首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the mid-1990s, novel G9 rotaviruses have been detected in many countries, suggesting that G9 is a globally important serotype. The molecular epidemiology of G9 rotaviruses in Taiwan from 2000 to 2002 was investigated in this study. G9 rotavirus first appeared in 2000 with 4 cases and constituted 33.8% and 54.8% of the rotavirus-positive samples in 2001 and 2002, respectively. These G9 strains belonged to P[8]G9, subgroup II, and long electropherotype, except one belonged to P[4]G9, subgroup II, and short electropherotype. Nucleotide sequencing and phylogenetic analysis of 52 Taiwanese G9 rotaviruses showed that the VP7 genes shared a high degree of identity to overseas G9 rotaviruses detected after 1993 and that the VP8* portions of the VP4 genes were more closely related to those of local rotaviruses of other G types. The two P[8]G9 strains with high nucleotide identities in the VP7 and the partial VP4 genes, 01TW591 of Taiwan from 2001 and 95H115 of Japan from 1995, varied in four genes, genes 2, 3, 7, and 8, which was revealed by RNA-RNA hybridization. Representative strains for different RNA patterns were also analyzed in the partial VP2 and VP3 genes; the nucleotide identities were high between Taiwanese G9 strains and local G3 or G2 strains. These results suggested that Taiwanese G9 rotaviruses possibly had evolved through reassortment between overseas G9 strains and circulating rotaviruses of other G types.  相似文献   

2.
Emerging G9 rotavirus strains in the northwest of China   总被引:1,自引:0,他引:1  
Although G9 rotaviruses have become one of the important rotavirus genotypes worldwide, they have been uncommon in China. Recently, we reported G9 rotaviruses as a highly prevalent genotype in Xinjiang, the northwest part of China [Yang, X., Matthijnssens, J., Sun, H., Muhamaiti, J., Zhang, B., Nahar, S., Van Ranst, M., Rahman, M., 2008. Temporal changes of rotavirus strain distribution in a northwest city of China, 1996-2005. Int. J. Infect. Dis., June (Epub ahead of print)]. Here we report the genetic variations of the Xinjiang-G9 rotaviruses isolated between 1999 and 2005. Sequence analysis of the VP7 genes of Xinjiang-G9 strains indicated that they were more closely related to the contemporary global G9 strains than to the prototype Chinese G9 strains. However, their VP4 genes were most similar to those from the locally circulating G1P[8], G2P[4], G3P[6] and G3P[8] strains. This indicates that reassortment rather than antigenic drift might be the preferred evolutionary mechanism for the emergence of the G9 rotaviruses in Xinjiang. These findings will be of major significance for understanding the emergence of newly introduced rotavirus strains.  相似文献   

3.
G1P[6] rotaviruses were demonstrated previously to be associated with the neonatal nursery outbreak of gastroenteritis in Changhua Christian Hospital that is located in the central region of Taiwan, from September 1994 to May 1995. Meanwhile, rotaviruses were detected in children hospitalized for acute gastroenteritis. Our study characterizes the rotaviruses associated with the nursery outbreak by using genetic approaches. Nucleotide sequence analysis revealed that the VP7 genes of the nursery rotaviruses were distinct from those of the strains circulating in the community. The G1P[6] rotaviruses recovered from the nursery were closely related to another neonatal G1P[6] strain from the northern region of Taiwan in both the VP4 and VP7 genes. The VP4 genes of these nursery strains differed from those of the P[6] human reference strains 1076, M37, RV3, and ST3. Apparently, these nursery rotaviruses were distinct from the strains circulating in the community and seemed to be a variant when compared with P[6] strains reported previously.  相似文献   

4.
Prevalence and phylogenetic relatedness of rotaviruses causing diarrheal diseases in children and adults were analyzed in Wuhan, China. During a period between June 2006 and February 2008, group A rotavirus was identified in 24.9% (280/1126) and 7.6% (83/1088) of specimens taken from children and adults, respectively. G3P[8] was the most frequent genotype in both children (66.3%) and adults (62.7%), followed by G1P[8] (20.3% and 26.2%, respectively). G9 was detected in specimens from six children (2.0%) and seven adults (5.6%). The VP7 genes of G3P[8] rotaviruses from children and adults showed extremely high sequence identities to each other (98.9–100%) and also to those of G3 viruses isolated in Wuhan in 2003–2004. In the phylogenetic analysis of the VP7 gene, the G3P[8] rotaviruses in Wuhan were clustered into a single lineage with some G3 viruses, which had been referred to as “the new variant G3” rotaviruses, reported recently in East Asia and Southeast Asia. Similar to G3P[8] rotaviruses, extremely high sequence identities between children and adults were observed for VP7 genes of G1 and G9 rotaviruses. The G9 viruses were clustered in the lineage of globally spreading strains, while G1 viruses were genetically close to those reported previously in China and Japan. These findings indicated the persistence of the variant G3 rotaviruses and spread of G9 rotaviruses derived from the global G9 lineage in Wuhan, and suggested that the rotaviruses were circulating among children and adults, irrelevant to the G types. J. Med. Virol. 81:382–389, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
BackgroundEfforts to reduce the impact of group A rotaviruses on human morbidity and mortality rely on oral immunisation with live attenuated or recombinant vaccines. A major challenge in immunisation is the vast inter- and intragenotypic diversity accomplished by circulating rotaviruses.ObjectivesTo monitor rotavirus inter- and intragenotypic diversity in hospitalised children.Study designFrom January 2008 to December 2009 stool samples from 1994 paediatric in-patients suffering from diarrhoea were screened for rotavirus. Rotavirus G- and P-genotypes were determined by nucleotide sequencing and phylogenetic analysis was performed.ResultsRotavirus A was detected in stool samples of 341 children, comprising G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], as well as uncommon G12P[6] genotypes and mixed infections. Predominant strains shifted from G1P[8] and G9P[8] genotypes in the first season to G3P[8] and G4P[8] genotypes in the second season. The highest intragenotypic diversity was detected in G1 strains and consisted of co-circulating G1-Ic, G1-Id, G1-Ie and G1-II rotaviruses. The G2 analysis revealed different intragenotypic lineages: G2-IIa, G2-IIb and G2-IIc. Interestingly, the circulating G4-Ib rotaviruses were characterised by insertions of 3 or 6 additional coding nucleotides within variable region 4 of VP7. Whereas different G9-III VP7 gene segments were detected G3-Ia sequences were highly homologous. In the VP4 analysis P[8]-III gene segment predominated over P[4]-Vb, P[8]-I, P[8]-IV and P[6]-I.ConclusionsA remarkable rotavirus heterogeneity was detected in the limited local setting and time span. Continued monitoring and nucleotide sequencing is necessary to document possible effects of rising immunisation levels on intragenotypic rotavirus diversity.  相似文献   

6.
Two fatal cases of infantile rotavirus enteritis occurred in northern Italy in 2005. Both children were severely dehydrated, and death was related to severe cerebral edema. Histological examination demonstrated extensive damage of the intestinal epithelium, villous atrophy or blunting, and macrophage infiltration. The two rotavirus strains were of the G1P[8] type and the long electropherotype. The 2005 G1P[8] rotaviruses differed in the NSP4, VP3, VP4, and VP7 genes from G1P[8] rotaviruses circulating in 2004, suggesting the onset of a new G1P[8] strain in the local population.  相似文献   

7.
A total of 18 rotavirus G9 strains in South Korea were collected during five rotavirus seasons between 2005 and 2010. The relationship between these strains was examined by analyzing the genetic variation of two major structural genes, VP7 and VP4. All the rotavirus isolates were of the G9P[8] genotype. The VP7 phylogenetic analysis demonstrated that all of the G9 rotaviruses circulating in South Korea belonged to lineage IIId and were within three single clusters. The amino acid comparison of the antigenic regions of the VP7 gene suggests possible common progenitors of these strains. Phylogenetic analysis of P[8] VP4 genotypes indicated three lineages, P[8]‐2, P[8]‐3, and P[8]‐4, with P[8]‐3 being the most common. The results of this study provide information on the genetic relatedness of rotavirus G9 strains circulating in South Korea over recent years and can be utilized for the development of effective vaccines and the identification of reference strains for future efficacy studies. J. Med. Virol. 85:171–178, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
ObjectivesGroup A rotavirus is a major cause of acute gastroenteritis in young children worldwide. A prospective surveillance network has been set up in France to investigate rotavirus infections and to detect the emergence of potentially epidemic strains.MethodsFrom 2014 to 2017, rotavirus-positive stool samples were collected from 2394 children under 5 years old attending the paediatric emergency units of 13 large hospitals. Rotaviruses were genotyped by RT-PCR with regard to their outer capsid proteins VP4 and VP7.ResultsGenotyping of 2421 rotaviruses showed that after a marked increase in G9P[8] (32.1%) during the 2014–2015 season, G9P[8] became the predominant genotype during the 2015–2016 and 2016–2017 seasons with detection rates of 64.1% and 77.3%, respectively, whereas G1P[8] were detected at low rates of 16.8% and 6.6%, respectively. Phylogenetic analysis of the partial rotavirus VP7 and VP4 coding genes revealed that all of these G9P [8] strains belonged to the lineage III and the P [8]-3 lineage, respectively, and shared the same genetic background (G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1) as did most of previously detected G9P[8] strains and particularly the emerging G9P[8] strains from the 2004–2005 season in France.ConclusionsG9P[8] rotaviruses have become the predominant circulating genotype for the first time since their emergence a decade ago. In the absence of rotavirus immunization programmes in France, our data give an insight into the natural fluctuation of rotavirus genotypes in a non-vaccinated population and provide a base line for a better interpretation of data in European countries with routine rotavirus vaccination.  相似文献   

10.
Intragenotypic heterogeneity of co-circulating rotaviruses is remarkable. Sequence and phylogenetic analyses of the rotavirus VP7 and VP4 genes were performed on selected human G4P[8] strains identified in Parma, Northern Italy, during 2004–2005 and 2008–2012. All the strains clustered into lineages Ic (VP7) and P[8]-III (VP4) in different subclusters with a nucleotide sequence variation up to 4 %. VP7 and VP4 amino acid sequences of the Italian rotaviruses showed multiple changes with the corresponding reference strains as well as with vaccine viruses in the neutralizing epitopes. There is concern that the progressive intra-lineage diversification in the VP7 and VP4 through the accumulation of point mutations and amino acid differences between vaccine strains and currently circulating rotaviruses could generate, over the years, vaccine-resistant variants.  相似文献   

11.
Nucleotide and amino acid sequences of the VP8* gene of five Vietnamese P[6] rotavirus strains detected from hospitalized patients with acute gastroenteritis were analyzed and compared with other human and porcine P[6] rotaviruses. It is of interest that these strains had greatest identity with two Italian porcine rotavirus strains, 134/04-10 and 134/04-11. To our knowledge, these five Vietnamese rotaviruses are the rare P[6] rotavirus strains belonging to lineage I that cluster into sublineage Ic with porcine rotaviruses, and not into sublineage Ia, as other human P[6] rotaviruses have done so far. Sequence analysis of the VP7 gene of these P[6] rotavirus strains was also performed. The results showed that the Vietnamese G9P[6] strain had high similarity with other human G9 rotaviruses, confirming a human-animal reassortant virus, whereas other three G4P[6] strains had best identity with porcine G4 rotavirus strains, suggesting interspecies transmission of rotavirus between porcine and humans. This result provides the important data on molecular characteristics of Vietnamese rotaviruses, and highlights interspecies transmission events of rotaviruses in Vietnam as well as in Asia.  相似文献   

12.
Summary To compare epidemiologic features and genetic characteristics of group A rotaviruses causing diarrhea in children and adults, a survey was conducted in Wuhan, China, during the period of Dec. 2000–May 2006. A total of 3839 stool specimens from diarrheal patients from eight hospitals were analyzed. Winter seasonality was observed for rotavirus diarrhea in both adults and children, showing overall rotavirus-positive rates of 9.0 and 23.9%, respectively. Throughout the study period, G3 was the most frequent G serotype in both adults and children (detection rates 86.2 and 87.8%, respectively), and was mostly associated with VP4 genotype P[8], VP 6 genotype II (subgroup II), and NSP4 genotype B. G3 rotaviruses were differentiated into eight electropherotypes, among which seven types were found in specimens from both adults and children. VP7 gene sequences of G3 rotaviruses from adults and children (6 and 4 strains, respectively), detected in different years and different hospitals, showed extremely high sequence identities (99–100%) to each other and to a few G3 rotavirus strains reported in Asia. However, lower sequence identities (82–96%) were observed to most of the human and animal G3 rotaviruses reported so far, including some Chinese strains. These findings indicate that in Wuhan, China, epidemic and genetic features of rotaviruses are similar in adults and children, and it has been suggested that G3 rotaviruses that might have originated from the same rotavirus were circulating among children and adults as prevailing viruses. In this study, two rotavirus strains, G9P[8] strain L169, derived from an adult, and G4P[6] strain R479, derived from a child, were isolated and genetically analyzed. The VP7 gene of L169 belongs to a major lineage of G9 rotaviruses that are globally widespread, but is distinct from G9 rotaviruses reported previously in China. The strain R479 had a VP7 gene which was divergent from most G4 human rotaviruses and showed an unusual dual subgroup specificity, I + II. The R479 VP6 gene does not belong to the main clusters of subgroup I and II rotaviruses phylogenetically, but is related to those of the porcine rotaviruses and some unusual human rotaviruses represented by the RMC321 strain isolated in eastern India.  相似文献   

13.
Group A rotaviruses are the most common cause of acute viral diarrhea in humans and animals throughout the world. Previous surveillance studies of group A rotaviruses in Thailand indicated that the dominant types of rotaviruses were changing from time to time. During 2000 and 2001, the G9 rotavirus emerged as the most prevalent genotype, with an exceptionally high frequency (91.6%) in Chiang Mai, Thailand. In the year 2002-2004, group A rotavirus was detected in 98 out of 263 (37.3%) fecal specimens collected from children hospitalized with diarrhea. Of these, 40 (40.8%) were G9P[8], 33 (33.7%) were G1P[8], 23 (23.5%) were G2P[4], and 2 (2.0%) were G3P[9]. The G9P[8] was found to be the most predominant strain in 2002, but the prevalence rate abruptly decreased during the period 2003-2004. In addition, G2P[4] reemerged in the epidemic season of 2003, whereas G1P[8] became the most predominant strain in the following year (2004). Phylogenetic analysis of the VP7 genes revealed that G1, G2, and G9 rotavirus strains clustered together with recently circulating strains, which were isolated from different regional settings in Thailand. In conclusion, the study demonstrated a decrease of incidence of G9P[8] and reemergence of G1P[8] and G2P[4] rotaviruses in Chiang Mai, Thailand during the period 2002-2004. These data imply that the distribution of group A rotavirus genotypes circulating in Chiang Mai, Thailand, changes over time.  相似文献   

14.
Hospital-based surveillance of rotavirus genotypes was conducted in Wuhan, China, between March 2008 and May 2011. The detection rates of group A rotavirus were 24.6% (458/1859) and 12.1% (96/795) in children and adults, respectively, with diarrhea. Among the 554 positive specimens, the most frequent genotype was G3P[8] (57.9%), followed by G1P[8] (29.4%). Compared with previous studies in Wuhan (2000-2008), the relative frequency of G3P[8] has been decreasing year by year, while the predominant genotype G3 shifted to G1 in 2011. In the present study, a rare P[8]b subtype of the VP4 gene (OP354-like P[8]) was identified in nine strains. Full-length sequences of VP7, VP4, VP6 and NSP4 genes of two G9P[8]b strains (RVA/Human-wt/CHN/E1545/2009/G9P[8]b and RVA/Human-wt/CHN/Z1108/2008/G9P[8]b) were determined for phylogenetic analysis. The four genes of these strains were closely related to one another, and the G9-VP7 genes of these strains belonged to lineage III, which contains globally spreading G9 rotaviruses. The full-length sequence of VP4 gene segments of the P[8]b strains in Wuhan clustered with those of P[8]b strains in Vietnam, Russia and Belgium, while they were distinct from those of the OP354 strain from Malawi and Bangladeshi strains. The VP6 and NSP4 genes of two P[8]b strains belonged to the I1 and E1 genotype, respectively, and clustered with those of strains belonging to Wa-like human rotaviruses from various Asian countries. These findings indicate the changing epidemiologic trend of rotavirus genotypes in Wuhan, i.e., the shift of the predominant type from G3 to G1 and the emergence of P[8]b strains genetically related to those distributed in other Asian countries.  相似文献   

15.
The study was designed to evaluate the circulation of group A rotaviruses in French hospitalized children, and to detect unusual strains. This prospective study was conducted from 2001 to 2006 in children consulting for acute diarrhea at the pediatric emergency department in three French University Hospitals. The rotaviruses were detected by rapid test and genotyped by RT-PCR on the basis of their outer capsid proteins VP4 (P-type) and VP7 (G-type). The stools from 757 children were analyzed. G1P[8] strains were predominant (44.0%), followed by G9P[8] (17.7%), G3P[8] 13.1%, G4P[8] (9.5%), and G2P[4] (1.8%); mixed rotavirus infections occurred in 2.3%. G9 rotaviruses emerged during the 2004–2005 season (73.4%) and remained the second most prevalent strains. Few unusual strains, G6, G8, G12 and P[6]-types, were detected. The monitoring of rotavirus infections should be maintained to document strain distribution and to assess the emergence of new reassortants that may not respond to current rotavirus vaccines.  相似文献   

16.
During an epidemiological study on rotaviruses among diarrheic children in the northeastern and middle belt regions of Nigeria, the distribution of G and P types was investigated in 127 stool specimens. By PCR G typing, the G type of rotaviruses in 97 samples was identified. Interestingly, an unusual G8 type, as well as common G1, G2, and G3 types, was detected more frequently (31 of 112; 27.7%). Eleven samples contained multiple G types, and a G9 strain (Bulumkutu) was identified for one of the probable mixed infections. In PCR P typing, P[6] was detected most frequently, P[8] being the second most common type, while the P type of 73 samples could not be identified. One rotavirus strain with a G8 type specificity could be cultivated in cell culture, and the P type of this strain was found to be P[1], which is usually carried by bovine strains. When the combinations of G and P types were examined, the unusual strains G2P[6] and G8P[1] were often identified. Sequence analysis was performed for the VP7 gene of the G9 strain Bulumkutu and the VP4 and VP7 genes of G8P[1] strain HMG035. The VP7 sequence of the Nigerian serotype G9 was more closely related to that of a Brazilian strain than to those of other African strains. The VP7 and VP4 genes of G8P[1] strain HMG035 were found to be very similar to that of a Thai bovine strain A5, suggesting that bovine strains may have been transmitted directly to humans. These results highlight an unexpected diversity among rotavirus strains in Nigeria and emphasize the need for further serological and genetic surveys on more rotavirus strains in African countries, including Nigeria.  相似文献   

17.
Several G8P[6] and G8P[8] rotavirus strains were isolated from hospitalized patients in the Democratic Republic of Congo in 2003. To investigate their overall genomic relatedness and to determine to which genogroup they belonged, the complete genomes of strains DRC88 (G8P[8]) and DRC86 (G8P[6]) were determined. Genomic comparison of these two African G8 strains revealed that 10 out of their 11 gene segments, except for VP4, were nearly identical (>98.9% identical at the nucleotide level), suggesting that this rare G8P[8] rotavirus strain originated recently from a reassortment between a common G8P[6] strain and a strain with a P[8] specificity. A very close evolutionary relationship between 9 out of the 11 gene segments of DRC88 and DRC86 and rotavirus strains belonging to the DS-1-like (G2P[4]) "genogroup" was found, and several possible reassortment events preceding the occurrence of G8P[8] and G8P[6] human rotaviruses were hypothesized. Since the genes of G2P[4] rotavirus strains are very well adapted to infect humans, the acquirement of a new VP7 (G8) gene, and especially the replacement of P[6] (believed to be of animal origin) by P[8] (most common in human rotaviruses), might make DRC88-like rotaviruses very well equipped to become a predominant human rotavirus strain and an important pathogen on the African continent and the rest of the world. These findings have important implications for rotavirus vaccine development and highlight that typing of new rotavirus strains by merely sequencing their VP7 and VP4 genes provides us with only the tip of the iceberg regarding rotavirus diversity.  相似文献   

18.
Several studies have demonstrated that rotaviruses of the G1P[8] genotype are among the most important worldwide. Sequence analysis of G1P[8] strains has revealed high genetic variability of VP4 and VP7 genes. The aim of this study was to investigate by restriction fragment length polymorphism (RFLP) analysis the genetic variability of the VP7 and VP4 genes within rotaviruses of the G1P[8] genotype. A total of 60 rotavirus-positive fecal samples genotyped as G1P[8], were collected from children with acute diarrhea under 5 years of age, between October 1995 and October 1998. The VP7 and VP4 genes were amplified by RT/PCR, using the Beg9/End9 primer pair and the Con3 and Con2 primers, respectively. VP7 amplicons were digested with three restriction enzymes Hae III, Taq I and Rsa I in separate reactions and VP4 amplicons were digested similarly with endonucleases Hinf I, Sau96 I and Rsa I. Analysis of the digested VP7 and VP4 amplicons showed a higher genetic drift for the VP7 gene (18 RFLPs) compared to the VP4 gene (9 RFLPs). The combination of profiles for both VP7 and VP4 amplicons, showed 27 different patterns, none of them similar to the Wa-1 strain. Furthermore, RFLP analysis of these G1P[8] strains, clearly differentiated the viruses into two main clusters, both of them sharing the same restriction pattern for the VP4 gene, and a different one for the VP7 gene.  相似文献   

19.
In recent years an apparent increase in the frequency of detection of G3P[8] rotaviruses has been observed worldwide. Similarly, in Italy G3P[8] strains have been detected sporadically and in a scattered fashion over 20 years, whereas in 2003 and 2005 G3P[8] rotavirus activity increased markedly. By analysis of the VP7, VP4, VP6, and NSP4 genes of a selection of G3P[8] rotaviruses detected between 1993 and 2005, a remarkable sequence conservation was observed in the VP7, VP4, and VP6 genes. By converse, after 2002 the Italian G3P[8] strains were found to possess unique mutations in significant regions of the NSP4 protein. J. Med. Virol. 81:2089–2095, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号