首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 24-member claudin protein family plays a key role in maintaining the normal structure and function of epithelial tight junctions. Previous studies with fibroblast transfectants and naturally sensitive Caco-2 cells have also implicated certain claudins (e.g., Claudin-4) as receptors for Clostridium perfringens enterotoxin (CPE). The present study first provided evidence that the second extracellular loop (ECL-2) of claudins is specifically important for mediating the host cell binding and cytotoxicity of native CPE. Rat fibroblast transfectants expressing a Claudin-4 chimera, where the natural ECL-2 was replaced by ECL-2 from Claudin-2, exhibited no CPE-induced cytotoxicity. Conversely, CPE bound to, and killed, CPE-treated transfectants expressing a Claudin-2 chimera with a substituted ECL-2 from Claudin-4. Site-directed mutagenesis was then used to alter an ECL-2 residue that invariably aligns as N in claudins known to bind native CPE but as D or S in claudins that cannot bind CPE. Transfectants expressing a Claudin-4N149D mutant lost the ability to bind or respond to CPE, while transfectants expressing a Claudin-1 mutant with the corresponding ECL-2 residue changed from D to N acquired CPE binding and sensitivity. Identifying carriage of this N residue in ECL-2 as being important for native CPE binding helps to explain why only certain claudins can serve as CPE receptors. Finally, preincubating CPE with soluble recombinant Claudin-4, or Claudin-4 fragments containing ECL-2 specifically blocked the cytotoxicity on Caco-2 cells. This result opens the possibility of using receptor claudins as therapeutic decoys to ameliorate CPE-mediated intestinal disease.Clostridium perfringens enterotoxin (CPE) causes the intestinal symptoms of C. perfringens type A food poisoning, the second most commonly identified bacterial food-borne illness (21), and also contributes to many cases of antibiotic-associated diarrhea (21). CPE applications are also emerging, including (i) use of this toxin as a potential anticancer agent, based upon cancer cells often overexpressing CPE receptors and thus exhibiting strong CPE sensitivity (16, 17, 25, 30) and (ii) use of noncytotoxic, but binding-capable, C-terminal CPE fragments to increase drug delivery (8, 11, 18, 38).The first step in CPE action involves binding of this toxin to host cell receptors; however, CPE binding to these receptors is insufficient to trigger cytotoxicity (22, 40). Instead, the toxin-receptor complex must oligomerize on the enterocyte plasma membrane surface to form an ∼450-kDa prepore named CH-1 (29). CH-1 then inserts into the plasma membrane, producing an active pore that allows a Ca2+ influx to trigger apoptotic or oncotic cell death pathways (4, 5). Dying CPE-treated cells develop morphological damage, which facilitates formation of an ∼600-kDa CPE complex named CH-2 that may contribute to tight junction disruption (29, 33).Increasing evidence implicates certain members of the claudin tight-junction protein family as functional receptors for CPE binding to host cells. First, expression cloning approaches showed that mouse fibroblasts, which are naturally CPE insensitive and produce no claudins, acquire the ability to bind and respond to native CPE when transfected to express Claudin-3 or -4 (9, 13, 14, 36). Similarly, fibroblast transfectants expressing Claudin-6, -7, -8, or -14 also exhibited CPE binding ability (9). However, not all claudins are CPE receptors, since fibroblast transfectants expressing Claudin-1, -2, or -5 did not bind CPE (9). Additional evidence for certain claudins functioning as CPE receptors was provided by coimmunoprecipitation studies showing that enterotoxin interacts with Claudin-3 and -4 prior to CH-1 formation in naturally CPE-sensitive, enterocytelike Caco-2 cells (29).A claudin structure is not yet available, but hydropathy plots predict these 20- to 27-kDa proteins contain a short cytoplasmic N-terminal domain, four transmembrane domains, two extracellular loops (ECLs), and a cytoplasmic C-terminal tail (39). The first predicted ECL (ECL-1) of claudins consists of ∼52 amino acids, while the second predicted ECL (ECL-2) is smaller, containing 16 to 35 amino acids (27). The C-terminal tail, the most variable region among different claudins, can trigger cell signaling events via its PDZ binding motif, although such signaling is not required for CPE action (29).Fujita et al. (9) began mapping the Claudin-3 region involved in CPE binding. They showed that fibroblast transfectants acquire CPE sensitivity when expressing a chimeric claudin where the N-terminal half of Claudin-1 is fused with the C-terminal half of Claudin-3. However, CPE did not affect transfectants expressing a claudin chimera with the N-terminal half of Claudin-3 fused to the C-terminal half of Claudin-1. The presence of a CPE binding region in the C-terminal half of Claudin-3 received further support from in vitro overlay blot results showing CPE binding to an ECL-2-containing fusion protein (9).Since our primary interest concerns elucidating CPE-induced cytotoxicity during intestinal disease, the current study sought to investigate (i) why some, but not all, claudins can bind and mediate native CPE cytotoxicity and (ii) whether claudin-based receptor decoys might be useful as therapeutics to block CPE-induced cytotoxicity.  相似文献   

2.
Clostridium perfringens type C isolates cause fatal, segmental necro-hemorrhagic enteritis in animals and humans. Typically, acute intestinal lesions result from extensive mucosal necrosis and hemorrhage in the proximal jejunum. These lesions are frequently accompanied by microvascular thrombosis in affected intestinal segments. In previous studies we demonstrated that there is endothelial localization of C. perfringens type C β-toxin (CPB) in acute lesions of necrotizing enteritis. This led us to hypothesize that CPB contributes to vascular necrosis by directly damaging endothelial cells. By performing additional immunohistochemical studies using spontaneously diseased piglets, we confirmed that CPB binds to the endothelial lining of vessels showing early signs of thrombosis. To investigate whether CPB can disrupt the endothelium, we exposed primary porcine aortic endothelial cells to C. perfringens type C culture supernatants and recombinant CPB. Both treatments rapidly induced disruption of the actin cytoskeleton, cell border retraction, and cell shrinkage, leading to destruction of the endothelial monolayer in vitro. These effects were followed by cell death. Cytopathic and cytotoxic effects were inhibited by neutralization of CPB. Taken together, our results suggest that CPB-induced disruption of endothelial cells may contribute to the pathogenesis of C. perfringens type C enteritis.The anaerobic, spore-forming bacterium Clostridium perfringens is an important Gram-positive pathogen of humans and animals (18, 42). It causes diverse gastrointestinal diseases, such as food poisoning, enterotoxemia, and enteritis, as well as wound infections and septicemias (37). The virulence of different C. perfringens strains is related to the production of a large array of exotoxins (34). C. perfringens type C isolates are defined by production of two major toxins, α-toxin (CPA) and β-toxin (CPB). In addition, type C isolates may secrete other toxins, such as β2-toxin (CPB2), perfringolysin (PFO), enterotoxin (CPE), and TpeL (2, 34, 36) C. perfringens type C strains cause severe, acute, necrotizing enteritis in livestock and humans (18, 42). Outbreaks of human type C enteritis were recorded after the Second World War in Germany (20), but this disease has been reported only sporadically in developed countries (25, 27, 39, 51). A similar disease has been diagnosed more frequently in parts of Southeast Asia (7, 17, 26), particularly in the highlands of Papua New Guinea (23), where it was a frequent cause of childhood mortality until vaccination programs were initiated (24). C. perfringens type C causes enteritis more frequently in animals, such as calves, sheep, goats, and particularly pigs (42, 43). Typically, neonatal piglets are affected from the first day of life until they are approximately 3 weeks old. The peracute to acute type of the disease affects piglets within the first few days postpartum (12, 14, 43). Macroscopic lesions at necropsy are pathognomonic, with deep, segmental mucosal necrosis and massive hemorrhage in the small intestine. In most cases the lesions are confined to the proximal jejunum; however, they can extend into the distal small intestine and the colon. This suggests that lesions are initiated in the upper small intestine and can spread rapidly throughout the intestine. In addition to these marked necro-hemorrhagic lesions, thrombosis of small vessels in the lamina propria and submucosa is a consistent finding (12, 14). A more protracted clinical course of type C enteritis is seen mainly in piglets that die when they are 1 to 3 weeks old (12, 14, 43). The pathological lesion is a segmental to diffuse fibrino-necrotizing enteritis. Histopathologically, such cases are characterized by demarcation of the deeply necrotic mucosa by marked infiltration of neutrophilic granulocytes. Similar acute and subacute forms of type C enteritis also occur in humans (6, 18, 21). In humans, however, subacute lesions are more often described as multifocal patchy necrosis of the small intestine. Again, mucosal and submucosal vascular thrombosis is a frequent finding, especially in acute lesions (20, 21).Besides the clear epidemiological evidence for the importance of CPB in type C enteritis (41, 42), recent experimental studies using a rabbit intestinal loop model and a mouse infection model clearly demonstrated that CPB is the essential virulence factor of type C strains (38, 47, 49). In rabbit ileal loops, application of purified CPB and infection with C. perfringens type C strains caused villous tip necrosis, which indicated that there was initial intestinal epithelial damage. Vascular thrombosis in mucosal and submucosal vessels was also observed in this model. In general, the vascular damage observed in naturally occurring and experimentally induced type C enteritis is considered a secondary effect due to massive epithelial and mucosal necrosis (22, 43). However, the potential direct effects of exotoxins on vascular endothelia during type C enteritis have never been investigated.CPB is a beta-barrel-pore-forming toxin (9) that has been shown to form oligomers in the membrane of human endothelial cells (44) and the human HL 60 cell line (31). So far, cytotoxic and cytopathic effects of CPB have been demonstrated only for HL 60 cells. HeLa, Vero, CHO, MDCK, Cos-7, P-815, and PC12 cells were not sensitive to this toxin (31, 40). These findings indicate that CPB toxicity is cell type specific and most likely occurs via binding to specific membrane receptors. Recently, we localized CPB at vascular endothelial cells in acute type C enteritis lesions in piglets and a human patient (28, 29). As a result of this, we hypothesized that direct targeting of endothelial cells and induction of local vascular damage could contribute to the rapid tissue necrosis observed in the acute form of type C enteritis. To validate our initial reports, we performed additional immunohistochemical studies with naturally diseased piglets and subsequently studied the direct cytopathic effects of CPB on cultured primary porcine endothelial cells. The objectives of this study were (i) to evaluate the susceptibility of porcine endothelial cells to CPB in vitro, (ii) to characterize early morphological changes induced by CPB in these cells, and (iii) to relate the findings obtained to pathological lesions observed in acute type C enteritis in piglets. Our results reveal for the first time that porcine aortic endothelial cell (PAEC) cultures are highly sensitive to CPB, which results in rapid disruption of the actin cytoskeleton and retraction of the cell borders progressing to marked cell shrinkage.  相似文献   

3.
We examined the susceptibilities to fluconazole of 642 bloodstream infection (BSI) isolates of Candida glabrata and grouped the isolates by patient age and geographic location within the United States. Susceptibility of C. glabrata to fluconazole was lowest in the northeast region (46%) and was highest in the west (76%). The frequencies of isolation and of fluconazole resistance among C. glabrata BSI isolates were higher in the present study (years 2001 to 2007) than in a previous study conducted from 1992 to 2001. Whereas the frequency of C. glabrata increased with patient age, the rate of fluconazole resistance declined. The oldest age group (≥80 years) had the highest proportion of BSI isolates that were C. glabrata (32%) and the lowest rate of fluconazole resistance (5%).Candidemia is without question the most important of the invasive mycoses (6, 33, 35, 61, 65, 68, 78, 86, 88). Treatment of candidemia over the past 20 years has been enhanced considerably by the introduction of fluconazole in 1990 (7, 10, 15, 28, 29, 31, 40, 56-58, 61, 86, 90). Because of its widespread usage, concern about the development of fluconazole resistance among Candida spp. abounds (2, 6, 14, 32, 47, 53, 55, 56, 59, 60, 62, 80, 86). Despite these concerns, fluconazole resistance is relatively uncommon among most species of Candida causing bloodstream infections (BSI) (5, 6, 22, 24, 33, 42, 54, 56, 65, 68, 71, 86). The exception to this statement is Candida glabrata, of which more than 10% of BSI isolates may be highly resistant (MIC ≥ 64 μg/ml) to fluconazole (6, 9, 15, 23, 30, 32, 36, 63-65, 71, 87, 91). Suboptimal fluconazole dosing practices (low dose [<400 mg/day] and poor indications) may lead to an increased frequency of isolation of C. glabrata as an etiological agent of candidemia in hospitalized patients (6, 17, 29, 32, 35, 41, 47, 55, 60, 68, 85) and to increased fluconazole (and other azole) resistance secondary to induction of CDR efflux pumps (2, 11, 13, 16, 43, 47, 50, 55, 69, 77, 83, 84) and may adversely affect the survival of treated patients (7, 10, 29, 40, 59, 90). Among the various Candida species, C. glabrata alone has increased as a cause of BSI in U.S. intensive care units since 1993 (89). Within the United States, the proportion of fungemias due to C. glabrata has been shown to vary from 11% to 37% across the different regions (west, midwest, northeast, and south) of the country (63, 65) and from <10% to >30% within single institutions over the course of several years (9, 48). It has been shown that the prevalence of C. glabrata as a cause of BSI is potentially related to many disparate factors in addition to fluconazole exposure, including geographic characteristics (3, 6, 63-65, 71, 88), patient age (5, 6, 25, 35, 41, 42, 48, 63, 82, 92), and other characteristics of the patient population studied (1, 32, 35, 51). Because C. glabrata is relatively resistant to fluconazole, the frequency with which it causes BSI has important implications for therapy (21, 29, 32, 40, 41, 45, 56, 57, 59, 80, 81, 86, 90).Previously, we examined the susceptibilities to fluconazole of 559 BSI isolates of C. glabrata and grouped the isolates by patient age and geographic location within the United States over the time period from 1992 to 2001 (63). In the present study we build upon this experience and report the fluconazole susceptibilities of 642 BSI isolates of C. glabrata collected from sentinel surveillance sites throughout the United States for the time period from 2001 through 2007 and stratify the results by geographic region and patient age. The activities of voriconazole and the echinocandins against this contemporary collection of C. glabrata isolates are also reported.  相似文献   

4.
The essential toxin in Clostridium perfringens-mediated gas gangrene or clostridial myonecrosis is alpha-toxin, although other toxins and extracellular enzymes may also be involved. In many bacterial pathogens extracellular sialidases are important virulence factors, and it has been suggested that sialidases may play a role in gas gangrene. C. perfringens strains have combinations of three different sialidase genes, two of which, nanI and nanJ, encode secreted sialidases. The nanI and nanJ genes were insertionally inactivated by homologous recombination in derivatives of sequenced strain 13 and were shown to encode two functional secreted sialidases, NanI and NanJ. Analysis of these derivatives showed that NanI was the major sialidase in this organism. Mutation of nanI resulted in loss of most of the secreted sialidase activity, and the residual activity was eliminated by subsequent mutation of the nanJ gene. Only a slight reduction in the total sialidase activity was observed in a nanJ mutant. Cytotoxicity assays using the B16 melanoma cell line showed that supernatants containing NanI or overexpressing NanJ enhanced alpha-toxin-mediated cytotoxicity. Finally, the ability of nanI, nanJ, and nanIJ mutants to cause disease was assessed in a mouse myonecrosis model. No attenuation of virulence was observed for any of these strains, providing evidence that neither the NanI sialidase nor the NanJ sialidase is essential for virulence.Clostridium perfringens type A is the causative agent of human gas gangrene, or clostridial myonecrosis, and human food poisoning (25, 27). It produces many secreted hydrolytic enzymes and toxins, including alpha-toxin and perfringolysin O. C. perfringens strains can also encode up to three sialidases, but the three sialidase genes, nanH, nanI, and nanJ, are not present in all of the strains that have been completely sequenced. Strain ATCC 13124 encodes all three sialidases (18), while strain 13 encodes both of the large sialidases, NanI and NanJ, but not the smaller NanH enzyme (32). The food poisoning isolate SM101 encodes NanH but not NanI or NanJ (18).Sialidases have been implicated in the virulence of several bacterial pathogens. They have been shown to enhance the pathogenesis of disease through synergistic effects with other bacterial factors. For example, Vibrio cholerae sialidase enhances the activity of cholera toxin (10), Pseudomonas aeruginosa sialidase increases the binding of this organism to the cells of susceptible patients (6), and the two sialidases of Streptococcus pneumoniae contribute to the progression of infection in several animal models (16, 23, 37). More recently, a surface-exposed sialidase was shown to be required for persistence of the canine pathogen Capnophagia canimorsus (15).Alpha-toxin is an essential virulence factor in gas gangrene (2), and perfringolysin O, although not essential, has been found to have a synergistic role with alpha-toxin, enhancing the disease process (3). Synergy between alpha-toxin and the NanI sialidase was also observed in experiments that showed that purified alpha-toxin had greater pathological effects on cultured cell lines that had been pretreated with NanI (8). Inoculation of mice with both purified alpha-toxin and NanI resulted in increased levels of plasma creatine kinase, a marker for muscle necrosis, compared to the levels after inoculation of alpha-toxin alone (8).The sialidases of C. perfringens have different cellular locations. NanH (43 kDa) lacks a signal peptide and is located in the cytoplasm (12, 24). It has been proposed that NanH is involved in the cleavage of short oligosaccharides that enter the cell and are subsequently broken down for nutritional purposes (41). By contrast, NanI (77 kDa) contains a signal peptide, is secreted from the cell, and is readily isolated from cell-free supernatants (19, 38). A high-resolution structure of the catalytic domain of NanI in a complex with its sialic acid substrate has recently been described (20). NanI may also play a role in nutrition, releasing sialic acid from higher-order gangliosides for subsequent transport into the cell (41). As a result of its location, NanI may also interact with the extracellular environment of the host tissue during infection. In addition to its synergy with alpha-toxin (8), NanI has also been shown to have synergistic effects with ɛ-toxin (31), which is required for C. perfringens type B- and D-mediated diseases (34, 39, 40). Very limited information is available for the 129-kDa NanJ enzyme, but recent studies have shown that in addition to sialidase motifs this enzyme contains an additional galactose binding domain (5).The objective of our study was to determine the role of NanI and NanJ in the pathogenesis of gas gangrene. Mutagenesis of the genes (nanI and nanJ) encoding each of the secreted sialidases was carried out using the strain 13 derivative JIR325. Then the relative contribution of each sialidase to total sialidase production was determined, and virulence was assessed using the mouse myonecrosis model. The results showed that NanI is the major sialidase in this strain but that neither enzyme is essential for virulence.  相似文献   

5.
Clostridium perfringens type C isolates cause enterotoxemias and enteritis in humans and livestock. While the major disease signs and lesions of type C disease are usually attributed to beta toxin (CPB), these bacteria typically produce several different lethal toxins. Since understanding of disease pathogenesis and development of improved vaccines is hindered by the lack of small animal models mimicking the lethality caused by type C isolates, in this study we developed two mouse models of C. perfringens type C-induced lethality. When inoculated into BALB/c mice by intragastric gavage, 7 of 14 type C isolates were lethal, whereas when inoculated intraduodenally, these strains were all lethal in these mice. Clinical signs in intragastrically and intraduodenally challenged mice were similar and included respiratory distress, abdominal distension, and neurological alterations. At necropsy, the small, and occasionally the large, intestine was dilated and gas filled in most mice developing a clinical response. Histological changes in the gut were relatively mild, consisting of attenuation of the mucosa with villus blunting. Inactivation of the CPB-encoding gene rendered the highly virulent type C strain CN3685 avirulent in the intragastric model and nearly nonlethal in the intraduodenal model. In contrast, inactivation of the genes encoding alpha toxin and perfringolysin O only slightly decreased the lethality of CN3685. Mice could be protected against lethality by intravenous passive immunization with a CPB antibody prior to intragastric challenge. This study proves that CPB is a major contributor to the systemic effects of type C infections and provides new mouse models for investigating the pathogenesis of type C-induced lethality.Clostridium perfringens, an anaerobic, spore-forming, gram-positive rod, is a pathogen of humans and domestic or wild animals (9). The virulence of C. perfringens is mostly due to toxin secretion, which varies from strain to strain (9). This variability allows classification of C. perfringens isolates into five types (A to E), depending upon their production of four typing toxins (9, 11, 12). All five types produce alpha toxin (CPA), type B and C isolates produce beta toxin (CPB), type B and D isolates produce epsilon toxin (ETX), and type E isolates produce iota toxin (20).C. perfringens type C isolates cause highly lethal diseases, mostly in newborn animals of many mammalian species (20). These diseases originate when type C isolates proliferate and produce toxins in the intestine. Although often involving intestinal damage, death in affected animals is thought to result primarily from a toxemia following absorption of toxins from the intestine into the circulation (17, 18). C. perfringens bacteremia is not usually observed in cases of type C infection (17). In humans, C. perfringens type C isolates cause enteritis necroticans (also known as Darmbrand or Pigbel) (13). Enteritis necroticans is a highly lethal and endemic disease throughout much of Southeast Asia, but particularly in Papua New Guinea, where this disease was the leading cause of mortality in children during the 1960s (3, 5). Less frequently, this disease also occurs in diabetic patients elsewhere (8).Type C isolates produce CPB, which is a 35-kDa protein that forms pores in the membranes of susceptible cells, leading to swelling and lysis (10, 15, 19). CPB is lethal for mice, with a calculated 50% lethal dose of 310 ng per kg when administered intravenously (i.v.) (14). In addition, CPB has been shown to produce acute intestinal necrosis when inoculated into ligated intestinal loops of rabbits, the effects of which were inhibited when the toxin was mixed with a CPB monoclonal antibody (MAb) before inoculation (21). We recently constructed a series of C. perfringens type C toxin null mutants, which demonstrated that CPB, but not perfringolysin O (PFO) or CPA, is necessary and sufficient for the type C isolate CN3685 to cause intestinal damage in a rabbit ileal loop model (16). However, it was notable that none of the rabbits challenged with this potent type C isolate died during the 6-h course of those ileal loop studies (16).Despite these recent advances, the systemic lethal effects of CPB or C. perfringens type C isolates remain poorly characterized. In part, this is due to the lack of a laboratory animal model that reproduces the lethality of natural C. perfringens type C enterotoxemia (16, 21). Mice have been used to study the lethal effects of i.v. administered C. perfringens type C vegetative culture supernatants or pure CPB (2). The mouse i.v. injection model is useful for studying the systemic lethal effects of CPB and indicates the sensitivity of this species to type C toxins. However, this model differs significantly from natural type C enterotoxemias in human and animals, where toxins are produced in the gastrointestinal tract, act locally, and are then absorbed into the circulation (20). We now present the development and application of infectious intragastric (i.g.) and intraduodenal (i.d.) challenge mouse models to investigate the lethal enterotoxemias induced by C. perfringens type C infections, including a virulence evaluation of C. perfringens type C toxin mutants.  相似文献   

6.
Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.Moraxella catarrhalis is a gram-negative pathogen of the middle ear and lower respiratory tract (29, 40, 51, 52, 69, 78). The organism is responsible for ∼15% of bacterial otitis media cases in children and up to 10% of infectious exacerbations in patients with chronic obstructive pulmonary disease (COPD). The cost of treating these ailments places a large financial burden on the health care system, adding up to well over $10 billion per annum in the United States alone (29, 40, 52, 95, 97). In recent years, M. catarrhalis has also been increasingly associated with infections such as bronchitis, conjunctivitis, sinusitis, bacteremia, pneumonia, meningitis, pericarditis, and endocarditis (3, 12, 13, 17-19, 24, 25, 27, 51, 67, 70, 72, 92, 99, 102-104). Therefore, the organism is emerging as an important health problem.M. catarrhalis infections are a matter of concern due to high carriage rates in children, the lack of a preventative vaccine, and the rapid emergence of antibiotic resistance in clinical isolates. Virtually all M. catarrhalis strains are resistant to β-lactams (34, 47, 48, 50, 53, 65, 81, 84). The genes specifying this resistance appear to be gram positive in origin (14, 15), suggesting that the organism could acquire genes conferring resistance to other antibiotics via horizontal transfer. Carriage rates as high as 81.6% have been reported for children (39, 104). In one study, Faden and colleagues analyzed the nasopharynx of 120 children over a 2-year period and showed that 77.5% of these patients became colonized by M. catarrhalis (35). These investigators also observed a direct relationship between the development of otitis media and the frequency of colonization. This high carriage rate, coupled with the emergence of antibiotic resistance, suggests that M. catarrhalis infections may become more prevalent and difficult to treat. This emphasizes the need to study pathogenesis by this bacterium in order to identify vaccine candidates and new targets for therapeutic approaches.One key aspect of pathogenesis by most infectious agents is adherence to mucosal surfaces, because it leads to colonization of the host (11, 16, 83, 93). Crucial to this process are surface proteins termed adhesins, which mediate the binding of microorganisms to human cells and are potential targets for vaccine development. M. catarrhalis has been shown to express several adhesins, namely UspA1 (20, 21, 59, 60, 77, 98), UspA2H (59, 75), Hag (also designated MID) (22, 23, 37, 42, 66), OMPCD (4, 41), McaP (61, 100), and a type 4 pilus (63, 64), as well as the filamentous hemagglutinin-like proteins MhaB1, MhaB2, MchA1, and MchA2 (7, 79). Each of these adhesins was characterized by demonstrating a decrease in the adherence of mutant strains to a variety of human-derived epithelial cell lines, including A549 type II pneumocytes and Chang conjunctival, NCIH292 lung mucoepidermoid, HEp2 laryngeal, and 16HBE14o-polarized bronchial cells. Although all of these cell types are relevant to the diseases caused by M. catarrhalis, they lack important aspects of the pathogen-targeted mucosa, such as the features of cilia and mucociliary activity. The ciliated cells of the respiratory tract and other mucosal membranes keep secretions moving out of the body so as to assist in preventing colonization by invading microbial pathogens (10, 26, 71, 91). Given this critical role in host defense, it is interesting to note that a few bacterial pathogens target ciliated cells for adherence, including Actinobacillus pleuropneumoniae (32), Pseudomonas aeruginosa (38, 108), Mycoplasma pneumoniae (58), Mycoplasma hyopneumoniae (44, 45), and Bordetella species (5, 62, 85, 101).In the present study, M. catarrhalis is shown to specifically bind to ciliated cells of a normal human bronchial epithelium (NHBE) culture exhibiting mucociliary activity. This tropism was found to be conserved among isolates, and analysis of mutants revealed a direct role for the adhesin Hag in binding to ciliated airway cells.  相似文献   

7.
Acanthamoeba culbertsoni is an opportunistic pathogen that causes granulomatous amoebic encephalitis (GAE), a chronic and often fatal disease of the central nervous system (CNS). A hallmark of GAE is the formation of granulomas around the amoebae. These cellular aggregates consist of microglia, macrophages, lymphocytes, and neutrophils, which produce a myriad of proinflammatory soluble factors. In the present study, it is demonstrated that A. culbertsoni secretes serine peptidases that degrade chemokines and cytokines produced by a mouse microglial cell line (BV-2 cells). Furthermore, soluble factors present in cocultures of A. culbertsoni and BV-2 cells, as well as in cocultures of A. culbertsoni and primary neonatal rat cerebral cortex microglia, induced apoptosis of these macrophage-like cells. Collectively, the results indicate that A. culbertsoni can apply a multiplicity of cell contact-independent modes to target macrophage-like cells that exert antiamoeba activities in the CNS.Acanthamoeba culbertsoni belongs to a group of free-living amoebae, such as Balamuthia mandrillaris, Naegleria fowleri, and Sappinia pedata, that can cause disease in humans (46, 56). Acanthamoeba spp. are found worldwide and have been isolated from a variety of environmental sources, including air, soil, dust, tap water, freshwater, seawater, swimming pools, air conditioning units, and contaminated contact lenses (30). Trophozoites feed on bacteria and algae and represent the infective form (47, 56). However, under unfavorable environmental conditions, such as extreme changes in temperature or pH, trophozoites transform into a double-walled, round cyst (22, 45).Acanthamoeba spp. cause an infection of the eye known as amoebic keratitis (AK), an infection of the skin referred to as cutaneous acanthamoebiasis, and a chronic and slowly progressing disease of the central nervous system (CNS) known as granulomatous amoebic encephalitis (GAE) (22, 23, 30, 56). GAE is most prevalent in humans who are immunocompromised (30, 33, 40) and has been reported to occur among individuals infected with the human immunodeficiency virus (HIV) (28). It has been proposed that Acanthamoeba trophozoites access the CNS by passage through the olfactory neuroepithelium (32) or by hematogenous spread from a primary nonneuronal site of infection (23, 24, 33, 53).In immune-competent individuals, GAE is characterized by the formation of granulomas. These cellular aggregates consist of microglia, macrophages, polymorphonuclear cells, T lymphocytes, and B lymphocytes (24, 30). The concerted action of these immune cells results in sequestration of amoebae and is instrumental in slowing the progression of GAE. This outcome is consistent with the observation that granulomas are rarely observed in immunocompromised individuals (34) and in mice with experimentally induced immune suppression following treatment with the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC) (8).Microglia are a resident population of macrophages in the CNS. These cells, along with CNS-invading peripheral macrophages, appear to play a critical early effector role in the control of Acanthamoeba spread during GAE (4, 5, 29, 31). In vitro, microglia have been shown to produce an array of chemokines and cytokines in response to Acanthamoeba (31, 51). However, these factors appear not to have a deleterious effect on these amoebae (29).Acanthamoeba spp. produce serine peptidases, cysteine peptidases, and metallopeptidases (1, 2, 9, 10, 14, 16, 18, 19, 21, 25, 26, 37, 38, 41, 42, 52). In the present study, it is demonstrated that serine peptidases secreted by A. culbertsoni degrade chemokines and cytokines that are produced by immortalized mouse BV-2 microglia-like cells. In addition, soluble factors present in cocultures of A. culbertsoni and BV-2 cells induced apoptosis of the BV-2 cells. Collectively, these results suggest a mode through which A. culbertsoni can evade immune responsiveness in the CNS.  相似文献   

8.
The important veterinary pathogen Clostridium perfringens type B is unique for producing the two most lethal C. perfringens toxins, i.e., epsilon-toxin and beta-toxin. Our recent study (K. Miyamoto, J. Li, S. Sayeed, S. Akimoto, and B. A. McClane, J. Bacteriol. 190:7178-7188, 2008) showed that most, if not all, type B isolates carry a 65-kb epsilon-toxin-encoding plasmid. However, this epsilon-toxin plasmid did not possess the cpb gene encoding beta-toxin, suggesting that type B isolates carry at least one additional virulence plasmid. Therefore, the current study used Southern blotting of pulsed-field gels to localize the cpb gene to ∼90-kb plasmids in most type B isolates, although a few isolates carried a ∼65-kb cpb plasmid distinct from their etx plasmid. Overlapping PCR analysis then showed that the gene encoding the recently discovered TpeL toxin is located ∼3 kb downstream of the plasmid-borne cpb gene. As shown earlier for their epsilon-toxin-encoding plasmids, the beta-toxin-encoding plasmids of type B isolates were found to carry a tcp locus, suggesting that they are conjugative. Additionally, IS1151-like sequences were identified upstream of the cpb gene in type B isolates. These IS1151-like sequences may mobilize the cpb gene based upon detection of possible cpb-containing circular transposition intermediates. Most type B isolates also possessed a third virulence plasmid that carries genes encoding urease and lambda-toxin. Collectively, these findings suggest that type B isolates are among the most plasmid dependent of all C. perfringens isolates for virulence, as they usually carry three potential virulence plasmids.Isolates of the Gram-positive, spore-forming anaerobe Clostridium perfringens are classified (31) into five different types (A to E), depending upon their production of four (alpha, beta, epsilon, and iota) lethal typing toxins. All C. perfringens types produce alpha-toxin; in addition, type B isolates produce both beta- and epsilon-toxins, type C isolates produce beta-toxin, type D isolates produce epsilon-toxin and type E isolates produce iota-toxin. Except for the chromosomal alpha-toxin gene (plc), all C. perfringens typing toxins are encoded by genes resident on large plasmids (11, 22, 23, 32, 33). Large plasmids can also encode other C. perfringens toxins, such as the enterotoxin (CPE) or beta2-toxin (8, 9, 14, 35), as well as other potential virulence factors such as urease (12, 23).The large virulence plasmids of C. perfringens are only now being characterized (23, 28, 29, 33). The first analyzed, and still most studied, C. perfringens toxin plasmids are the CPE-encoding plasmids of type A isolates (14, 28). In type A isolates, most plasmids carrying the enterotoxin gene (cpe) belong to one of two families: (i) a 75.3-kb plasmid with a cpe locus containing an IS1151 element and the cpb2 gene encoding beta2-toxin or (ii) a 70.5-kb plasmid that lacks the cpb2 gene and carries a cpe locus with an IS1470-like sequence instead of an IS1151 element. Sequence comparisons (28) revealed that these two cpe plasmid families of type A isolates share a conserved region of ∼35 kb that includes the transfer of clostridial plasmid (tcp) locus, which is related to the conjugative transposon Tn916. Confirming that cpe plasmids can be conjugative, mixed mating studies have directly demonstrated transfer of the cpe plasmid from type A isolate F4969 to other C. perfringens isolates (5). A similar tcp locus is also shared by the tetracycline resistance plasmid pCW3 and several other toxin plasmids (2, 23, 28, 29, 33), as discussed below. Mutagenesis analyses demonstrated the importance of several genes in the tcp locus for conjugative transfer of pCW3 (2) and, by extension, presumably the tcp-carrying, conjugative toxin plasmids, such as the cpe plasmid of isolate F4969 (5) and some etx plasmids of type D isolates (19).Although the sequence of an iota-toxin-encoding plasmid has not yet been published, pulsed-field gel electrophoresis (PFGE) and PCR analyses determined that these plasmids are typically larger than the cpe plasmids of type A isolates (23). Specifically, iota-toxin plasmids are often ≥100 kb in size, reaching up to a size of ∼135 kb. These plasmids of type E isolates often encode, in addition to the iota-toxin, other potential virulence factors such as lambda-toxin and urease. These plasmids also carry a tcp locus, suggesting that they may be capable of conjugative transfer. Interestingly, many iota-toxin plasmids appear to be related, sometimes extensively, to the cpe plasmids of type A isolates. Consequently, it has been suggested (3, 23) that many iota-toxin plasmids arose from insertion of an iota-toxin gene-carrying mobile genetic element near the cpe gene on a tcp-carrying type A plasmid. This insertional event apparently inactivated the cpe gene, so most or all type E isolates now carry silent cpe genes (3, 23).The epsilon-toxin-encoding plasmids of type D isolates show considerable size variations (33), ranging from ∼48 kb to ∼110 kb. These size variations in type D etx plasmids reflect, in part, differences among their toxin gene carriage. The small 48-kb etx plasmids present in some type D isolates typically lack either the cpe gene or the cpb2 gene (encoding beta2-toxin), while the larger (>75-kb) etx plasmids found in other type D isolates can also carry the cpe gene, the cpb2 gene, or both the cpe and cpb2 genes. Consequently, some type D isolates carry a toxin plasmid encoding only etx, other type D isolates carry a toxin plasmid with up to three different functional toxin genes (etx, cpb2, and cpe), and the remaining type D isolates carry their etx, cpe, and cpb2 genes on up to three distinct plasmids.C. perfringens type B isolates uniquely produce both beta- and epsilon-toxins, the two most lethal C. perfringens toxins (13). These bacteria are important pathogens of sheep but also cause disease in goats, calves, and foals (26). For unknown reasons, diseases caused by C. perfringens type B isolates apparently are restricted to certain geographic regions (24, 25, 26). C. perfringens type B enterotoxemias initiate when these bacteria proliferate in the gut, accompanied by toxin production. Those toxins initially affect the intestines but later are absorbed and act systemically. Studies from our group (13) showed that beta- and epsilon-toxins each contribute to lethality in a mouse model involving intravenous injection of type B culture supernatants.There has been characterization of only one type B virulence plasmid to date. Our recent study (29) showed that most, if not all, type B isolates carry a common etx plasmid of ∼65 kb that also possesses a tcp locus and a cpb2 gene, although not the cpb gene encoding beta-toxin. Interestingly, the type B etx plasmid is highly (80%) related to the ∼75-kb cpe- and cpb2-carrying plasmid found in some type A isolates (28). The ∼65-kb etx plasmid present in most, if not all, type B isolates is also carried by a minority of type D isolates (29).The absence of the cpb gene from their etx plasmids suggested that most type B isolates might carry additional virulence plasmids. Therefore, the current study was performed to better address virulence plasmid carriage and diversity among type B disease isolates.  相似文献   

9.
Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence.Clostridium perfringens isolates are classified into five toxinotypes (A to E) based upon the production of four (α, β, ɛ, and ι) typing toxins (29). Each toxinotype is associated with different diseases affecting humans or animals (25). In livestock species, C. perfringens type C isolates cause fatal necrotizing enteritis and enterotoxemia, where toxins produced in the intestines absorb into the circulation to damage internal organs. Type C-mediated animal diseases result in serious economic losses for agriculture (25). In humans, type C isolates cause enteritis necroticans, which is also known as pigbel or Darmbrand (15, 17), an often fatal disease that involves vomiting, diarrhea, severe abdominal pain, intestinal necrosis, and bloody stools. Acute cases of pigbel, resulting in rapid death, may also involve enterotoxemia (15).By definition, type C isolates must produce alpha and beta toxins (24, 29). Alpha toxin, a 43-kDa protein encoded by the chromosomal plc gene, has phospholipase C, sphingomyelinase, and lethal properties (36). Beta toxin, a 35-kDa polypeptide, forms pores that lyse susceptible cells (28, 35). Recent studies demonstrated that beta toxin is necessary for both the necrotizing enteritis and lethal enterotoxemia caused by type C isolates (33, 37). Besides alpha and beta toxins, type C isolates also commonly express beta2 toxin, perfringolysin O, or enterotoxin (11).There is growing appreciation that naturally occurring plasmids contribute to both C. perfringens virulence and antibiotic resistance. For example, all typing toxins, except alpha toxin, can be encoded by genes carried on large plasmids (9, 19, 26, 30-32). Other C. perfringens toxins, such as the enterotoxin or beta2 toxin, can also be plasmid encoded (6, 8, 12, 34). Furthermore, conjugative transfer of several C. perfringens antibiotic resistance plasmids or toxin plasmids has been demonstrated, supporting a key role for plasmids in the dissemination of virulence or antibiotic resistance traits in this bacterium (2).Despite their pathogenic importance, the toxin-encoding plasmids of C. perfringens only recently came under intensive study (19, 26, 27, 31, 32). The first carefully analyzed C. perfringens toxin plasmids were two plasmid families carrying the enterotoxin gene (cpe) in type A isolates (6, 8, 12, 26). One of those cpe plasmid families, represented by the ∼75-kb prototype pCPF5603, has an IS1151 sequence present downstream of the cpe gene and also carries the cpb2 gene, encoding beta2 toxin. A second cpe plasmid family of type A isolates, represented by the ∼70-kb prototype pCPF4969, lacks the cpb2 gene and carries an IS1470-like sequence, rather than an IS1151 sequence, downstream of the cpe gene. The pCPF5603 and pCPF4969 plasmid families share an ∼35-kb region that includes transfer of a clostridial plasmid (tcp) locus (26). The presence of this tcp locus likely explains the demonstrated conjugative transfer of some cpe plasmids (5) since a similar tcp locus was shown to mediate conjugative transfer of the C. perfringens tetracycline resistance plasmid pCW3 (2).The iota toxin-encoding plasmids of type E isolates are typically larger (up to ∼135 kb) than cpe plasmids of type A isolates (19). Plasmids carrying iota toxin genes often encode other potential virulence factors, such as lambda toxin and urease, as well as a tcp locus (19). Many iota toxin plasmids of type E isolates share, sometimes extensively, sequences with cpe plasmids of type A isolates (19). It has been suggested that many iota toxin plasmids evolved from the insertion of a mobile genetic element carrying the iota toxin genes near the plasmid-borne cpe gene in a type A isolate, an effect that silenced the cpe gene in many type E isolates (3, 19).Plasmids carrying the epsilon toxin gene (etx) vary from ∼48 kb to ∼110 kb among type D isolates (32). In part, these etx plasmid size variations in type D isolates reflect differences in toxin gene carriage. For example, the small ∼48-kb etx plasmids present in some type D isolates lack both the cpe gene and the cpb2 gene. In contrast, larger etx plasmids present in other type D isolates often carry the cpe gene, the cpb2 gene, or both the cpe and cpb2 genes. Thus, the virulence plasmid diversity of type D isolates spans from carriage of a single toxin plasmid, possessing from one to three distinct toxin genes, to carriage of three different toxin plasmids.In contrast to the variety of etx plasmids found among type D isolates, type B isolates often or always share the same ∼65-kb etx plasmid, which is related to pCPF5603 but lacks the cpe gene (27). This common etx plasmid of type B isolates, which carries a cpb2 gene and the tcp locus, is also present in a few type D isolates. Most type B isolates surveyed to date carry their cpb gene, encoding beta toxin, on an ∼90-kb plasmid, although a few of those type B isolates possess an ∼65-kb cpb plasmid distinct from their ∼65-kb etx plasmid (31).To our knowledge, the cpb gene has been mapped to a plasmid (uncharacterized) in only a single type C strain (16). Furthermore, except for the recent localization of the cpe gene to plasmids in type C strains (20), plasmid carriage of other potential toxin genes in type C isolates has not been investigated. Considering the limited information available regarding the toxin plasmids of type C isolates, our study sought to systematically characterize the size, diversity, and toxin gene carriage of toxin plasmids in a collection of type C isolates. Also, to gain insight into possible mobilization of the cpb gene by insertion sequences or conjugative transfer, the presence of IS1151 sequences or the tcp locus on type C toxin plasmids was investigated.  相似文献   

10.
Typhoid fever remains a serious public health problem in developing countries, especially among young children. Recent studies showed more than 50% of typhoid cases are in children under 5 years old. Licensed vaccines, such as Salmonella enterica serovar Typhi capsular Vi, did not confer protection against typhoid fever for this age group. Vi conjugate, prepared by binding Vi to Pseudomonas aeruginosa recombinant exoprotein A (rEPA), induces protective levels of antibody at as young as 2 years old. Because of the lack of regulatory precedent for rEPA in licensing vaccines, we employed diphtheria toxoid (DT) as the carrier protein to accommodate accessibility in developing countries. Five lots of Vi-DT conjugates were prepared using adipic acid dihydrazide (ADH) as the linker. All 5 lots showed consistency in their physical and chemical characteristics and final yields. These Vi-DT conjugates elicited levels of IgG anti-Vi in young mice significantly higher than those in mice injected with Vi alone and induced a booster response upon reinjection. This booster effect was absent if the Vi replaced one of the two conjugate injections. Vi-DT was stable under repeated freeze-thaw (20 cycles). We plan to perform clinical evaluation of the safety and immunogenicity of Vi-DT when added to the infant combination vaccines.Typhoid fever, a serious systemic infection caused by Salmonella enterica serovar Typhi, remains a major public health problem in Central Asia, Southeast Asia, Africa, and Latin America (11, 52, 53). It was estimated that more than 21 million cases of typhoid fever and >200,000 deaths occurred in 2000 (10). The treatment of patients and management of asymptomatic carriers are becoming more difficult due to the worldwide emergence of multidrug-resistant (MDR) strains (2, 15, 29, 42, 43). Vaccination is considered the most promising strategy for the control of typhoid fever in developing countries (11, 19, 52, 53).Typhoid fever in children younger than 5 years old has often been unrecognized due to atypical clinical symptoms, difficulties in the number and volume of blood drawings, and use of less than optimal culture media (35, 46). Several studies have shown that the incidence of typhoid fever among children less than 5 years old is similar to that in school age children and young adults (14, 27, 34, 50, 51).The 3 licensed typhoid vaccines have limited efficacy, and none are suitable for young children under 5 years old. The use of heat-inactivated whole-cell vaccine was suspended in many countries because of its reactogenicity. The parenteral Vi polysaccharide and the live attenuated oral Ty21a vaccine were introduced in the late 1980s; both vaccines are well accepted and confer moderate protection (50 to 70%) in older children and adults. However, neither vaccine is licensed for routine immunization of infants (52).The Vi capsular polysaccharide is both an essential virulence factor and a protective antigen for S. Typhi (36, 38, 39). The concentration of serum IgG anti-Vi is correlated with immunity to the pathogen (22, 25, 26, 28, 36, 38, 49). However, Vi is not suitable for routine immunization of infants and young children because of its age-related immunogenicity and T-cell independence. As was shown for other capsular polysaccharides, such as Haemophilus influenzae type b (8, 37); meningococcus groups A, C, and W135; and Streptococcus pneumoniae (12, 20), Vi covalently bound with protein conferred T-cell dependence and increased immunogenicity (48-50). To date, diphtheria toxoid (DT), tetanus toxoid (TT), cholera toxins (CT), the B subunit of the heat-labile toxin (LT-B) of Escherichia coli, recombinant outer membrane protein of Klebsiella pneumoniae (rP40), and iron-regulated outer-membrane proteins (IROMPs) of S. Typhi have served as carriers for Vi polysaccharide in laboratory studies (16, 17, 32, 48-50; personal communications). An improved method was developed (24), utilizing adipic acid dihydrazide (ADH) as the linker and Pseudomonas aeruginosa recombinant exoprotein A (rEPA) as the carrier. Clinical trials of Vi-rEPA conjugates conferred 89% protection in Vietnamese children 2 to 5 years old for 46 months (23, 26, 28). The level of serum IgG anti-Vi induced by Vi-rEPA conjugates was correlated with prevention of typhoid fever in these studies (7, 21-23, 26, 28).One limitation of using rEPA as the carrier protein is the lack of regulatory precedent in licensing vaccines. In this report, five lots of Vi conjugates using DT manufactured by pharmaceutical companies in China and India were prepared (24, 48, 49). Modifications of conjugation procedures were made for the purposes of easy adoption and scale up by manufacturers. The stability of Vi-DT was studied for the feasibility of stockpiling in disaster relief.Another important aspect of conjugate vaccine implementation is the optimum immunization formulation and schedule using alternating injections of polysaccharide and conjugate. Priming or boosting effects of polysaccharide on its conjugate vaccine have been observed in infants injected with pneumococcal and meningococcal vaccines (3, 4, 31, 40). There was no consistent conclusion about various types of polysaccharides studied (6, 9, 31, 40, 41). Here, we compared the immune response of Vi polysaccharide injected before or after the administration of Vi-DT with the responses of those receiving 2 injections of Vi-DT. We also investigated the dosage effect for the purpose of better formulation.  相似文献   

11.
Bacillus subtilis vaccine strains engineered to express either group A bovine or murine rotavirus VP6 were tested in adult mice for their ability to induce immune responses and provide protection against rotavirus challenge. Mice were inoculated intranasally with spores or vegetative cells of the recombinant strains of B. subtilis. To enhance mucosal immunity, whole cholera toxin (CT) or a mutant form (R192G) of Escherichia coli heat-labile toxin (mLT) were included as adjuvants. To evaluate vaccine efficacy, the immunized mice were challenged orally with EDIM EW murine rotavirus and monitored daily for 7 days for virus shedding in feces. Mice immunized with either VP6 spore or VP6 vegetative cell vaccines raised serum anti-VP6 IgG enzyme-linked immunosorbent assay (ELISA) titers, whereas only the VP6 spore vaccines generated fecal anti-VP6 IgA ELISA titers. Mice in groups that were immunized with VP6 spore vaccines plus CT or mLT showed significant reductions in virus shedding, whereas the groups of mice immunized with VP6 vegetative cell vaccines showed no difference in virus shedding compared with mice immunized with control spores or cells. These results demonstrate that intranasal inoculation with B. subtilis spore-based rotavirus vaccines is effective in generating protective immunity against rotavirus challenge in mice.Group A rotaviruses are the most important cause of severe acute diarrhea in children less than 2 years old and have been estimated to be responsible for 362,000 to 592,000 (median, 440,000) deaths per year, primarily in the developing world (48). Because of the widespread nature of rotavirus disease and because the morbidity rates in developed and developing countries are similar, effective vaccines are considered key to their control. Although progress has been made in the development of live, attenuated oral vaccines, improved vaccines are still needed, particularly in developing countries where the burden of severe disease is the greatest but where the live oral vaccines have been the least effective to date (31, 33, 48). Although no longer marketed due to an association with intussusception (40), Rotashield (Wyeth-Ayerst), a rhesus-human reassortant rotavirus vaccine, which was 88% effective against severe diarrhea in rural areas of Venezuela (49), showed 18 to 46% efficacy in Peru and Brazil (31, 33). Two other live, attenuated oral vaccines have recently become available. Rotarix (GlaxoSmithKline), a human attenuated rotavirus vaccine, and RotaTeq (Merck), a human-bovine reassortant rotavirus vaccine, have performed well in some locales (13, 47), but in South Africa and Malawi, the efficacy was 40 to 80% (35). Other live, attenuated oral vaccines, such as vaccine 116E, based on rotaviruses obtained from asymptomatically infected newborns in Delhi, India, are also undergoing clinical trials (4, 5). Experience with previous candidate rotavirus vaccines, as well as vaccines against polio, cholera, and typhoid fever, has shown that the efficacy of live oral vaccines can be impaired in developing countries (47). In certain areas of India, the response to oral poliovirus vaccine has been so low that it has recently been recommended by the Indian Academy of Pediatrics that the oral vaccine be replaced with the injectable poliovirus vaccine (57).Live bacterial vectors have also been used for oral immunization against rotavirus antigens. Oral immunization with recombinants of either Salmonella enterica serovar Typhimurium or Lactobacillus lactis expressing rotavirus virion protein 7 (VP7) generated immune responses after oral administration to mice, but no challenge studies were reported (50, 58).A potential alternative to live oral immunization is live, intranasal inoculation. Attenuated Salmonella enterica serovar Typhi expressing tetanus toxin fragment C (TTFC) elicited protective immunity to tetanus toxin when the vaccine was given intranasally but not when the vaccine was given orally (22). Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis or Lactobacillus plantarum expressing TTFC has also been shown (24, 42). Intranasal immunization was also effective for generating an immune response by an attenuated strain of Shigella flexneri expressing rotavirus VP4, but no challenge studies were done (34).The use of Bacillus subtilis as a vehicle for vaccine antigen delivery is a relatively new approach to mucosal immunization (1, 16, 18, 43). The use of pathogenic bacteria as vectors has the disadvantage of requiring attenuation of the vector. Like the lactobacilli, B. subtilis is generally regarded as safe and is neither inherently pathogenic nor toxigenic to humans, animals, or plants (53). Moreover, B. subtilis is readily adaptable to genetic manipulation. Stable constructs can be integrated into the bacterial chromosome, making this bacterium a good candidate host for vaccine engineering.Foreign antigens have been expressed in B. subtilis on the surface and inside vegetative cells and on the surfaces of spores. Both vegetative cells and spores have been used as delivery vectors (46), but the primary model used to date has been the spore form of B. subtilis displaying tetanus toxin antigen. A potential advantage of using spores as vectors is that bacterial spores are highly resistant to environmental stresses, such as extremes of heat, pH, desiccation, freezing and thawing, and radiation (41). Heterologous antigens displayed on the spore surface as a fusion product with spore coat proteins have been shown to elicit protective immune responses, for example, when spores displaying TTFC were given either orally or intranasally (16). Orally administered spores of B. subtilis can survive the gastrointestinal tracts of mice and may germinate in the intestine, but intestinal colonization is only for a brief period (6, 54). Thus, for oral immunization, several rounds of high doses of spores (≥1010 spores per dose) have been found to be necessary (1, 16, 43). Intranasal immunization yields similar levels of protection, with lower doses of spores expressing the antigen on the surfaces of spores (55).In this report, we describe the preparation and application of B. subtilis spore and vegetative cell vaccines expressing group A rotavirus VP6, including proof-of-concept protection studies in a mouse challenge model. Intact rotavirus particles consist of triple-shelled capsids with outer, inner, and core layers. The outer capsid contains two viral proteins, VP4 and VP7. The inner capsid is formed by VP6, and the core consists of VP2, which encloses VP1 and VP3, along with the viral genome. The VP4 and VP7 proteins are the only two rotavirus proteins that are known to induce virus-neutralizing antibodies. Monoclonal antibodies to either VP4 or VP7 passively protect mice against rotavirus diarrhea. The major inner capsid protein VP6 plays a key role in the virion structure because of its interactions with both the outer capsid proteins VP4 and VP7 and the core protein VP2 (17). Rotavirus VP6 is antigenically conserved among group A rotaviruses (17). As a result, unlike with vaccines based on VP4 or VP7, serotype specificity should not be a problem with VP6-based vaccines, and effective vaccines based on VP6 could be expected to provide heterotypic protection against all group A rotaviruses. Our studies of VP6 DNA vaccines were the first to show protective immunity generated by a VP6-based vaccine (25, 26) and heterotypic protection against a murine rotavirus induced by a DNA vaccine expressing bovine VP6 (59). In subsequent studies, it was found that virus-like particles containing both VP2 and VP6 (VP2 is required for VLP formation) (45) or VP6 chimeric particles (7) also induced protection after treatment via the oral (45) or intranasal (7, 45) route. Monoclonal IgA antibodies to VP6 were also protective in a back-pack tumor model in mice (11). Here, we demonstrate that high titers of antibodies were raised in mice after intranasal administration of the B. subtilis vaccine strains and that protection against challenge with a murine rotavirus in the mice immunized with the spore vaccines but not in those immunized with the vegetative cell vaccines was obtained.  相似文献   

12.
Yersinia pestis, the causative agent of plague, evades host immune responses and rapidly causes disease. The Y. pestis adhesin Ail mediates host cell binding and is critical for Yop delivery. To identify the Ail receptor(s), Ail was purified following overexpression in Escherichia coli. Ail bound specifically to fibronectin, an extracellular matrix protein with the potential to act as a bridge between Ail and host cells. Ail expressed by E. coli also mediated binding to purified fibronectin, and Ail-mediated E. coli adhesion to host cells was dependent on fibronectin. Ail expressed by Y. pestis bound purified fibronectin, as did the Y. pestis adhesin plasminogen activator (Pla). However, a KIM5 Δail mutant had decreased binding to host cells, while a KIM5 Δpla mutant had no significant defect in adhesion. Furthermore, treatment with antifibronectin antibodies decreased Ail-mediated adhesion by KIM5 and the KIM5 Δpla mutant, indicating that the Ail-fibronectin interaction was important for cell binding. Finally, antifibronectin antibodies inhibited the KIM5-mediated cytotoxicity of host cells in an Ail-dependent fashion. These data indicate that Ail is a key adhesin that mediates binding to host cells through interaction with fibronectin on the surface of host cells, and this interaction is important for Yop delivery by Y. pestis.The three species of Yersinia pathogenic for humans, Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis, cause distinct diseases. Y. pseudotuberculosis and Y. enterocolitica typically cause acute gastroenteritis and mesenteric lymphadenitis. On the other hand, Y. pestis, the causative agent of the plague, is one of the most deadly human infectious diseases (8). Y. pestis is a close relative of Y. pseudotuberculosis, diverging only 1,500 to 20,000 years ago (1). To accommodate flea-borne transmission, Y. pestis has acquired two unique plasmids not harbored by enteropathogenic Yersinia species. All three pathogenic Yersinia species inject cytotoxic Yersinia outer proteins (Yops) into host cells via the Ysc type III secretion system (TTSS) to establish an infection (11). Host cell contact is essential for engagement of the TTSS and secretion of Yops (9, 54). Within the host cell, Yops effect actin rearrangements, inhibit phagocytosis, and block proinflammatory signals (4, 40, 42). Both Y. enterocolitica and Y. pseudotuberculosis express the well-studied adhesin molecules invasin (Inv) and YadA, capable of mediating Yop delivery (9, 54). However, Y. pestis does not express either adhesin due to an IS1541 element insertion within inv (58) and a frameshift mutation in yadA (44, 55). Y. pestis has a number of other adhesins capable of mediating host cell interaction. Both the pH 6 antigen (Psa [29, 63]) and plasminogen activator (Pla [28]) of Y. pestis have been shown to be adhesins. Psa is a tightly regulated pilus expressed at a pH of <6.7 and 37°C (52, 67) and is known to bind to β-linked galactosylated glycosphingolipids (46), low-density lipoprotein (31), and human IgG (69). Pla, expressed at 26°C but further induced at 37°C (49), is known to bind to several extracellular matrix components (23, 28, 30). The putative autotransporter, YapC, is also capable of mediating cell adhesion when it is expressed in Escherichia coli (15), as is the pilus encoded by the chaperone/usher system locus y0561-0563 (16), but neither yapC nor y0561-0563 results in significantly decreased adhesion when they are deleted from Y. pestis (15, 16).Recently, an additional adhesin of Y. pestis, Ail (adherence and invasion locus), was determined to facilitate cell binding (14, 25). Ail (encoded by y1324) is a 21.5-kDa outer membrane protein of the OmpX family that is predicted to have eight transmembrane domains and four extracellular loops extending above the surface of the bacterium (17, 65). Ail homologues include OmpX of Escherichia coli (32) and Enterobacter cloacae (61), PagC in Salmonella (53), and Opa proteins from Neisseria (10). Ail from Y. enterocolitica has been studied previously and shown to have three activities: cell adhesion, cell invasion (36), and the ability to confer serum resistance (5, 51) by binding to complement regulatory proteins (24). The residues for all three activities have been mapped to particular amino acids in the surface-exposed loops (35). Y. pseudotuberculosis Ail also confers adhesion and invasion functions (T. M. Tsang and E. S. Krukonis, unpublished data) and serum resistance (68), although the two amino acid changes between Y. pseudotuberculosis Ail and Y. pestis Ail result in decreased adhesion and invasion mediated by the former (Tsang and Krukonis, unpublished). More recently, Y. pestis Ail was also shown to mediate cell adhesion (14, 25), autoaggregation (25), and serum resistance (3, 24, 25) and to facilitate Yop delivery to host cells (14). Furthermore, Y. pestis Ail is required for virulence, as a Y. pestis Δail mutant has a >3,000-fold increase in the 50% lethal dose (14). A Y. pestis Δail mutant shows reduced binding to both epithelial and phagocytic human-derived cell lines, and in a mouse model of infection, a Y. pestis KIM5 Δail mutant colonizes host tissue to much lower levels than the parental KIM5 strain (14). Over the course of 7 days, the Δail mutant is cleared from the host (14). Together, these data demonstrate that Ail is an important adhesin that contributes to colonization and virulence.Cell adhesion is important for the establishment of a successful infection. Adhesion is also significant in Y. pestis pathogenesis because host cell contact is required for the production and translocation of the Yop effector proteins (48, 54). Bacteria can bind directly to host cell receptors (21) or use molecules like extracellular matrix (ECM) components to mediate attachment to host cells (12, 22, 30, 45, 57, 64). Common components of the cellular matrix that facilitate bacterial binding include fibronectin (22, 28, 64), collagen (23, 45), and laminin (28, 30, 45). Interactions between bacteria and ECM can lead to bridge-like attachments to host cells.Fibronectin is a large glycoprotein that is a key structural component in many tissues. This ∼220-kDa protein is commonly found as a dimer that is linked by two disulfide bonds located near the C terminus. Fibronectin is a complex molecule made up of three types of modular repeating units (43, 47). Fibronectin can bind to many substrates, including collagen (13), integrin receptors on host cells (50, 56), and heparin (60). Additionally, fibronectin contains a binding site for several bacterial pathogens at the N-terminal end of the molecule (39, 59).A number of fibronectin binding proteins on bacterial pathogens have been identified and studied, including SigB from Staphylococcus aureus (34), protein F from Streptococcus pyogenes (41), and YadA from Y. pseudotuberculosis (12, 19) and Y. enterocolitica (64). Binding of Y. pseudotuberculosis YadA to fibronectin allows Y. pseudotuberculosis to utilize β1 integrins on the surface of host cells for invasion (12). Given the key role of Y. pestis Ail in cell adhesion, Yop delivery, and virulence, we sought to determine the component on host cells to which Ail binds.Although Ail has been studied extensively in other Yersinia species, the substrate on host cells with which Ail interacts is not known. In this study, we used a purified Y. pestis Ail to identify the extracellular matrix component, fibronectin, as a protein bound by Ail. Furthermore, Ail-mediated binding to host cells through fibronectin is important for the delivery of Yop effector proteins.  相似文献   

13.
Mannheimia haemolytica is an important member of the bovine respiratory disease complex, which is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. Recently several authors have reported that human neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of trapping and killing pathogens. Here, we demonstrate that the leukotoxin (LKT) of M. haemolytica causes NET formation by bovine neutrophils in a CD18-dependent manner. Using an unacylated, noncytotoxic pro-LKT produced by an ΔlktC mutant of M. haemolytica, we show that binding of unacylated pro-LKT stimulates NET formation despite a lack of cytotoxicity. Inhibition of LKT binding to the CD18 chain of lymphocyte function-associated antigen 1 (LFA-1) on bovine neutrophils reduced NET formation in response to LKT or M. haemolytica cells. Further investigation revealed that NETs formed in response to M. haemolytica are capable of trapping and killing a portion of the bacterial cells. NET formation was confirmed by confocal microscopy and by scanning and transmission electron microscopy. Prior exposure of bovine neutrophils to LKT enhanced subsequent trapping and killing of M. haemolytica cells in bovine NETs. Understanding NET formation in response to M. haemolytica and its LKT provides a new perspective on how neutrophils contribute to the pathogenesis of bovine respiratory disease.Mannheimia haemolytica is a member of the bovine respiratory disease complex (BRD), causing a severe fibrinous pleuropneumonia sometimes referred to as shipping fever. The pneumonia is characterized by intense neutrophil infiltration in alveoli, intra-alveolar hemorrhage, fibrin deposition, and consolidation of the lungs (42, 56). The importance of neutrophils in the production of inflammatory mediators, recruitment of other leukocytes, and lung damage (17, 56, 67, 74) was demonstrated in calves that were depleted of neutrophils before challenge with M. haemolytica (10, 56). Neutrophil-depleted calves displayed less lung pathology than did control calves infected with M. haemolytica (10, 56). From these data, it is clear that neutrophils are a key player in the pathology of bovine pleuropneumonia; however, the mechanisms by which they contribute to host defense and tissue destruction are not clearly defined.The most important virulence factor for M. haemolytica is its leukotoxin (LKT), a 104-kDa exotoxin produced during logarithmic-phase growth (18, 32). LKT is a member of the repeats-in-toxin (RTX) toxin family of exoproteins produced by a wide variety of Gram-negative bacteria, including Escherichia coli, Actinobacillus pleuoropneumoniae, and Aggregatibacter actinomycetemcomitans (70). RTX toxins are characterized by a C-terminal glycine-rich nonapeptide repeat region (-G-G-X-G-X-D-X-U-X, where U is a hydrophobic residue) that binds calcium (Ca2+). The latter is required for membrane binding and cytotoxicity (30, 70). RTX toxins can insert into the plasma membrane of target cells, causing lysis and necrotic cell death (30, 70). The N-terminal domain contains amphipathic and hydrophobic domains believed to be required for pore stabilization and formation, respectively (70). More recently, it was shown that LKT also causes apoptosis via a caspase 9-dependent pathway and that LKT is internalized and transported via the cytoskeleton to mitochondria (4-6).The leukotoxin operon contains the genes lktC, lktA, lktB, and lktD (36, 37, 58). lktA encodes the inactive pro-LKT protein that is not cytotoxic until acylated (62) by the transacylase encoded by lktC. lktB and lktD encode proteins responsible for leader sequence-independent secretion of LKT from the bacterial cell (36, 37, 58). The acylated LKT then binds the CD18 chain of the β2-integrin lymphocyte function-associated antigen 1 (LFA-1) (3, 21-26, 33, 40, 41, 44, 55, 63) on ruminant leukocytes. LKT binding to amino acids 5 to 17 of the signal sequence of CD18 is required for cell death and restricts cytotoxicity to ruminant leukocytes, because the signal sequence for CD18 is not present on mature leukocytes from other mammalian species (55). Other investigators have shown that both the pro- form and mature LKT are capable of binding CD18, although the pro-LKT does not cause cytotoxicity (62). No biological role has been assigned to the pro- form of LKT.Recently, several authors have shown that human neutrophils are able to undergo a form of cell death, called NETosis, that is distinct from apoptosis and necrosis (12, 13, 31, 51, 69). NETosis is defined as the release of nuclear DNA from an activated neutrophil into the extracellular environment, with little concomitant release of lactate dehydrogenase (LDH) (12). The extracellular DNA and associated proteins (e.g., histones) released by activated neutrophils have been termed neutrophil extracellular traps (NETs) (12). There are four steps leading to NET formation. These are neutrophil activation, nuclear envelope degradation, mixing of nuclear DNA with cytosolic proteins, and extrusion of the DNA-protein mixture from the cell (31). Treatment of human neutrophils with interleukin-8 (IL-8), phorbol 12-myristate 13-acetate (PMA), or lipopolysaccharide (LPS) causes NET formation (12, 31, 69). NET formation also occurs in response to prokaryotic and eukaryotic pathogens (12, 35, 64). To date, no bacterial exotoxin has been shown to cause NET formation.NETs are composed of extracellular DNA that is studded with antimicrobial proteins. The latter include nuclear histones and primary, secondary, and tertiary granular components such as neutrophil elastase, myeloperoxidase, lactoferrin, and gelatinase (51, 69). When neutrophils become activated and commit to NET formation, they also are capable of trapping and killing pathogens. To date, NETs have been shown to kill a variety of Gram-negative and Gram-positive bacteria, fungi, and protozoans (2, 7-9, 12, 13, 15, 19, 20, 27, 28, 31, 34, 35, 43, 50-53, 59, 64, 67, 70). Here, we examine if M. haemolytica and its LKT cause NET formation by bovine neutrophils and whether NETs are capable of trapping and killing M. haemolytica cells in vitro.  相似文献   

14.
15.
Pseudallescheria boydii has long been known to cause white grain mycetoma in immunocompetent humans, but it has recently emerged as an opportunistic pathogen of humans, causing potentially fatal invasive infections in immunocompromised individuals and evacuees of natural disasters, such as tsunamis and hurricanes. The diagnosis of P. boydii is problematic since it exhibits morphological characteristics similar to those of other hyaline fungi that cause infectious diseases, such as Aspergillus fumigatus and Scedosporium prolificans. This paper describes the development of immunoglobulin M (IgM) and IgG1 κ-light chain monoclonal antibodies (MAbs) specific to P. boydii and certain closely related fungi. The MAbs bind to an immunodominant carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and hyphal cell walls of P. boydii and Scedosporium apiospermum. The MAbs do not react with S. prolificans, Scedosporium dehoogii, or a large number of clinically relevant fungi, including A. fumigatus, Candida albicans, Cryptococcus neoformans, Fusarium solani, and Rhizopus oryzae. The MAbs were used in immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to accurately differentiate P. boydii from other infectious fungi and to track the pathogen in environmental samples. Specificity of the DAS-ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of environmental isolates.Pseudallescheria boydii is an infectious fungal pathogen of humans (7, 16, 40, 58, 59). It is the etiologic agent of white grain mycetoma in immunocompetent humans (7) and has emerged over recent years as the cause of fatal disseminated infections in individuals with neutropenia, AIDS, diabetes, renal failure, bone marrow or solid organ transplants, systemic lupus erythematous, and Crohn''s disease; in those undergoing corticosteroid treatment; and in leukemia and lymphoma patients (1, 2, 3, 18, 27, 31, 32, 34, 36, 37, 38, 47, 49, 52). The fungus is the most prevalent species after Aspergillus fumigatus in the lungs of cystic fibrosis patients (8), where it causes allergic bronchopulmonary disease (5) and chronic lung lesions simulating aspergillosis (24). Near-drowning incidents and recent natural disasters, such as the Indonesian tsunami in 2004, have shown P. boydii and the related species Scedosporium apiospermum and Scedosporium aurantiacum to be the causes of fatal central nervous system infections and pneumonia in immunocompetent victims who have aspirated polluted water (4, 11, 12, 21, 22, 25, 30, 33, 57). Its significance as a potential pathogen of disaster evacuees has led to its recent inclusion in the Centers for Disease Control and Prevention list of infectious etiologies in persons with altered mental statuses, central nervous system syndromes, or respiratory illness.P. boydii is thought to be an underdiagnosed fungus (60), and misidentification is one of the reasons that the mortality rate due to invasive pseudallescheriasis is high. Detection of invasive P. boydii infections, based on cytopathology and histopathology, is problematic since it can occur in tissue and bronchoalveolar and bronchial washing specimens with other hyaline septated fungi, such as Aspergillus and Fusarium spp. (7, 23, 53, 60), which exhibit similar morphological characteristics upon microscopic examination (2, 23, 24, 28, 37, 44, 53, 60). Early diagnosis of infection by P. boydii and differentiation from other agents of hyalohyphomycosis is imperative, since it is refractory to antifungal compounds, such as amphotericin B, that are commonly administered for the control of fungal infections (10, 39, 58).The immunological diagnosis of Pseudallescheria infections has focused on the detection of antigens by counterimmunoelectrophoresis, and by immunohistological techniques using polyclonal fluorescent antibodies, but cross-reactions with antigens from other fungi, such as Aspergillus species, occurs (7, 19, 23). Pinto and coworkers (41, 42) isolated a peptidorhamnomannan from hyphae of P. boydii and proposed the antigen as a diagnostic marker for the pathogen. Cross-reactivity with Sporothrix schenckii and with Aspergillus have, however, been noted (23, 41). Furthermore, it is uncertain whether a similar antigen is present in the related pathogenic species S. prolificans, an important consideration in patient groups susceptible to mixed Scedosporium infections (6, 18).Hybridoma technology allows the production of highly specific MAbs that are able to differentiate between closely related species of fungi (54, 55, 56). The purpose of this paper is to report the development of MAbs specific to P. boydii and certain closely related species and their use to accurately discriminate among P. boydii, A. fumigatus, and other human pathogenic fungi by using immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs).Currently, the natural environmental habitat of P. boydii is unknown, but nutrient-rich, brackish waters, such as estuaries, have been suggested (9, 17). In combination with a semiselective isolation procedure, I show how the DAS-ELISA can be used to rapidly and accurately track the pathogen in naturally infested estuarine muds, and in doing so illustrate the potential of the DAS-ELISA as a diagnostic platform for detection of P. boydii and related species within the Pseudallescheria complex.  相似文献   

16.
A portion of the total cellular pool of the Legionella pneumophila chaperonin, HtpB, is found on the bacterial cell surface, where it can mediate invasion of nonphagocytic cells. HtpB continues to be abundantly produced and released by internalized L. pneumophila and may thus have postinvasion functions. We used here two functional models (protein-coated beads and expression of recombinant proteins in CHO cells) to investigate the competence of HtpB in mimicking early intracellular trafficking events of L. pneumophila, including the recruitment of mitochondria, cytoskeletal alterations, the inhibition of phagosome-lysosome fusion, and association with the endoplasmic reticulum. Microscopy and flow cytometry studies indicated that HtpB-coated beads recruited mitochondria in CHO cells and U937-derived macrophages and induced transient changes in the organization of actin microfilaments in CHO cells. Ectopic expression of HtpB in the cytoplasm of transfected CHO cells also led to modifications in actin microfilaments similar to those produced by HtpB-coated beads but did not change the distribution of mitochondria. Association of phagosomes containing HtpB-coated beads with the endoplasmic reticulum was not consistently detected by either fluorescence or electron microscopy studies, and only a modest delay in the fusion of TrOv-labeled lysosomes with phagosomes containing HtpB-coated beads was observed. HtpB is the first Legionella protein and the first chaperonin shown to, by means of our functional models, induce mitochondrial recruitment and microfilament rearrangements, two postinternalization events that typify the early trafficking of virulent L. pneumophila.The gram-negative bacterium Legionella pneumophila is an intracellular parasite of amoebae (67) that has emerged as an accidental human pathogen capable of replicating in mononuclear phagocytes (38), primarily alveolar macrophages. Lung infection by L. pneumophila usually begins after the inhalation of contaminated water aerosol and manifests as an atypical pneumonia known as Legionnaires'' disease (86).The early events of L. pneumophila infection are well described at the cellular level. The first steps of infection are bacterial attachment to host cell receptors and subsequent internalization by conventional phagocytosis (27, 61, 75), coiling phagocytosis (12, 35), or macropinocytosis (84). Once internalized, L. pneumophila remains contained within a membrane-bound compartment, which is transformed into a specialized vacuole referred to as the Legionella-containing vacuole (LCV). The major cellular events of LCV conditioning include recruitment of vesicles and mitochondria (26, 33, 60), avoidance of both acidification and fusion with lysosomes (34, 37), and association with the endoplasmic reticulum (ER) (33, 42, 79, 80). Less known (or predictable) are the early changes in F-actin organization induced by L. pneumophila, which seem to be unrelated to the F-actin rearrangements required for its internalization (16, 44, 60, 78).At the molecular level, at least five bacterial gene products, RtxA, EnhC (13, 14), LpnE (58), LvhB2 (65), and HtpB (25) are involved in cell entry, confirming L. pneumophila''s flexibility in the use of alternate entry pathways. Conditioning of the LCV requires the Dot/Icm type IV secretion system of L. pneumophila, suggesting that the translocation of type IV-secreted effectors into host cells is essential for the recruitment of organelles and avoidance of acidification and fusion with lysosomes (3, 15, 53). Although a number of specific Dot/Icm effectors have been identified that mediate the sequestration of ER-derived vesicles to the LCV (19, 40, 48, 50, 63), no specific gene products have been linked to the recruitment of mitochondria or the inhibition of LCV-lysosome fusion.It has been hypothesized that the factors that mediate the internalization of L. pneumophila are preformed and may also participate in the early conditioning of the LCV (see, for example, reference 41). This hypothesis is supported by the following observations: (i) conditioning of the LCV begins within minutes after L. pneumophila internalization (18, 42, 49, 68), and (ii) antibiotic-treated legionellae (incapable of de novo protein synthesis) are not affected in their ability to attach to or enter host cells (26, 39) and resume intracellular growth immediately after removal of the antibiotic (39). It seems that L. pneumophila is prearmed to deploy a sequence of coordinated events (which follow a precise timing) immediately after making contact with a host cell, a notion also suggested by detailed microscopy studies conducted in the genetically tractable amoeba Dictyostelium discoideum (49). Moreover, some of the infection steps clearly have a short duration (49), suggesting that L. pneumophila may transiently alter a number of cellular processes. The transient nature of such effects sometimes depends on the host cell being infected. For instance, in human macrophages avoidance of both LCV acidification and fusion with lysosomes persists throughout the intracellular growth cycle (70, 85), whereas in murine macrophages, LCVs acidify and fuse with lysosomes toward the end of the L. pneumophila replicative phase (76). In contrast, other LCV conditioning processes, such as the association with mitochondria and ER, are structurally maintained (regardless of the cellular host being infected) until the replicative phase of the intracellular growth cycle has been completed (26, 33, 60).L. pneumophila HtpB is a member of the group 1 chaperonins, which includes the evolutionarily conserved and essential chaperonins of bacteria, mitochondria and plastids, with well-characterized roles in protein folding (28). The function of bacterial chaperonins, however, is not limited to protein folding. Chaperonins of bacteria can mediate adherence to mammalian cells (22), stabilize membrane lipids (81), paralyze insects (87), and activate eukaryotic signaling cascades (51, 88). The expression of HtpB is upregulated in the presence of L929 murine cells or human monocytes, and high levels of expression are maintained during the course of intracellular infection (21), leading to its accumulation in the lumen of the LCV, as shown in infected HeLa cells (24). The increased production of HtpB in L929 cells and monocytes correlates with virulence because spontaneous salt-tolerant, avirulent mutants of L. pneumophila are unable to upregulate the expression of HtpB upon contact with these host cells (21). In addition, HtpB is found in association with the L. pneumophila cytoplasmic membrane (5, 23), as well as on the bacterial cell surface (24), where it can mediate invasion of HeLa cells (25). As a L. pneumophila factor that mediates cell entry (25), and one that continues to be abundantly produced and released into the LCV after L. pneumophila internalization (24, 32), HtpB may participate in the early intracellular establishment of L. pneumophila. In the present study, we show that microbeads coated with purified HtpB (but not uncoated beads or beads coated with control proteins) are sufficient to attract mitochondria and transiently modify the organization of actin microfilaments in mammalian cells, two postinternalization events that typify the early trafficking of virulent L. pneumophila.  相似文献   

17.
Trichosporon species have been reported as emerging pathogens and usually occur in severely immunocompromised patients. In the present work, 27 clinical isolates of Trichosporon species were recovered from 27 patients. The patients were not immunocompromised, except for one with acute myeloid leukemia. Sequence analysis revealed the isolation of Trichosporon dohaense Taj-Aldeen, Meis & Boekhout sp. nov., with CBS 10761T as the holotype strain, belonging to the Ovoides clade. In the D1-D2 large-subunit rRNA gene analysis, T. dohaense is a sister species to T. coremiiforme, and in the internal transcribed spacer analysis, the species is basal to the other species of this clade. Molecular identification of the strains yielded 17 T. asahii, 3 T. inkin, 2 T. japonicum, 2 T. faecale, and 3 T. dohaense isolates. The former four species exhibited low MICs for five antifungal azoles but showed high MICs for amphotericin B. T. dohaense demonstrated the lowest amphotericin B MIC (1 mg/liter). For the majority of T. asahii isolates, amphotericin B MICs were high (MIC at which 90% of isolates were inhibited [MIC90], ≥16 mg/liter), and except for fluconazole (MIC90, 8 mg/liter), the azole MICs were low: MIC90s were 0.5 mg/liter for itraconazole, 0.25 mg/liter for voriconazole, 0.25 mg/liter for posaconazole, and 0.125 mg/liter for isavuconazole. The echinocandins, caspofungin and anidulafungin, demonstrated no activity against Trichosporon species.Trichosporon species are yeast-like fungi, widely distributed in nature and commonly isolated from soil and other environmental sources, which have been involved in a variety of opportunistic infections and have been recognized as emerging fungal pathogens in immunocompromised hosts (19, 79, 80). Disseminated Trichosporon infections are potentially life-threatening and are often fatal in neutropenic patients (7, 22). Although uncommon, pathogenic species of this genus have been reported increasingly, mostly in patients with malignant diseases (3, 6, 9, 10, 11, 20, 32, 44, 47, 48, 63, 77), neonates (18, 56, 84), a bone marrow transplant recipient (22), a solid organ transplant recipient (50), and patients with human immunodeficiency virus (34, 35, 46). Trichosporon has also been reported to cause fungemia (5, 9, 25, 29, 30, 33, 53, 62). Members of the genus Trichosporon have occasionally been implicated as nail pathogens (16, 28, 74) and in subcutaneous infections (66). Trichosporon is considered an opportunistic agent, and therefore, recovery of Trichosporon species capable of growing at 37°C, especially from immunocompromised patients, should be regarded as potentially significant. Several reports have addressed the difficulty of identifying Trichosporon to the species level by physiological and biochemical characteristics (2, 64); therefore, molecular methods based on the sequencing of the internal transcribed spacer (ITS) have been developed (15, 69, 71, 72).In the present paper, we report the isolation of Trichosporon species from clinical specimens over a 4-year period in Qatar, the poor performance of biochemical identification methods, the significance of molecular identification, and the antifungal susceptibility data for the isolates. While investigating the molecular identification of Trichosporon species, we found three strains that do not match any of the published strains in the literature. We describe this organism as Trichosporon dohaense Taj-Aldeen, Meis & Boekhout, sp. nov., the name proposed for this species.  相似文献   

18.
Campylobacter jejuni is a leading cause of food-borne illness in the United States. Despite significant recent advances, its mechanisms of pathogenesis are poorly understood. A unique feature of this pathogen is that, with some exceptions, it lacks homologs of known virulence factors from other pathogens. Through a genetic screen, we have identified a C. jejuni homolog of the VirK family of virulence factors, which is essential for antimicrobial peptide resistance and mouse virulence.Campylobacter jejuni is a leading cause of infectious diarrhea in industrialized and developing countries (2, 67). Although most often self-limiting, C. jejuni infections can also lead to severe disease and harmful sequelae, such as Guillain-Barré syndrome (4, 55). Despite the significant progress made during the past few years, the mechanisms of C. jejuni pathogenesis remain poorly understood. A number of potential virulence factors have been identified, and in some cases, their role in virulence and/or colonization has been demonstrated in animal models of infection. For example, motility has been shown to be crucial in order for C. jejuni to colonize or cause disease in several animal models of infection (1, 15, 30, 54). A variety of surface structures, such as adhesins (34, 40, 64) and polysaccharides (5, 6), and glycosylation systems (38, 74), which presumably modify some of these surface structures, have also been shown to be important for infection. Additional studies have revealed the importance of specific metabolic pathways in C. jejuni growth both in vitro and within animals (16, 25, 31, 60, 76). The ability of C. jejuni to invade and survive within nonphagocytic cells has also been proposed to be an important virulence determinant (21, 41, 57, 58, 68, 75, 80).The available genome sequences of several C. jejuni strains have provided significant insight into C. jejuni physiology and metabolism (22, 32, 62, 63, 65). Remarkably, however, analysis of these C. jejuni genome sequences has revealed very few homologs of common virulence factors from other pathogens. A notable exception is the toxin CDT (cytolethal distending toxin), which is also encoded by several other important bacterial pathogens (36, 44, 45). In this paper we describe the identification of a transposon insertion mutant in C. jejuni 81-176, which results in increased susceptibility to antimicrobial peptides and a significant defect in the ability of the organism to cause disease in an animal model of infection. The insertion mutant was mapped to the CJJ81176_1087 open reading frame (Cj1069 in the C. jejuni NCT 11168 reference strain), which encodes a protein with very significant amino acid sequence similarity to the VirK (DUF535) family of virulence factors (13, 20, 56).  相似文献   

19.
20.
Chronic granulomatous disease (CGD) patients are susceptible to life-threatening infections by the Burkholderia cepacia complex. We used leukocytes from CGD and healthy donors and compared cell association, invasion, and cytokine induction by Burkholderia multivorans strains. A CGD isolate, CGD1, showed higher cell association than that of an environmental isolate, Env1, which correlated with cell entry. All B. multivorans strains associated significantly more with cells from CGD patients than with those from healthy donors. Similar findings were observed with another CGD pathogen, Serratia marcescens, but not with Escherichia coli. In a mouse model of CGD, strain CGD1 was virulent while Env1 was avirulent. B. multivorans organisms were found in the spleens of CGD1-infected mice at levels that were 1,000 times higher than those found in Env1-infected mice, which was coincident with higher levels of the proinflammatory cytokine interleukin-1β. Taken together, these results may shed light on the unique susceptibility of CGD patients to specific pathogens.Chronic granulomatous disease (CGD) is a rare primary immunodeficiency resulting from genetic defects in the phagocyte NAPDH oxidase. It is characterized by life-threatening infections caused by specific bacteria and fungi, leading to pneumonias, tissue abscesses, and exuberant granuloma formation (38). The Burkholderia cepacia complex (Bcc) includes at least 10 distinct species and is a leading cause of bacterial infections in CGD (44). Patients with cystic fibrosis (CF) also develop Bcc infections with various outcomes, ranging from no change in clinical course to a more rapid deterioration of lung function to the dreadful cepacia syndrome, which is characterized by necrotizing pneumonia and sepsis (25, 45). Interestingly, Bcc rarely causes infection in healthy individuals, but it can infect patients undergoing bronchoscopies and other procedures (4).Within the Bcc, Burkholderia cenocepacia and Burkholderia multivorans are commonly isolated from CF and non-CF patients (4, 32); the rate of B. multivorans infection now exceeds that of B. cenocepacia at several CF centers (15). In contrast to the high transmissibility of some CF B. cenocepacia strains (i.e., the epidemic lineage ET12) (24, 25), CF B. multivorans infections likely reflect independent acquisitions from unrelated sources (24). Curiously, unlike B. cenocepacia, B. multivorans has been recovered from environmental samples only rarely (1, 24), and it is the most frequently found species among CGD patients (16, 17).The mechanisms by which the Bcc causes disease specifically in CF are not known. Bcc isolates can survive within macrophages (28, 33) and respiratory epithelial cells (5, 21) and can invade epithelial cells in vivo (8, 10) and persist in the lung (9, 10). Cell infection assays using monocytes, macrophages, and epithelial cells (10, 11, 29, 46) show great variability among individual Bcc strains, with no clear correlation between those isolated from CF patients and those isolated from the environment (22). For the most part, these studies have been carried out using tissue culture models (28, 29, 43) and, in some cases, CF human or CF mouse cell systems (34, 35).Much less is known about the interaction between the Bcc and CGD despite the availability of animal models for the disease (20, 31). B. cenocepacia induced the necrosis of human CGD neutrophils but not normal controls (6). Similarly to healthy people, normal mice are resistant to the Bcc and usually show only transient infections upon inoculation (8, 37). On the other hand, CGD mice are highly susceptible to Bcc infection and show clinical signs that are similar to those of the human disease (20, 31, 37).To address why B. multivorans is a pathogen in CGD, we initiated studies with strains isolated from CGD patients and CGD cells. Strains of B. multivorans differed in cell association and cell entry. We found a preferential association of bacteria with CGD instead of normal leukocytes as shown by microscopy and culture techniques. This preferential association is shared by another CGD pathogen, Serratia marcescens, but not by Escherichia coli. Finally, we demonstrate dramatic differences in virulence in B. multivorans strains in a mouse model of CGD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号