首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbazole derivatives are the structural key of many biologically active substances, including naturally occurring and synthetic ones. Three novel (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene)hydrazinyl)triazole dyes were synthesized with different numbers of chlorine substituents attached at different locations. The presented research has shown the influence of the number and position of attachment of chlorine substituents on electrochemical, optical, nonlinear, and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.  相似文献   

2.
Two new diamond-like (DL) chalcogenides, Li2MgGeSe4 and Li2MgSnSe4, have been successfully synthesized using a conventional high-temperature solid-state method. The two compounds crystallize in the non-centrosymmetric space group Pmn21 with a = 8.402 (14) Å, b = 7.181 (12) Å, c = 6.728 (11) Å, Z = 2 for Li2MgSnSe4, and a = 8.2961 (7) Å, b = 7.0069 (5) Å, c = 6.6116 (6) Å, Z = 2 for Li2MgGeSe4. The calculated results show that the second harmonic generation (SHG) coefficients of Li2MgSnSe4 (d33 = 12.19 pm/v) and Li2MgGeSe4 (d33 = −14.77 pm/v), mainly deriving from the [MSe4] (M = Ge, Sn) tetrahedral units, are close to the one in the benchmark AgGaS2 (d14 = 13.7 pm/V). The calculated band gaps for Li2MgSnSe4 and Li2MgGeSe4 are 2.42 and 2.44 eV, respectively. Moreover, the two compounds are the first series of alkali and alkaline-earth metal DL compounds in the I2-II-IV-VI4 family, enriching the structural diversity of DL compounds.  相似文献   

3.
换代犬与阻断结膜吸吮线虫病流行关系的研究   总被引:1,自引:0,他引:1  
冒的为了探寻控制结膜吸吮线虫病流行的有效措施。方法采取对现症病人所在村的传染源犬、传播媒介冈田氏饶眼果蝇(A.o)感染结膜吸吮线虫(T.c)进行调查和实行换代犬后的犬及A.o感染T.c追踪调查,将前后调查结果进行比较。结果 1981~1992年安徽淮北地区连续出现T.c病人,这时对宿县芦岭、泗县大庄、五河县城郊病人所在村犬进行了检查,当时感染T.c分别占63.6%(14/22)、75.0%(12/16)和86.1%(19/231)。同时重点检查了五河城郊A.o蝇737只,阳性12只,其感染率为1.6%。其中个别A.o带有T.c感染期幼虫达20余条。于1998年即实行换代犬之后 5年,再查五河城郊及泗县大庄家犬计31只,全部阴性。此期间无新病例。同时查五河城郊A.o果蝇206只,也全部阴性。表明换代犬已失去原先犬群那种强力传染源作用。于 1998~1999年在合肥郊区一新病例居住村,对犬进行检查,犬感染T.c占79.2%(19/24),查犬时即取出虫体,为犬治病。此时进行健康教育,群众易于接受,采用换代大及拴养犬措施,预防该病。于2000年再去检查该村犬12只,阳性8只,占66.7%,犬的感染率及感染度虽较前2年有所降低,但其传染源作用的下降,明显不如其他实行群众性换代犬措施地区的效果好。结论对结膜吸吮线虫病流行区,在健康教育基础上,果断实行换代大措施,是阻断本病传播的最有效方法。  相似文献   

4.
In this research, we investigated the second-order nonlinear optical (NLO) properties of multicomponent hybrid materials formed by meso-tetraphenylporphyrin P (both as free base and ZnII complex), carrying in 2 or 2,12 β-pyrrolic position an electron donor ferrocene (Fc), and/or an electron acceptor fullerene (C60) moiety, connected to the porphyrin core via an ethynyl or an ethynylphenyl spacer. We measured the NLO response by the electric-field-induced second-harmonic generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, recording for all the investigated compounds unexpected negative values of μβ1907. Since density functional theory (DFT) calculations evidenced for P-Fc dyads almost null ground state dipole moments and very low values for P-C60 dyads and Fc-P-C60 triads, our EFISH results suggested a significant contribution to γEFISH of the purely electronic cubic term γ(−2ω; ω, ω, 0), which prevails on the quadratic dipolar orientational one μβ(−2ω; ω, ω)/5kT, as confirmed by computational evidence.  相似文献   

5.
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.  相似文献   

6.
Analogous to the Amonton–Coulomb relation, which states the linear dependency between the dynamic sliding friction and the normal reaction, the rolling friction moment is commonly accepted as proportional to the normal reaction in a concentrated point contact. This hypothesis persists since it gives simple dynamic models and also due to difficulties met in experimental estimations of the rolling friction torques. Recent theoretical studies proved that this dependency is nonlinear even for elastic materials. A special rotor is designed, with an adjustable position for the center of mass but with constant mass and constant axial inertia moment. The pure rolling motion of the rotor on an inclined controlled small slope is studied. The angular acceleration of motion is theoretically deduced, assuming that the rolling friction torque is proportional to the normal force raised at a certain power. The deduced theoretical dynamic model evidences the influence of the eccentricity of the rotor upon the acceleration. For the particular case of linear dependency—the exponent of the power equal to one, the law of motion is independent of the configuration of the rotor. Experimental tests were made using the rotor constructed according to the theoretical model. For two positions of the center of mass, the experimental law of motion on the inclined plane is established by a non-contact method and the two different laws obtained to validate the nonlinear dependence rolling friction torque-normal force. The paper validates in an experimental manner the considered nonlinear assumption. The experimental tests concerning the microtopography of the contacting surfaces reveal that the hypothesis required by Hertzian theory, namely smooth contacting surfaces, is not satisfied. Thus, the distribution of pressure on the contact area does not obey the Hertzian semi-ellipsoidal distribution and further experimental tests are required for quantitative findings on the rolling friction torque-normal force relationship.  相似文献   

7.
In the last decades, new synthetic hybrid materials, with an inorganic and organic nature, have been developed to promote their application as protective coatings and/or structural consolidants for several substrates in the construction industry and cultural heritage field. In this context, the scientific community paid attention to geopolymers and their new hybrid functional derivatives to design and develop innovative and sustainable composites with better chemical resistance, durability and mechanical characteristics. This review offers an overview of the latest progress in geopolymer-based hybrid nanofunctional materials and their use to treat and restore cultural heritage, as well as their employment in the building and architectural engineering field. In addition, it discusses the influence of some parameters, such as the chemical and physical characteristics of the substrates, the dosage of the alkaline activator, and the curing treatment, which affect their synthesis and performance.  相似文献   

8.
In order to investigate the effect of gradient interface on the mechanical properties of Cu/WCP functional gradient materials, digital image correlation technique was used to analyze the mechanical characteristics of laminated Cu/WCP functional gradient material under tension load in the layer direction. In this paper, the deformation information of the specimens is obtained by the digital image correlation method. In order to obtain high-precision measurement results, speckle patterns with small spots and uniform distribution are prepared on the specimen surface by using small sample speckle preparation technology. The tensile experimental results showed that the incorporation of WC particles significantly improved the stiffness and strength of Cu/WCP composites. Meanwhile, the plastic strain and plastic strain rate are non-uniform in each layer of the five-layer Cu/WCP functional gradient material under the tension load along the layer direction. The plastic strain and plastic strain rate in each layer gradually increase along with the decreasing direction of WC content. It is found, from the analysis of experimental results, the existence of the gradient interface has an obvious inhibitory effect on the increase in plastic strain rate along the decreasing direction of WC content, and the specimen fracture location also has a certain relationship with the plastic strain rate, which reflects the important influence of the gradient interface on the mechanical properties of Cu/WCP functional gradient materials.  相似文献   

9.
In this paper, novel hybrid biomicroconcrete-type composites were developed and investigated. The solid phase of materials consisted of a highly reactive α -tricalcium phosphate (α-TCP) powder, hybrid hydroxyapatite-chitosan (HAp-CTS) material in the form of powder and granules (as aggregates), and the polysaccharides sodium alginate (SA) or hydroxypropyl methylcellulose (HPMC). The liquid/gel phase in the studied materials constituted a citrus pectin gel. The influence of SA or HPMC on the setting reaction, microstructure, mechanical as well as biological properties of biomicroconcretes was investigated. Studies revealed that manufactured cement pastes were characterized by high plasticity and cohesion. The dual setting system of developed biomicroconcretes, achieved through α-TCP setting reaction and polymer crosslinking, resulted in a higher compressive strength. Material with the highest content of sodium alginate possessed the highest mechanical strength (~17 MPa), whereas the addition of hydroxypropyl methylcellulose led to a subtle compressive strength decrease. The obtained biomicroconcretes were chemically stable and characterized by a high bioactive potential. The novel biomaterials with favorable physicochemical and biological properties can be prosperous materials for filling bone tissue defects of any shape and size.  相似文献   

10.
In a patient affected by the “long Q-T” syndrome we observed episodes of alternation of the T-wave associated with emotional or physical stresses.In anesthetized and vagotomized cats, we could reproduce both the lengthening of the Q-T interval and episodes of alternation of the T-wave by electrical stimulation of the left stellate ganglion. Our experiments provide further support on the relationships between the “long Q-T” syndrome and the sympathetic nervous system and indicate that alternation of the T-wave may depend on abrupt increases in the sympathetic discharge.  相似文献   

11.
This paper uses mathematical methods as the basic tool at the stage of experiment planning. The importance of research programming applications was shown using the theory of experiments and the STATISTICA software. The method of experiment planning used in the case of studying the properties of a mixture, depending on its composition, features considerable complexity. The aim of the statistical analysis was to determine the influence of variable chemical composition of waste materials on selected properties of glass-ceramic materials. A statistical approach to multicomponent systems, such as ceramic sets, enables the selection of appropriate amounts of raw materials through the application of ‘a plan for mixtures’. To utilize the raw waste materials, e.g., slags from a solid waste incinerator, fly or bottom ashes, in the modeling of new materials, a mathematical relationship was developed, which enables estimating, based on the waste chemical composition, selected technological and practical properties of the glass so as to obtain a material featuring the required technological–practical parameters. For the obtained glasses, a comparative analysis of the experimentally and computationally determined properties was carried out: transformation temperature, liquidus temperature, density, and thermal expansion coefficient. The obtained high theoretical approximation (at the level of determination correlation coefficient R2 > 0.8) confirms the suitability of the polynomial model for mixtures for applications in the design of new glass-ceramic products.  相似文献   

12.
Fused deposition modeling represents a flexible and relatively inexpensive alternative for the production of custom-made polymer lattices. However, its limited accuracy and resolution lead to geometric irregularities and poor mechanical properties when compared with the digital design. Although the link between geometric features and mechanical properties of lattices has been studied extensively, the role of manufacturing parameters has received little attention. Additionally, as the size of cells/struts nears the accuracy limit of the manufacturing process, the interaction between geometry and manufacturing parameters could be decisive. Hence, the influence of three geometric and two manufacturing parameters on the mechanical behavior was evaluated using a fractional factorial design of experiments. The compressive behavior of two miniature lattice structures, the truncated octahedron and cubic diamond, was evaluated, and multilinear regression models for the elastic modulus and plateau stress were developed. Cell size, unit cell type, and strut diameter had the largest impact on the mechanical properties, while the influence of feedstock material and layer thickness was very limited. Models based on factorial design, although limited in scope, could be an effective tool for the design of customized lattice structures.  相似文献   

13.
14.
The tenacious thirst for fuel-saving and desirable physical and mechanical properties of the materials have compelled researchers to focus on a new generation of aluminum hybrid composites for automotive and aircraft applications. This work investigates the microhardness behavior and microstructural characterization of aluminum alloy (Al 7075)-titanium carbide (TiC)-graphite (Gr) hybrid composites. The hybrid composites were prepared via the powder metallurgy technique with the amounts of TiC (0, 3, 5, and 7 wt.%), reinforced to Al 7075 + 1 wt.% Gr. The microstructural characteristics were investigated by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) elemental mapping. A Box Behnken design (BBD) response surface methodology (RSM) approach was utilized for modeling and optimization of density and microhardness independent parameters and to develop an empirical model of density and microhardness in terms of process variables. Effects of independent parameters on the responses have been evaluated by analysis of variance (ANOVA). The density and microhardness of the Al 7075-TiC-Gr hybrid composites are found to be increased by increasing the weight percentage of TiC particles. The optimal conditions for obtaining the highest density and microhardness are estimated to be 6.79 wt.% TiC at temperature 626.13 °C and compaction pressure of 300 Mpa.  相似文献   

15.
16.
The purpose of this work is to evaluate the corrosion-inhibition behavior of deposited carbon and some iron-oxide hybrid coatings which derived from the in situ deposition method on the surface of Fe foil. Various contents of precursor methane gas were deposited over a mild iron foil substrate and formed different composites. It was found that the incorporation of C into the Fe matrix led to a thin film on the surface of the matrix and produced an anti-corrosion effect. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and potentiometric tests were used to compare the corrosion behaviors of the films in air-saturated 3.5 wt.% NaCl solution. According to the results, Fe-oxide- and C-composite-coated iron foil has a much higher corrosion resistance than the raw blank sample without the addition of C. Generally, the corrosion charge transfer resistance of one kind of iron oxide coated with carbon layers of several nanometers was enhanced up to 28,379 times (Rct changes from 1487 Ω cm2 to 4.22 × 107 Ω cm2), which is the biggest improvement so far. The maximum protection efficiency was obtained for the in situ grown coating prepared by 10 and 15 sccm CH4 precursor gas (eta = 100%). In conclusion, an iron oxide and carbon composite was found to be a great candidate for applications in the corrosion-resistance area.  相似文献   

17.
18.
The interface of hybrid carbon/E-glass fibres composite is interlayered with Xantu.layr® polyamide 6,6 nanofibre veil to localise cracking to promote a gradual failure. The pseudo-ductile response of these novel stacking sequences examined under quasi-static three-point bending show a change to the failure mechanism. The change in failure mechanism due to the interfacial toughening is examined via SEM micrographs. The incorporation of veil toughening led to a change in the dominant failure mechanism, resulting in fibre yielding by localised kinking and reduced instances of buckling failure. In alternated carbon and glass fibre samples with glass fibre undertaking compression, a pseudo-ductile response with veil interlayering was observed. The localisation of the fibre failure, due to the inclusion of the veil, resulted in kink band formations which were found to be predictable in previous micro buckling models. The localisation of failure by the veil interlayer resulted in a pseudo-ductile response increasing the strain before failure by 24% compared with control samples.  相似文献   

19.
To date, breakdown voltage is an underlying risk to the epoxy-based electrical high voltage (HV) equipment. To improve the breakdown strength of epoxy resin and to explore the formation of charge traps, in this study, two types of polyhedral oligomeric silsesquioxane (POSS) fillers are doped into epoxy resin. The breakdown voltage test is performed to investigate the breakdown strength of neat epoxy and epoxy/POSS composites. Electron traps that play an important role in breakdown strength are characterized by thermally stimulated depolarized current (TSDC) measurement. A quantum chemical calculation tool identifies the source of traps. It is found that adding octa-glycidyl POSS (OG-POSS) to epoxy enhances the breakdown strength than that of neat epoxy and epoxycyclohexyl POSS (ECH-POSS) incorporated epoxy. Moreover, side groups of OG-POSS possess higher electron affinity (EA) and large electronegativity that introduces deep-level traps into epoxy resin and restrain the electron transport. In this work, the origin of traps has been investigated by the simulation method. It is revealed that the functional properties of POSS side group can tailor an extensive network of deep traps in the interfacial region with epoxy and enhance the breakdown strength of the epoxy/POSS nanocomposite.  相似文献   

20.
We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe2 structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe2 interface due to constructive interference, as well as to the backward transport of hot carriers from FeCo to WSe2. In contrast to the transmission geometry, the THz generation efficiency in the reflection is much less dependent on the magnetic layer thickness. Our results suggest a cheap and efficient way to improve the characteristics of THz spintronic emitters with the conservation of a full set of their important properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号