首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group A rotaviruses (RVAs) are important gastroenteric pathogens that infect humans and animals. This study aimed to analyze the complete genome sequence, i.e., 11 genome segments of the lapine rotavirus (LRV) identified in the intestine of a dead rabbit in the Republic of Korea (ROK) and to describe the genetic relationships between this lapine isolate [RVA/Rabbit-wt/KOR/Rab1404/2014/G3P[22] (Rab1404)] and other lapine isolates/strains. Rab1404 possessed the following genotype constellation: G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. The P[22] genotype was found to originate from rabbits and was for the first time identified in the ROK. Phylogenetic analysis showed that Rab1404 possessed VP1-3 and VP7 genes, which were closely related to those of the bat strain LZHP2; NSP1-4 genes, which were closely related to those of the simian strain RRV; and VP4, VP6, and NSP5 genes, which were closely related to the genes obtained from other rabbits. Interestingly, a close relationship between Rab1404 and simian RVA strain RVA/Simian-tc/USA/RRV/1975/G3P[3] for 8 gene segments was observed. RRV is believed to be a reassortant between bovine-like RVA strain and canine/feline RVA strains. Rab1404 and canine/feline RVAs shared the genes encoding VP1, VP3, VP7, NSP3, and NSP4. Additionally, the genome segments VP6 (I2), NSP1 (N2), and NSP5 (H3) of Rab1404 were closely related to those of bovine RVAs. This is the first report describing the complete genome sequence of an LRV detected in the ROK. These results indicate that Rab1404 could be a result of interspecies transmission, possibly through multiple reassortment events in the strains of various animal species and the subsequent transmission of the virus to a rabbit. Additional studies are required to determine the evolutionary source and to identify possible reservoirs of RVAs in nature.  相似文献   

2.
The group A rotavirus (RVA) G3P[9] is a rare VP7–VP4 genotype combination, detected occasionally in humans and cats. Other than the prototype G3P[9] strain, RVA/Human- tc/JPN/AU-l/1982/G3P3[9], the whole genomes of only two human G3P[9] RVA strains and two feline G3P[9] RVA strains have been analyzed so far, revealing complex evolutionary patterns, distinct from that of AU-1. We report here the whole genomic analyses of two human G3P[9] RVA strains, RVA/Human-tc/CHN/L621/2006/G3P[9] and RVA/Human-wt/CHN/E2451/2011/G3P[9], detected in patients with diarrhea in China. Strains L621 and E2451 possessed a H6 NSP5 genotype on an AU-1-like genotype constellation, not reported previously. However, not all the genes of L621 and E2451 were closely related to those of AU-1, or to each other, revealing different evolutionary patterns among the AU-1-like RVAs. The VP7, VP4, VP6 and NSP4 genes of E2451 and L621 were found to cluster together with human G3P[9] RVA strains believed to be of possible feline/canine origin, and feline or raccoon dog RVA strains. The VP1, VP3, NSP2 and NSP5 genes of E2451 and L621 formed distinct clusters in genotypes typically found in feline/canine RVA strains or RVA strains from other host species which are believed to be of feline/canine RVA origin. The VP2 genes of E2451 and L621, and NSP3 gene of L621 clustered among RVA strains from different host species which are believed to have a complete or partial feline/canine RVA origin. The NSP1 genes of E2451 and L621, and NSP3 gene of E2451 clustered with AU-1 and several other strains possessing a complete or partial feline RVA strain BA222-05-like genotype constellation. Taken together, these observations suggest that nearly all the eleven gene segments of G3P[9] RVA strains L621 and E2451 might have originated from feline/canine RVAs, and that reassortments may have occurred among these feline/canine RVA strains, before being transmitted to humans.  相似文献   

3.
RNA–RNA hybridization assays and complete genome sequence analyses have shown that feline rotavirus (FRV) and canine rotavirus (CRV) strains display at least two distinct genotype constellations (genogroups), represented by the FRV strain RVA/Cat-tc/AUS/Cat97/1984/G3P[3] and the human rotavirus (HRV) strain RVA/Human-tc/JPN/AU-1/1982/G3P3[9], respectively. G3P[3] and G3P[9] strains have been detected sporadically in humans. The complete genomes of two CRV strains (RVA/Dog-tc/ITA/RV198-95/1995/G3P[3] and RVA/Dog-tc/ITA/RV52-96/1996/G3P[3]) and an unusual HRV strain (RVA/Human-tc/ITA/PA260-97/1997/G3P[3]) were determined to further elucidate the complex relationships among FRV, CRV and HRV strains. The CRV strains RV198-95 and RV52-96 were shown to possess a Cat97-like genotype constellation. However, 3 and 5 genes of RV198-95 and RV52-96, respectively, were found in distinct subclusters of the same genotypes, suggesting the occurrence of reassortment events among strains belonging to this FRV/CRV/HRV genogroup. Detailed phylogenetic analyses of the HRV strain PA260-97 showed that (i) 8 genome segments (VP3, VP4, VP6, VP7 and NSP2-5) clustered closely with RV198-95 and/or RV52-96; (ii) 2 genome segments (VP1 and VP2) were more closely related to HRV AU-1; and (iii) 1 genome segment (NSP1) was distantly related to any other established NSP1 genotypes and was ratified as a new NSP1 genotype, A15. These findings suggest that the human strain PA260-97 has a history of zoonotic transmission and is likely a reassortant among FRV/CRV strains from the Cat97 and AU-1-like genogroups. In addition, a potential third BA222-05-like genogroup of FRV and HRV strains should be recognized, consisting of rotavirus strains with a stable genetic genotype constellation of genes also partially related to bovine rotavirus (BRV) and bovine-like rotaviruses. The detailed phylogenetic analysis indicated that three major genotype constellations exist among FRV, CRV and feline/canine-like HRV strains, and that reassortment and interspecies transmission events contribute significantly to their wide genetic diversity.  相似文献   

4.
Rotavirus-A (RVAs), are the major cause of severe gastroenteritis in the young of mammals and birds. RVA strains possessing G6, G8, and G10 genotypes in combination with P[1] or P[11] have been commonly detected in cattle. During a routine surveillance for enteric viruses in a bovine population on North-Western temperate Himalayan region of India, an uncommon bovine RVA strain, designated as RVA/Cow-wt/IND/M1/09/2009 was detected in a diarrhoeic crossbred calf. The examination of nearly complete genome sequence of this RVA strain revealed an unusual G-P combination (G3P[11]) on a typical bovine RVA genotype backbone (I2-R2-C2-M2-A11-N2-T6-E2-H3). The VP7 gene of M1/09 isolate displayed a maximum nucleotide sequence identity of 73.8% with simian strain (RVA/Simian-tc/USA/RRV/1975/G3P[3]). The VP4 and NSP5 genes clustered with an Indian pig strain, RVA/Pig-wt/IND/AM-P66/2012/G10P[11] (99.6%), and a caprine strain, RVA/Goat-tc/BGD/GO34/1999/G6P[1] (98.9%) from Bangladesh, respectively, whilst the, VP6, NSP1, NSP3 and NSP4 genes were identical or nearly identical to Indian bovine strains (RVA/Cow-wt/IND/B-72/2008/G10P[X], RVA/Cow-wt/IND/B85/2010/GXP[X], and RVA/Cow-wt/IND/C91/2011/G6P[X]). The remaining four genes (VP1, VP2, VP3 and NSP2) were more closely related to RVA/Human-wt/ITA/PAI11/1996/G2P[4] (93.5%), RVA/Sheep-wt/CHN/LLR/1985/G10P[15] (88.8%), RVA/Human-tc/SWE/1076/1983/G2P2A[6] (93.2%) and RVA/Human-wt/AUS/CK20003/2000/G2P[4] (91.2%), respectively. Altogether, these findings are suggestive of multiple independent interspecies transmission and reassortment events between co-circulating bovine, porcine, ovine and human rotaviruses. The complete genome sequence information is necessary to establish the evolutionary relationship, interspecies transmission and ecological features of animal RVAs from different geographical regions.  相似文献   

5.
The Group A rotavirus (RVA) P[10] is a rare genotype of the RVA VP4 gene. To date, the whole genome sequence of only a single P[10] RVA strain, RVA/Human-tc/IDN/69M/1980/G8P4[10], has been determined, revealing a DS-1-like genotype constellation. Whole genomic analyses of P[10] RVA strains with other VP7 genotypes are essential to obtain conclusive data on the origin and genetic diversity of the P10] RVAs. In the present study, the whole genome of a human G4P[10] RVA strain, RVA/Human-tc/IDN/57M/1980/G4P[10], was analyzed. Strain 57M exhibited an unusual G4-P[10]-I1-R1-C1-M1-A1-N1-T2-E1-H2 genotype constellation, and was found to originate from intergenogroup reassortment events involving acquisition of RVA strain 69M-like VP4, NSP3 and NSP5 genes by a co-circulating Wa-like human G4 RVA strain. Although the reference P[10] strain, 69M, exhibits a DS-1-like genotype constellation, the exact origin of this RVA remains to be elucidated. By detailed phylogenetic analyses, we found that the VP1-VP3, VP6, NSP2 and NSP4 genes of 69M originated from artiodactyl and/or artiodactyl-like human P[14] strains, whilst its NSP1, NSP3 and NSP5 genes were more related to those of typical human DS-1-like strains than those of other RVAs. On the other hand, the origin of the VP4 gene of 69M could not be established. Nevertheless, these observations clearly indicated that strain 69M might have originated from reassortment events involving at least the artiodactyl or artiodactyl-like human RVAs and the typical human DS-1-like strains. The present study provided rare evidence for intergenogroup reassortment events involving co-circulating typical human Wa-like RVAs and unusual RVAs of the DS-1-like genogroup, and revealed the presence of artiodactyl-like genes in a human P[10] strain, highlighting the complex evolutionary patterns of the P[10] RVAs.  相似文献   

6.
We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains.  相似文献   

7.
Although P[6] group A rotaviruses (RVA) cause diarrhoea in humans, they have been also associated with endemics of predominantly asymptomatic neonatal infections. Interestingly, strains representing the endemic and asymptomatic P[6] RVAs were found to possess one of the four common human VP7 serotypes (G1–G4), and exhibited little antigenic/genetic differences with the VP4 proteins/VP4 encoding genome segments of P[6] RVAs recovered from diarrhoeic children, raising interest on their complete genetic constellations. In the present study, we report the overall genetic makeup and possible origin of three such asymptomatic human P[6] RVA strains, RVA/Human-tc/VEN/M37/1982/G1P2A[6], RVA/Human-tc/SWE/1076/1983/G2P2A[6] and RVA/Human-tc/AUS/McN13/1980/G3P2A[6]. G1P[6] strain M37 exhibited an unusual genotype constellation (G1-P[6]-R1-C1-M1-A1-N1-T2-E1-H1), not reported previously, and was found to originate from possible intergenogroup reassortment events involving acquisition of a DS-1-like NSP3 encoding genome segment by a human Wa-like RVA strain. On the other hand, G2P[6] strain 1076 exhibited a DS-1-like genotype constellation, and was found to possess several genome segments (those encoding VP1, VP3, VP6 and NSP4) of possible artiodactyl (ruminants) origin on a human RVA genetic backbone. The whole genome of G3P[6] strain McN13 was closely related to that of asymptomatic human Wa-like G3P[6] strain RV3, and both strains shared unique amino acid changes, which might have contributed to their attenuation. Taken together, the present study provided insights into the origin and complex genetic diversity of P[6] RVAs possessing the common human VP7 genotypes. This is the first report on the whole genomic analysis of a G1P[6] RVA strain.  相似文献   

8.
A genotype G3P[14] rotavirus strain was identified in a 12 year old child presenting to the Emergency Department of the Royal Children’s Hospital, Melbourne, with gastroenteritis. G3P[14] strains have been previously identified in rabbits in Japan, China, the USA and Italy and a single lapine-like strain from a child in Belgium.Full genome sequence analysis of RVA/Human-wt/AUS/RCH272/2012/G3P[14] (RCH272) revealed that the strain contained the novel genome constellation G3-P[14]-I2-R3-C3-M3-A9-N2-T6-E2-H3. The genome was genetically divergent to previously characterized lapine viruses and the genes were distantly related to a range of human bovine-like strains and animal strains of bovine, bat and canine/feline characteristics. The VP4, VP6, NSP2, NSP3, NSP4 and NSP5 genes of RCH272 clustered within bovine lineages in the phylogenetic analysis and shared moderate genetic similarity with an Australian bovine-like human strain RVA/Human-tc/AUS/MG6/1993/G6P[14]. Bayesian coalescent analysis suggested these genes of RCH272 and RVA/Human-tc/AUS/MG6/1993/G6P[14] were derived from a population of relatively homogenous bovine-like ancestral strains circulating between 1943 and 1989. The VP7, VP1, VP2 and NSP1 genes shared moderate genetic similarity with the Chinese strain RVA/Bat-tc/CHN/MSLH14/2011/G3P[3] and the VP3 gene clustered within a lineage comprised of canine and feline strains.This strain may represent the direct transmission from an unknown host species or be derived via multiple reassortment events between strains originating from various species. The patient lived in a household containing domesticated cats and dogs and in close proximity to a colony of Gray-headed Flying-foxes. However, without screening numerous animal populations it is not possible to determine the origins of this strain.  相似文献   

9.
P[6] group A rotavirus (RVA) strains identified in four stool specimens collected from children with acute diarrhea in Guangxi Province, southern China in 2010, with unknown G type were further analyzed by full genomic analysis. It was revealed by whole genome sequencing that 11 genomic cognate gene segments of these P[6] RVA strains shared almost 100% nucleotide identities and all exhibited an identical G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 genotype constellation. Phylogenetic analyses of VP7, VP1-VP4, NSP1, NSP2, NSP4 and NSP5 genes revealed that these Guangxi G4P[6] RVA strains were closely related to porcine and porcine-like human RVAs, while VP6 and NSP3 were closely related to those of common human RVAs. Interestingly, the four infants from whom these specimens were collected had come from different villages and/or towns. They had not contacted with each other and had had acute diarrhea before admitted into the same hospital. The genomic analyses and the clinical data revealed that these four Guangxi G4P[6] RVA strains from China were reassortants possessing VP6 and NSP3 gene segments of human origin yet all other nine gene segments of porcine origin. It is the first report on porcine–human reassortant G4P[6] RVA with identical genome configuration circulating in children.  相似文献   

10.
Interspecies transmissions of group A rotavirus (RVA) strains among animals and humans are thought to take place frequently. During a RVA surveillance study in Belgium we isolated an unusual G9P[6] RVA strain, RVA/human-wt/BEL/BE2001/2009/G9P[6], from a 1month old boy, which did not cluster with other G9 or P[6] strains isolated in Belgium. In this study we sequenced and characterized the complete genome of this unusual G9P[6] strain BE2001. Phylogenetic analyses of all 11 genes revealed a unique genotype constellation: G9-P[6]-I5-R1-C1-M1-A8-N1-T7-E1-H1. The VP6 and NSP1 genotypes I5 and A8 are genotypes commonly found in porcine RVA strains, while the VP7 and VP4 genes clustered only distantly to human lineages of G9 and P[6], respectively. The VP1, VP2, VP3, NSP2, NSP4 and NSP5 genes all belonged to Wa-like genotypes, but clustered more closely to porcine strains than to human strains. NSP3 belonged to the rare T7 genotype. Thus far, T7 genotypes have only been detected in one porcine-like human strain (RVA/human-tc/CHN/R479/2004/G4P[6]), one bovine-like human strain (RVA/human-xx/IND/mani-265/2007/G10P[6]) and one bovine RVA strain (RVA/cow-tc/GBR/UK/1973/G6P7[5]). Sequence analysis of the BE2001 NSP5 gene segment revealed a 300 nucleotide duplication in the 3' end non-coding region. BE2001 is most likely a direct interspecies transmission between a pig and a human. Inquiry with the patient's physician revealed that the father of the patient had been working on a pig farm in the week the patient became ill, providing a plausible route of transmission.  相似文献   

11.
Group A rotavirus (RVA) is the most common cause of severe acute viral gastroenteritis in humans and animals worldwide. This study characterized the whole genome sequences of porcine RVAs, 2 G3P[23] strains (CMP40/08 and CMP48/08), 1 G9P[23] strain (CMP45/08), and 1 G3P[13] strain (CMP29/08). These strains were collected from diarrheic piglets less than 7 weeks of age in 4 pig farms in Chiang Mai, Thailand, in 2008. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of CMP40/08 and CMP48/08 strains were assigned as G3-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes based on their nucleotide sequences and phylogenetic analyses. The CMP29/08 strain was different from the CMP40/08 and CMP48/08 strains only in the VP4 gene, since it was assigned as P[13] genotype. Furthermore, the VP7 gene of the CMP45/08 strain was classified as genotype G9, and the NSP3 gene as T7 genotype. The finding of this study supports the porcine-origin of T7 genotype, although the NSP3 gene of this strain was similar to the bovine UK strain at the highest nucleotide sequence identity of 92.6%. Whole genome sequence analysis of the porcine RVAs indicated that multiple inter-genotypic and intra-genotypic reassortment events had occurred among the porcine RVAs circulating in this studied area. Interestingly, the VP7 gene of the CMP45/08 strain, and the VP1, NSP2, and NSP4 genes of all four porcine RVAs strains described in this study revealed much similarity to those of two porcine-like human RVA strains (RVA/Human-tc/THA/Mc323/1989/G9P[19] and RVA/Human-tc/THA/Mc345/1989/G9P[19]) detected in Thailand in 1989. The present study provided important information on the evolution of porcine RVA.  相似文献   

12.
We report here whole genome analysis of a porcine rotavirus-A (RVA) strain RVA/Pig-wt/KNA/ET8B/2015/G5P[13] detected in a diarrheic piglet, and nearly whole genome (except for VP4 gene) analysis of a simian RVA strain RVA/Simian-wt/KNA/08979/2015/G5P[X] detected in a non-diarrheic African green monkey (AGM) on the island of St. Kitts, Caribbean region. Strain ET8B exhibited a G5-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 genotype constellation that was identical to those of Brazilian porcine RVA G5P[13] strains RVA/Pig-wt/BRA/ROTA01/2013/G5P[13] and RVA/Pig-wt/BRA/ROTA07/2013/G5P[13], the only porcine G5P[13] RVAs that have been analyzed for the whole genome so far. Phylogenetically, all the 11 gene segments of ET8B were closely related to those of porcine and porcine-like human RVAs within the respective genotypes. Although the porcine G5P[13] RVAs exhibited identical genotype constellations, ET8B did not appear to share common evolutionary pathways with the Brazilian porcine G5P[13] RVAs. Interestingly, the VP2, VP3, VP6, VP7, and NSP1-NSP5 genes of simian RVA strain 08979 were closely related to those of porcine and porcine-like human RVA strains, exhibiting 99%–100% nucleotide sequence identities to cognate genes of co-circulating porcine RVA strain ET8B. On the other hand, the VP1 of 08979 appeared to be genetically divergent from porcine and human RVAs within the R1 genotype, and its exact origin could not be ascertained. Taken together, these observations suggested that simian strain 08979 might have been derived from interspecies transmission events involving transmission of ET8B-like RVAs from pigs to AGMs. In St. Kitts, AGMs often stray from the wild into livestock farms. Therefore, it may be possible that the AGM acquired the infection from a pig farm on the island. To our knowledge, this is the first report on detection of porcine-like RVAs in monkeys. Also, the present study is the first to report whole genomic analysis of a porcine RVA strain from the Caribbean region.  相似文献   

13.
Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand.  相似文献   

14.
The group A rotavirus (RVA) P[19] is a rare P-genotype of the RVA VP4 gene, reported so far in humans and pigs. Whole genomic analyses of P[19] strains are essential to study their origin and evolutionary patterns. To date, all the 11 genes of only two P[19] strains, RVA/Human-wt/IND/RMC321/1990/G9P[19] and RVA/Human-wt/IND/mani-97/2006/G9P[19], have been analyzed, providing evidence for their porcine origin. In the present study, the whole genomes of the first reported human P[19] strains, RVA/Human-tc/THA/Mc323/1989/G9P[19] and RVA/Human-tc/THA/Mc345/1989/G9P[19], were analyzed. Strains Mc323 and Mc345 exhibited a G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype constellation. With the exception of the NSP5 gene, both the strains were closely related to each other. Most of the genes of Mc323 (VP2-4, VP6-7, NSP1-4 genes) and Mc345 (VP2-4, VP6-7 and NSP1-5 genes) appeared to be of porcine origin, whilst the exact origin of VP1 and NSP5 genes of Mc323 and VP1 gene of Mc345 could not be ascertained. Therefore, strains Mc323 and Mc345 were found to have a porcine RVA genetic backbone, and are likely of porcine origin. Taken together, our observations corroborated the hypothesis that P[19] strains might be derived from porcine RVAs, providing important insights into the origin of P[19] strains, and on interspecies transmission of RVAs.  相似文献   

15.
Rotavirus is one of the leading causes of acute gastroenteritis in infants and young children. RVAs infect not only humans but also a wide range of mammals including rats, which represent a reservoir of several other zoonotic pathogens.Due to the segmented nature of the RVA genome, animal RVA strains can easily adapt to the human host by reassortment with co-infecting human viruses.This study aims to detect and characterize RVA in the intestinal content of Italian sinantropic rats (Rattus rattus). Out of 40 samples examined following molecular approach, one resulted positive for RVA. The molecular characterization of VP1-4, 6 and 7, and NSP1-5 genes by sequencing revealed the genomic constellation G3-P[3]-I1-R11-C11-M10-A22-N18-T14-E18-H13. This uncommon genomic combination includes: the VP1-4,VP7, the NSP1, 3, 4 and 5 gene segments, closely related to those of RVA from rodents, the N18 novel genotype established for the NSP2 gene segment and the human Wa-like VP6 gene, suggesting interspecies reassortment.  相似文献   

16.
During the ongoing rotavirus strain surveillance program conducted in Bulgaria, an unusual human rotavirus A (RVA) strain, RVA/Human/BG/BG620/2008/G5P[6], was identified among 2200 genotyped Bulgarian RVAs. This strain showed the following genomic configuration: G5–P[6]–I1–R1–C1–M1–A8–N1–T1–E1–H1. Phylogenetic analysis of the genes encoding the neutralization proteins and backbone genes identified a probable mixture of RVA genes of human and porcine origin. The VP1, VP6 and NSP2 genes were more closely related to typical human rotavirus strains. The remaining eight genes were either closely related to typical porcine and unusual human–porcine reassortant rotavirus strains or were equally distant from reference human and porcine strains. This study is the first to report an unusual rotavirus isolate with G5P[6] genotype in Europe which has most likely emerged from zoonotic transmission. The absence of porcine rotavirus sequence data from this area did not permit to assess if the suspected ancestral zoonotic porcine strain already had human rotavirus genes in its genome when transmitted from pig to human, or, the transmission was coupled or followed by gene reassortment event(s). Because our strain shared no neutralization antigens with rotavirus vaccines used for routine immunization in children, attention is needed to monitor if this G–P combination will be able to emerge in human populations. A better understanding of the ecology of rotavirus zoonoses requires simultaneous monitoring of rotavirus strains in humans and animals.  相似文献   

17.
G12 group A rotavirus (RVA) are currently recognized as a globally emerging genotype and have been described in combination with several P-types. In Brazil, G12 RVA strains have been described in the Southern (2003) and Northern (2008–2010) regions, in combination with the P[9] and P[6] genotype, respectively. To date, few complete genomes of G12 RVA strains have been described (none from Brazilian strains), considering G12P[9] genotype just one strain, RVA/Human-tc/THA/T152/1998/G12P[9], has their 11 gene segments characterized. This study aims to determine the genomic constellation of G12P[9] and G12P[8] RVA strains detected in Brazil between 2006 and 2011. Therefore, the eleven gene segments of five Brazilian G12 RVA strains were amplified and sequenced, and the genotype of each gene segment was assigned using phylogenetic analysis. Complete genome analyses of G12 RVA strain circulating between 2006 and 2011 in Brazil revealed a conserved Wa-like genomic constellation for three G12P[8] RVA strains; whereas the two G12P[9] strains possessed distinct reassorted AU-1-like genomic constellations, closely related to the reference strain RVA/Human-tc/THA/T152/1998/G12P[9] in most genes. The results obtained in the current study suggest that G12P[9] (AU-1-like) and G12P[8] (Wa-like) strains detected in different regions of Brazil do not share a common origin. Moreover, while Brazilian G12P[8] RVA strains showed a complete Wa-like human constellation, both G12P[9] strains possessed an NSP1 gene of bovine origin (NSP1), and RVA/Human-wt/BRA/PE18974/2010/G12P[9] also possessed a VP3 gene of canine/feline origin.  相似文献   

18.
During an ongoing surveillance for diarrheal pathogens, an unusual human group A rotavirus strain G3P[10] (RVA/Human-wt/IND/mcs60/2011/G3P[10]) was detected in a stool sample of a 14 months old girl child with acute diarrhea in Kolkata, eastern India. The VP7 nucleotide sequence of this strain revealed a close phylogenetic relationship to the prototype G3 strain AU-1 and Australian feline strain Cat2, whereas, the VP4 gene segment was closely related to the G8P[10] rotavirus 69M from Indonesia. Analysis of 11 gene segments of this unusual G3P[10] strain demonstrates a complex evolutionary pattern, with genes possibly derived from the group A rotaviruses of human DS-1-like and AU-1-like strains of simian and caprine host species. To our knowledge, this is the first complete genotyping report of any G3P[10] rotavirus, worldwide.  相似文献   

19.
The G12 rotavirus genotype is globally emerging to cause severe gastroenteritis in children. Common G12 rotaviruses have either a Wa-like or DS-1-like genome constellation, while some G12 strains may have unusual genome composition. In this study, we determined the full-genome sequence of a G12P[9] strain (ME848/12) detected in a child hospitalized with acute gastroenteritis in Italy in 2012. Strain ME848/12 showed a complex genetic constellation (G12-P[9]-I17-R12-C12-M11-A12-N12-T7-E6-H2), likely derived from multiple reassortment events, with the VP1, VP2, VP3 and NSP2 genes being established as novel genotypes R12, C12, M11 and N12, respectively. Gathering sequence data on human and animal rotaviruses is important to trace the complex evolutionary history of atypical RVAs.  相似文献   

20.
Animal–human interspecies transmission is thought to play a significant role in influencing rotavirus strain diversity in humans. Proving this concept requires a better understanding of the complete genetic constellation of rotaviruses circulating in various animal species. However, very few whole genomes of animal rotaviruses, especially in developing countries, are available. In this study, complete genetic configuration of the first African camel rotavirus strain (RVA/Camel-wt/SDN/MRC-DPRU447/2002/G8P[11]) was assigned a unique G8-P[11]-I2-R2-C2-M2-A18-N2-T6-E2-H3 genotype constellation that has not been reported in other ruminants. It contained a novel NSP1 genotype (genotype A18). The evolutionary dynamics of the genome segments of strain MRC-DPRU447 were rather complex compared to those found in other camelids. Its genome segments 1, 3, 7–10 were closely related (>93% nucleotide identity) to those of human–animal reassortant strains like RVA/Human-tc/ITA/PA169/1988/G6P[14] and RVA/Human-wt/HUN/Hun5/1997/G6P[14], segments 4, 6 and 11 shared common ancestry (>95% nucleotide identity) with bovine rotaviruses like strains RVA/Cow-wt/CHN/DQ-75/2008/G10P[11] and RVA/Cow-wt/KOR/KJ19-2/XXXX/G6P[7], whereas segment 2 was closely related (94% nucleotide identity) to guanaco rotavirus strain RVA/Guanaco-wt/ARG/Rio_Negro/1998/G8P[1]. Its genetic backbone consisted of DS-1-like, AU-1-like, artiodactyl-like and a novel A18 genotype. This suggests that strain MRC-DPRU447 potentially emerged through multiple reassortment events between several mammalian rotaviruses of at least two genogroups or simply strain MRC-DPRU447 display a unique progenitor genotypes. Close relationship between some of the genome segments of strain MRC-DPRU447 to human rotaviruses suggests previous occurrence of reassortment processes combined with interspecies transmission between humans and camels. The whole genome data for strain MRC-DPRU447 adds to the much needed animal rotavirus data from Africa which is limited at the moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号