首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system.The nervous system is formed by migration of neuronal precursors and immature neurons to specific locations during development. The classic radial unit hypothesis of mammalian brain development postulates that in the developing neocortex, glutamatergic, excitatory, principal neurons migrate radially to form discrete information-processing columns of ontogenetic origin (1), whereas GABAergic, inhibitory, modulatory interneurons migrate tangentially across columns (2). Neurogenesis persists in the adult mammalian brain in two primary regions and is thought to follow the classic migration model (3, 4). In the subventricular zone (SVZ) of the lateral ventricles, new neurons generated from neural precursors migrate tangentially to the olfactory bulb to become GABAergic interneurons (5, 6). In contrast, in the subgranular zone (SGZ) of the dentate gyrus, new neurons generated from radial glia-like neural stem cells (RGLs) migrate radially into the granule cell layer to become principal glutamatergic granule cells (7). Due to technical challenges, migratory patterns have only been examined at the cell-population level, and thus we still lack detailed information about the spatial relationship between individual precursors and their progeny in vivo. Both adult neurogenic niches are highly vascularized, and this property is hypothesized to play a critical role in adult neurogenesis (3). In both adult SVZ (810) and SGZ (11), proliferating progenitor cells are in close association with the vasculature, yet the functional role of the vasculature in the niche remains to be fully explored.Contrary to the classic model, our recent clonal lineage tracing of individual quiescent RGLs showed tangential distribution of glutamatergic granule neurons with respect to their parental RGL in the adult dentate gyrus (12). We therefore systematically investigated the migration pattern and trajectory of these newborn cells. Using a clonal lineage-tracing approach that preferentially targets active RGLs in the adult mouse dentate gyrus, thereby birthdating their newborn progeny in vivo, we found significant tangential distribution of newborn neuroblasts from their parental RGL. Furthermore, neuroblasts directly contact the vascular network, suggesting an important function of blood vessels as a substrate for migration. Together, our results reveal a previously unidentified mode of glutamatergic neuronal migration under physiological conditions in the adult mammalian brain.  相似文献   

3.
New neurons, which have been implicated in pattern separation, are continually generated in the dentate gyrus in the adult hippocampus. Using a genetically modified rabies virus, we demonstrated that molecular layer perforant pathway (MOPP) cells innervated newborn granule neurons in adult mouse brain. Stimulating the perforant pathway resulted in the activation of MOPP cells before the activation of dentate granule neurons. Moreover, activation of MOPP cells by focal uncaging of glutamate induced strong inhibition of granule cells. Together, these results indicate that MOPP cells located in the molecular layer of the dentate gyrus contribute to feed-forward inhibition of granule cells via perforant pathway activation.  相似文献   

4.
During development, coordinate regulation of cell cycle exit and differentiation of neuronal precursors is essential for generation of appropriate number of neurons and proper wiring of neuronal circuits. BM88 is a neuronal protein associated in vivo with terminal neuron-generating divisions, marking the exit of proliferative cells from the cell cycle. Here, we provide functional evidence that BM88 is sufficient to initiate the differentiation of spinal cord neural precursors toward acquisition of generic neuronal and subtype-specific traits. Gain-of-function approaches show that BM88 negatively regulates proliferation of neuronal precursors, driving them to prematurely exit the cell cycle, down-regulate Notch1, and commit to a neuronal differentiation pathway. The combined effect on proliferation and differentiation results in precocious induction of neurogenesis and generation of postmitotic neurons within the ventricular zone. The dual action of BM88 is not recapitulated by the cell cycle inhibitor p27Kip1, suggesting that cell cycle exit does not induce differentiation by default. Mechanistically, induction of endogenous BM88 by forced expression of the proneural gene Mash1 indicates that BM88 is part of the differentiation program activated by proneural genes. Furthermore, BM88 gene silencing conferred by small interfering RNA in spinal cord neural progenitor cells enhances cell cycle progression and impairs neuronal differentiation. Our results implicate BM88 in the synchronization of cell cycle exit and differentiation of neuronal precursors in the developing nervous system.  相似文献   

5.
This report describes the isolation of rodent multipotent adult progenitor cells (MAPCs) and proliferation of these cells in both standard medium and medium without exogenous serum or growth factors conditioned by the rat cell line B104. MAPCs have exacting requirements for their proliferation in vitro but once established proliferate rapidly at low seeding density, requiring almost daily passage and media exchange. Previously published methods for growth of MAPCs in vitro all used media supplemented with serum and growth factors, which adds considerable expense.  相似文献   

6.
D-Aspartic acid is abundant in the developing brain. We have identified and cloned mammalian aspartate racemase (DR), which converts L-aspartate to D-aspartate and colocalizes with D-aspartate in the brain and neuroendocrine tissues. Depletion of DR by retrovirus-mediated expression of short-hairpin RNA in newborn neurons of the adult hippocampus elicits profound defects in the dendritic development and survival of newborn neurons and survival. Because D-aspartate is a potential endogenous ligand for NMDA receptors, the loss of which elicits a phenotype resembling DR depletion, D-aspartate may function as a modulator of adult neurogenesis.  相似文献   

7.
A reduction in dopaminergic innervation of the subventricular zone (SVZ) is responsible for the impaired proliferation of its resident precursor cells in this region in Parkinson''s disease (PD). Here, we show that this effect involves EGF, but not FGF2. In particular, we demonstrate that dopamine increases the proliferation of SVZ-derived cells by releasing EGF in a PKC-dependent manner in vitro and that activation of the EGF receptor (EGFR) is required for this effect. We also show that dopamine selectively expands the GFAP+ multipotent stem cell population in vitro by promoting their self-renewal. Furthermore, in vivo dopamine depletion leads to a decrease in precursor cell proliferation in the SVZ concomitant with a reduction in local EGF production, which is reversed through the administration of the dopamine precursor levodopa (l-DOPA). Finally, we show that EGFR+ cells are depleted in the SVZ of human PD patients compared with age-matched controls. We have therefore demonstrated a unique role for EGF as a mediator of dopamine-induced precursor cell proliferation in the SVZ, which has potential implications for future therapies in PD.  相似文献   

8.
New neurons are continuously generated in the dentate gyrus (DG) in the adult hippocampus, and new granule cells (GCs) have been shown to be necessary for several aspects of learning and memory. Nonetheless, the limited information available regarding the anatomical and physiological development of synaptic inputs onto maturing neurons has restricted our understanding of how new GCs affect cognition. Here, we use photostimulation to demonstrate the time course by which anatomically isolated inhibitory inputs develop onto maturing GCs. We then show that the gradual development of inhibition is sufficient in a computational model to drive learning of novel information in young neurons. Finally, we validate this model observation by using slice physiology to show how inhibition regulates firing probability and plasticity in young GCs. Combined, these data demonstrate that the unique connectivity of immature GCs affords them a functional role that is different from mature neurons in the DG circuit, a distinction that potentially underlies many of the proposed functions of new neurons in the hippocampal network.  相似文献   

9.
Ji KH  Xiong J  Hu KM  Fan LX  Liu HQ 《Annals of hematology》2008,87(6):431-438
Future application of adult stem cells in clinical therapies largely depends on the successful isolation of homogeneous stem cells with high plasticity. Multipotent adult progenitor cells (MAPCs) are thought to be a more primitive stem cell population capable of extensive in vitro proliferation with no senescence or loss of differentiation capability. The present study was aimed to find a less complicated and more economical protocol for obtaining single cell-derived MAPCs and understand the molecule mechanism of multi-lineage differentiation of MAPCs. We successfully obtained a comparatively homogeneous population of MAPCs and confirmed that single cell-derived MAPCs were able to transcribe Oct4 and genes of three germ layers simultaneously, and differentiate into multiple lineages. Our observations suggest that single cell-derived MAPCs under appropriate circumstances could maintain not only characteristics of stem cells but multi-lineage differentiation potential through quantitative modulation of corresponding regulating gene expression, rather than switching on expression of specific genes.  相似文献   

10.
目的 培养人骨髓多能成体祖细胞(multipotent adult progenitor cells,MAPCs)并研究其向肝细胞样细胞的分化。方法 应用体外细胞培养技术将人骨髓中的单个核细胞从无血液疾病患者的髂嵴骨髓中分离出来后,用磁式细胞分离仪分离富集骨髓单个核细胞中的CD45^-HIA—DR^-细胞,把其接种于DMEM培养基中进行培养,到达对数生长期时,加入成纤维细胞生长因子4(fibroblast growth factor-4,FGF—4)并改用维持液来诱导其向肝细胞样细胞分化,最后用免疫细胞化学方法检测其分化情况。结果 成功地进行了人骨髓MAPCs的原代和传代培养,并在体外成功地把其诱导分化为具有肝细胞表型特征的细胞。结论 FGF-4可诱导人MAPCs向具有肝细胞表型特征的细胞发生分化。  相似文献   

11.
Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive‐like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14–33%) and citalopram (<17–30%). Additionally, the MLTCITAL combination also decreased immobility (<22–35%) in comparison with control mice, reflecting an antidepressant‐like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of ‐associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant‐like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.  相似文献   

12.
Neural precursor cells (NPCs) differentiate into neurons, astrocytes, and oligodendrocytes in response to intrinsic and extrinsic changes. Notch signals maintain undifferentiated NPCs, but the mechanisms underlying the neuronal differentiation are largely unknown. We show that SIRT1, an NAD(+)-dependent histone deacetylase, modulates neuronal differentiation. SIRT1 was found in the cytoplasm of embryonic and adult NPCs and was transiently localized in the nucleus in response to differentiation stimulus. SIRT1 started to translocate into the nucleus within 10 min after the transfer of NPCs into differentiation conditions, stayed in the nucleus, and then gradually retranslocated to the cytoplasm after several hours. The number of neurospheres that generated Tuj1(+) neurons was significantly decreased by pharmacological inhibitors of SIRT1, dominant-negative SIRT1 and SIRT1-siRNA, whereas overexpression of SIRT1, but not that of cytoplasm-localized mutant SIRT1, enhanced neuronal differentiation and decreased Hes1 expression. Expression of SIRT1-siRNA impaired neuronal differentiation and migration of NPCs into the cortical plate in the embryonic brain. Nuclear receptor corepressor (N-CoR), which has been reported to bind SIRT1, promoted neuronal differentiation and synergistically increased the number of Tuj1(+) neurons with SIRT1, and both bound the Hes1 promoter region in differentiating NPCs. Hes1 transactivation by Notch1 was inhibited by SIRT1 and/or N-CoR. Our study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.  相似文献   

13.
The adult hippocampus hosts a population of neural stem and progenitor cells (NSPCs) that proliferates throughout the mammalian life span. To date, the new neurons derived from NSPCs have been the primary measure of their functional relevance. However, recent studies show that undifferentiated cells may shape their environment through secreted growth factors. Whether endogenous adult NSPCs secrete functionally relevant growth factors remains unclear. We show that adult hippocampal NSPCs secrete surprisingly large quantities of the essential growth factor VEGF in vitro and in vivo. This self-derived VEGF is functionally relevant for maintaining the neurogenic niche as inducible, NSPC-specific loss of VEGF results in impaired stem cell maintenance despite the presence of VEGF produced from other niche cell types. These findings reveal adult hippocampal NSPCs as an unanticipated source of an essential growth factor and imply an exciting functional role for adult brain NSPCs as secretory cells.In the adult brain, two major neurogenic niches persist throughout the mammalian life span: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus. Resident neural stem and progenitor cells (NSPCs) in each of these areas proliferate and give rise to new neurons that migrate and integrate into existing circuitry in the olfactory bulb or dentate gyrus (DG), respectively. Particularly in the DG, where neurogenesis is found in both rodents and humans, newly born neurons play critical roles in facilitating memory function (1, 2). This role of new neurons in memory is currently considered the dominant functional output of adult neurogenesis. However, recent research has revealed that transplanted embryonic stem cells can aid in injury recovery by secreting growth factors while undifferentiated (3, 4). The secretion of functionally relevant growth factors from endogenous adult hippocampal NSPCs has yet to be reported.We recently showed that cultured neonatal hippocampal progenitors secrete surprisingly large quantities of VEGF compared with astrocytes, microglia, and neurons (5), raising the possibility that NSPCs could be an unexpected source of this essential growth factor in the brain. Within the adult brain, VEGF (also known as VEGF-A) is a potent angiogenic and neurogenic growth factor (613). Although several studies have previously noted VEGF expression in cultured adult NSPCs (14, 15), the relative quantity and function of this VEGF are not clear, particularly in vivo, where other cellular sources of VEGF abound. We therefore investigated the contribution of NSPCs to hippocampal VEGF production and the functional role of NSPC-derived VEGF in maintaining the neurogenic niche.  相似文献   

14.
15.
DISC1 is a strong candidate susceptibility gene for schizophrenia, bipolar disorder, and depression. Using a mouse strain carrying an endogenous Disc1 orthologue engineered to model the putative effects of the disease-associated chromosomal translocation we demonstrate that impaired Disc1 function results in region-specific morphological alterations, including alterations in the organization of newly born and mature neurons of the dentate gyrus. Field recordings at CA3/CA1 synapses revealed a deficit in short-term plasticity. Using a battery of cognitive tests we found a selective impairment in working memory (WM), which may relate to deficits in WM and executive function observed in individuals with schizophrenia. Our results implicate malfunction of neural circuits within the hippocampus and medial prefrontal cortex and selective deficits in WM as contributing to the genetic risk conferred by this gene.  相似文献   

16.
17.
New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus. Knockdown of Disrupted-in-Schizophrenia-1 (DISC1) in newborn granule cells leads to defects in axonal targeting and development of synaptic outputs in the adult brain. Together with previous reports of synaptic inputs, these results demonstrate that adult-born neurons are fully integrated into the existing neuronal circuitry. Our results also indicate a role for DISC1 in presynaptic development and may have implications for the etiology of schizophrenia and related mental disorders.  相似文献   

18.
The lifelong addition of neurons to the hippocampus is a remarkable form of structural plasticity, yet the molecular controls over proliferation, neuronal fate determination, survival, and maturation are poorly understood. Expression of Notch1 was found to change dynamically depending on the differentiation state of neural precursor cells. Through the use of inducible gain- and loss-of-function of Notch1 mice we show that this membrane receptor is essential to these distinct processes. We found in vivo that activated Notch1 overexpression induces proliferation, whereas gamma-secretase inhibition or genetic ablation of Notch1 promotes cell cycle exit, indicating that the level of activated Notch1 regulates the magnitude of neurogenesis from postnatal progenitor cells. Abrogation of Notch signaling in vivo or in vitro leads to a transition from neural stem or precursor cells to transit-amplifying cells or neurons. Further, genetic Notch1 manipulation modulates survival and dendritic morphology of newborn granule cells. These results provide evidence for the expansive prevalence of Notch signaling in hippocampal morphogenesis and plasticity, suggesting that Notch1 could be a target of diverse traumatic and environmental modulators of adult neurogenesis.  相似文献   

19.
20.
Blood-derived adult stem cells were previously considered impractical for therapeutic use because of their small numbers. This report describes the isolation of a novel human cell population derived from the peripheral blood, termed synergetic cell population (SCP), and defined by the expression of CD31Bright, CD34+, CD45-/Dim and CD34Bright, but not lineage-specific features. The SCP was capable of differentiating into a variety of cell lineages upon exposure to defined culture conditions. The resulting cells exhibited morphological, immunocytochemical and functional characteristics of angiogenic, neural or myocardial lineages. Angiogenic cell precursors (ACPs) expressed CD34, CD133, KDR, Tie-2, CD144, von Willebrand factor, CD31Bright, concomitant binding of Ulex-Lectin and uptake of acetylated low density lipoprotein (Ac-LDL), secreted interleukin-8, vascular endothelial growth factor and angiogenin and formed tube-like structures in vitro. The majority of CD31Bright ACP cells demonstrated Ac-LDL uptake. Neural cell precursors (NCPs) expressed the neuronal markers Nestin, betaIII-Tubulin, and Neu-N, the glial markers GFAP and O4, and responded to neurotransmitter stimulation. Myocardial cell precursors (MCPs) expressed Desmin, cardiac Troponin and Connexin 43. In conclusion, the simple and rapid method of SCP generation and the resulting considerable quantities of lineage-specific precursor cells makes it a potential source of autologous treatment for a variety of diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号