk of progressing to GMG. Patients with disease onset at an advanced age appear to have a higher frequency of GMG conversion.  相似文献   

13.

Background

Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance.

Methods

We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-back working memory tasks as well as oddball detection and passive fixation tasks.

Results

We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory–related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls.

Limitations

Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out.

Conclusion

The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.  相似文献   

14.
Objective To model glucocorticoid-induced cognitive impairment and evaluate the neuroprotection by schi-zandrin (Sch) against dexamethasone (Dex)-induced neurotoxicity in vivo and in vitro. Methods Cerebral cortical cells from neonatal Sprague-Dawley rats (within 24 hours after birth) were cultured for 9 days, and then treated with Dex (10 -4 , 10 -5 , 10 -6 or 10 -7 mol/L) for 24 h or pretreated with 10 -4 mol/L Dex for 24 h followed by 10, 20, 40, or 80 μmol/L Schfor 48 h. Cell viability was assessed using the MTT assay. Immunofluorescence and real-time PCR for MAP2 were performed to confirm the effects of Dex on neurite outgrowth. In vivo, kunming mice were randomly divided into six groups: control [(intragastric (i.g.) vehicle for 42 days]; Dex group I (5 mg/kg·d -1 Dex i.g. treatment for 28 days followed by i.g. vehicle for 14 days); Dex group II (Dex i.g. for 42 days); Dex + Sch (Dex i.g. for 28 days followed by 5, 15, or 45 mg/kg·d -1 Sch i.g. for 14 days). Learning and memory were assessed by Morris water maze test. Histological examination was used to assess pathology and apoptosis in neurons. Results Compared to the Dex groups, Sch increased cell viability in a dose-dependent manner, improved performance in the Morris water maze and ameliorated the morphological changes. Conclusion Sch has neuroprotective effects against insults induced by glucocorticoid.  相似文献   

15.

Objective

The present study explored the three-dimensional spatial arrangements of the neurons and glial cells within the medial prefrontal cortex (mPFC) of rats.

Methods

It evaluated the arrangement for differences after stress with or without treatment with curcumin and sertraline using second-order stereology. Orientator method was applied to obtain isotropic uniform random sections of mPFC. The pair correlation g(r) and cross-correlation functions were estimated by counting dipole probes superimposed on histological sections of mPFC.

Results

The mean total volume of neurons and glial cells was 0.80 (0.05) and 0.40 (0.07), respectively in the control group. The corresponding values decreased by 50% in the stressed group. The curve of g(r) for the neurons and glial cells showed a wider gap between the stressed rats'' mPFC. Theses indicate a negative correlation (repulsion) between the neurons and glial cells in the stressed rats. Evaluation of the cross-correlation function of the neurons and glial cells also showed a negative correlation in the stressed group. The estimated values of the global degree of order in the spatial point pattern for neurons and glial cells were 0.62 and 0.20 in control and stressed animals, respectively. Curcumin and sertraline protected the spatial arrangements of the cells after stress induction in rats. In addition, the volume of the neurons and glial cells remained unchanged after stress.

Conclusion

Dissociation of the neurons and glial cells can is seen at some places in the stressed rats'' cortex. However, the spatial arrangement of the cells was remained unchanged in curcumin+stress and sertraline+stress rats.  相似文献   

16.

Background

Reduced hippocampal volume and increased prevalence of subcortical white matter lesions are associated with both recurrent early onset depression (EOD) and late onset depression (LOD). It is not clear whether these two factors differentially affect the age of onset of first depression. Therefore, we wished to investigate the relationship between age of first depression onset and hippocampal volume, with adjustment for subcortical white matter lesions.

Methods

MRI brain scans were used to compare hippocampal volumes and white matter lesions between age matched female patients (>60 years) with recurrent EOD and LOD and healthy controls.

Results

When comparing the three groups and adjusting for age, the Mini‐Mental State Examination score, total brain volume and total hippocampal volume were significantly smaller in patients with EOD compared with controls (5.6 vs 6.1 ml; p = 0.04). The prevalence of larger subcortical white matter lesions was higher in patients with LOD compared with patients with EOD (47% vs 8%; p = 0.002). Patients with LOD did not differ in hippocampal volume from patients with EOD or from controls.

Conclusions

In late life depression, age of first depression onset may distinguish between different independent neuropathological mechanisms. A small hippocampus volume may be a neuranatomical marker of EOD depression and larger subcortical white matter lesions could be an intermediate between cerebrovascular disease and LOD.Reduced hippocampal volume in late life depression (depression in those aged ⩾60 years) is associated with a chronic intermittent illness course.1,2,3,4 Accordingly, older patients with recurrent early onset depression (EOD, first onset of depression before 60 years) would therefore have smaller hippocampal volumes compared with patients with late onset depression (LOD, first onset of depression at age 60 years or after) because of the longer duration of the disease. However, two recent studies showed smaller hippocampal volumes in patients with LOD compared with those with EOD.5,6The latter observation could have been confounded by the increased prevalence of subcortical white matter lesions among patients with LOD7,8,9 as these lesions may be related to hippocampal atrophy.10,11,12 Therefore, in the current study we wished to investigate the relationship between age of onset of depression and hippocampal volume, with adjustment for subcortical white matter lesions, in elderly (⩾60 years) patients with chronic recurrent EOD and patients with LOD.  相似文献   

17.

Objective

The interaction between MK-801, a model of psychosis and KCl-induced depolarization or electroconvulsive shock (ECS), a therapeutic model of electroconvulsive therapy (ECT), was investigated in SH-SY5Y cells and the rat frontal cortex.

Methods

SH-SY5Y cells were pretreated with 1 µM MK-801 for 15 min, followed by cotreatment with 100 mM KCl for 5 min. MK-801 was reintroduced after the KCl was washed out, and the samples were incubated before harvesting. For the experiments in rats, male Sprague-Dawley rats were treated with MK-801 followed by ECS. Immunoblot analyses of glycogen synthase kinase 3β (GSK3β) (Ser9), AKT (Ser473) and extracellular legulated kinase (ERK)1/2 in SH-SY5Y cells and the rat frontal cortex were performed.

Results

KCl-induced neuronal depolarization resulted in the transient dephosphorylation of AKT (Ser473) and GSK3β (Ser9), followed by increased phosphorylation of the enzymes in SH-SY5Y cells. Cotreatment with MK-801 and KCl inhibited the initial dephosphorylation of AKT and GSK3β produced by KCl-induced neuronal depolarization. Similarly, ECS resulted in the transient dephosphorylation of AKT (Ser473) and GSK3β (Ser9), whereas cotreatment with MK-801 inhibited the initial dephosphorylation of AKT (Ser473) and GSK3β (Ser9) produced by ECS in the rat frontal cortex. No significant interaction was observed between MK-801 and KCl in the dephosphorylation of ERK1/2.

Conclusion

These results suggest that an antagonistic interplay between MK-801 and neuronal depolarization by KCl or ECS is involved the regulation of AKT (Ser473) and GSK3β (Ser9) phosphorylation.  相似文献   

18.

Objective

The purpose of the present study was 1) to identify factors that may influence academic stress in medical students and 2) to investigate the causal relationships among these variables with path analysis.

Methods

One hundred sixty medical students participated in the present study. Psychological parameters were assessed with the Medical Stress Scale, Minnesota Multiphasic Personality Inventory, Hamilton Depression Scale, Beck Depression Inventory, and Academic Motivation Scale. Linear regression and path analysis were used to examine the relationships among variables.

Results

Significant correlations were noted between several factors and Medical Stress scores. Specifically, Hamilton Depression Scale scores (β=0.26, p=0.03) and amotivation (β=0.20, p=0.01) and extrinsically identified regulation (β=0.27, p<0.01) response categories on the Academic Motivation Scale had independent and significant influences on Medical Stress Scale scores. A path analysis model indicated that stress, motivation, and academic performance formed a triangular feedback loop. Moreover, depression was associated with both stress and motivation, and personality was associated with motivation.

Conclusion

The triangular feedback-loop structure in the present study indicated that actions that promote motivation benefit from interventions against stress and depression. Moreover, stress management increases motivation in students. Therefore, strategies designed to reduce academic pressures in medical students should consider these factors. Additional studies should focus on the relationship between motivation and depression.  相似文献   

19.
Objective The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP). Methods At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi- Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls. Results 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control. Conclusion Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.  相似文献   

20.

Objective

The Penn Alcohol Craving Scale (PACS) is a stronger predictor of subsequent drinking and relapse of alcohol dependence that can be administered more quickly and easily than other craving scales. The goal of this study was to develop the Korean version of the Penn Alcohol Craving Scale (PACS-K).

Methods

To examine the psychometric properties of the PACS-K, responses were chosen from 80 patients admitted to a treatment facility for alcohol dependence.

Results

The PACS-K possesses good psychometric properties, as assessed by Cronbach''s α estimates (Cronbach''s α=0.91). The test-retest reliability of the PACS-K showed high correlation (p<0.01) when the retest interval was 1 day. When the validity of the PACS-K was investigated using correlation analysis with two other craving scales (the Obsessive Compulsive Drinking Scale (OCDS) and the Visual Analogue Scale (VAS), high correlations were obtained between total PACS scores and total OCDS scores, and between total PACS scores and VAS scores (p<0.01, respectively).

Conclusion

The PACS-K is a reliable and valid measure of alcohol cravings, and it could be useful for predicting which individuals are at risk for subsequent relapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号