首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-磷酸鞘氨醇(S1P)是鞘磷脂代谢过程中产生的一种重要信号分子,可与多条信号通路交联而产生广泛的生物学效应。T细胞表达5种S1P受体,即S1P1—S1P5。S1P信号可以调节T细胞的多种免疫效应,包括T细胞增殖和凋亡、T细胞向Th2细胞分化、细胞因子分泌及T细胞迁移等。抑制S1P信号通路的药物FTY720可将T细胞阻滞于次级淋巴器官,造成外周血T细胞显著减少而发挥强烈的免疫抑制作用。本文对S1P的合成和降解、S1P受体及其介导的信号途径、T细胞S1P受体的表达、S1P对T细胞功能的调节及S1P信号通路的免疫抑制药物作了概述.  相似文献   

2.
The beta 1 subfamily of integrins is thought to play an important role in both the adhesion/migration and proliferation/differentiation of T cells. beta 1 integrins can provide T cell costimulation through interaction of very late antigen (VLA) 4 (VLA-4) (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) with the extracellular matrix protein fibronectin (FN), or by VLA-4 binding to its cell surface ligand, vascular cell adhesion molecule (VCAM) 1. The mechanism by which beta 1 integrin members transduce T cell-costimulatory signals is poorly understood. Studies in non-T cells have demonstrated regulation of the tyrosine focal adhesion kinase pp125FAK by beta 1 integrin engagement and, most recently, indicate a role for pp125FAK in linking integrin- mediated signal transduction to the Ras pathway (Schaller, M. D., and J. T. Parsons, 1994, Curr. Opin. Cell. Biol. 6: 705-710; Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. Van der Geer. 1994. Nature (Lond.), 372:786-790). Although pp125FAK kinase occurs in T cells, there are no reports on its regulation in this cell type. The studies described in this article characterize novel regulation of pp125FAK by the T cell receptor (TCR)-CD3 antigen complex and beta 1 integrins, and provide the first account, in any cell type, of integrin alpha 4 beta 1- mediated pp125FAK tyrosine phosphorylation. We demonstrate a rapid and sustained synergistic increase in tyrosine phosphorylation of human pp125FAK in Jurkat T cells after simultaneous (a) triggering of the TCR- CD3 complex, and (b) alpha 4 beta 1 and alpha 5 beta 1 integrin- mediated binding of these cells to immobilized FN or alpha 4 beta 1 integrin-mediated binding to immobilized VCAM-1. Studies with normal peripheral blood-derived CD4+ human T blasts confirm the synergistic action of a TCR-CD3 complex-mediated costimulus with a FN- or VCAM-1- dependent signal in the induction of T cell pp125FAK tyrosine phosphorylation. In vitro kinase assays performed on pp125FAK immunoprecipitates isolated from Jurkat cells and normal CD4+ T cells identified a coprecipitating 57-kD tyrosine-phosphorylated protein (pp57), distinct from pp59fyn or pp56lck. These results indicate, for the first time, the involvement of a specific kinase, pp125FAK, in alpha 4 beta 1- and alpha 5 beta 1-mediated T cell-costimulatory signaling pathways. In addition, the data demonstrate novel regulation of pp125FAK tyrosine phosphorylation by the TCR-CD3 complex.  相似文献   

3.
4.
Interleukin (IL)-7 is required for survival and homeostatic proliferation of T lymphocytes. The survival effect of IL-7 is primarily through regulation of Bcl-2 family members; however, the proliferative mechanism is unclear. It has not been determined whether the IL-7 receptor actually delivers a proliferative signal or whether, by promoting survival, proliferation results from signals other than the IL-7 receptor. We show that in an IL-7-dependent T cell line, cells protected from apoptosis nevertheless underwent cell cycle arrest after IL-7 withdrawal. This arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitor p27Kip1 through a posttranslational mechanism. Overexpression of p27Kip1 induced G1 arrest in the presence of IL-7, whereas knockdown of p27Kip1 by small interfering RNA promoted S phase entry after IL-7 withdrawal. CD4 or CD8 T cells transferred into IL-7-deficient hosts underwent G1 arrest, whereas 27Kip1-deficient T cells underwent proliferation. We observed that IL-7 withdrawal activated protein kinase C (PKC)theta and that inhibition of PKCtheta with a pharmacological inhibitor completely blocked the rise of p27Kip1 and rescued cells from G1 arrest. The conventional pathway to breakdown of p27Kip1 is mediated by S phase kinase-associated protein 2; however, our evidence suggests that PKCtheta acts via a distinct, unknown pathway inducing G1 arrest after IL-7 withdrawal from T cells. Hence, IL-7 maintains T cell proliferation through a novel pathway of p27Kip1 regulation.  相似文献   

5.
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long-term survival of patients with AML has changed little over the past decade, necessitating the identification and validation of new AML targets. Integration of genomic approaches with small-molecule and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. Here, we identified a role for glycogen synthase kinase 3α (GSK-3α) in AML by performing 2 independent small-molecule library screens and an shRNA screen for perturbations that induced a differentiation expression signature in AML cells. GSK-3 is a serine-threonine kinase involved in diverse cellular processes, including differentiation, signal transduction, cell cycle regulation, and proliferation. We demonstrated that specific loss of GSK-3α induced differentiation in AML by multiple measurements, including induction of gene expression signatures, morphological changes, and cell surface markers consistent with myeloid maturation. GSK-3α-specific suppression also led to impaired growth and proliferation in vitro, induction of apoptosis, loss of colony formation in methylcellulose, and anti-AML activity in vivo. Although the role of GSK-3β has been well studied in cancer development, these studies support a role for GSK-3α in AML.  相似文献   

6.
背景:间充质干细胞具有多向分化能力、免疫调节能力,并可在体外进行长期培养扩增,但其体外长期培养的生物学活性变化特点及其限制性仍不十分清晰。目的:观察体外长期培养人脐带间充质干细胞的生物活性变化特点及其限制性。方法:无菌收集剖宫产新生儿脐带,经胶原酶Ⅱ消化后,用黏附生长选择法获取人脐带间充质干细胞,胰酶消化传代;取第3代细胞进行流式分析,脂肪和成骨诱导鉴定;收集不同代的细胞分别用MTT法、流式细胞仪和爬片分析法检测细胞增殖活性、细胞周期、凋亡率及黏附能力。结果与结论:人脐带间充质干细胞的细胞表型CD105+/CD29+/CD44+/CD31-/CD34-/CD45-/HLADR-,可诱导分化为脂肪细胞和成骨细胞;传代培养第3~23代细胞形态无明显变化,生长曲线基本一致,第28代后细胞增长缓慢;流式分析发现第33代细胞较第3代G0/G1减少17.9%、S+G2/M增加103.4%、细胞凋亡率增加316.7%,差异均有显著性意义(P<0.01),第3~18代细胞间G0/G1、S+G2/M、细胞凋亡率和黏附细胞数差异均无显著性意义(P>0.05)。提示在体外长期培养环境中,随着传代次数的递增,人脐带间充质干细胞的增殖及黏附能力下降,细胞凋亡率增加,总的生物活性呈逐渐下降趋势,其最佳生物活性期出现在培养第3~18代之间。  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a phospholipid that binds to a set of G protein-coupled receptors (S1P(1)-S1P(5)) to initiate an array of signaling cascades that affect cell survival, differentiation, proliferation, and migration. On a larger physiological scale, the effects of S1P on immune cell trafficking, vascular barrier integrity, angiogenesis, and heart rate have also been observed. An impetus for the characterization of S1P-initiated signaling effects came with the discovery that FTY720 [fingolimod; 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] modulates the immune system by acting as an agonist at S1P(1). In the course of structure-activity relationship studies to better understand the functional chemical space around FTY720, we discovered conformationally constrained FTY720 analogs that behave as S1P receptor type-selective antagonists. Here, we present a pharmacological profile of a lead S1P(1/3) antagonist prodrug, 1-(hydroxymethyl)-3-(3-octylphenyl)cyclobutane (VPC03090). VPC03090 is phosphorylated by sphingosine kinase 2 to form the competitive antagonist species 3-(3-octylphenyl)-1-(phosphonooxymethyl)cyclobutane (VPC03090-P) as observed in guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays, with effects on downstream S1P receptor signaling confirmed by Western blot and calcium mobilization assays. Oral dosing of VPC03090 results in an approximate 1:1 phosphorylated/alcohol species ratio with a half-life of 30 h in mice. Because aberrant S1P signaling has been implicated in carcinogenesis, we applied VPC03090 in an immunocompetent mouse mammary cancer model to assess its antineoplastic potential. Treatment with VPC03090 significantly inhibited the growth of 4T1 primary tumors in mice. This result calls to attention the value of S1P receptor antagonists as not only research tools but also potential therapeutic agents.  相似文献   

8.
The nonsteroidal anti-inflammatory drugs have been shown to support cytoprotection of cells by shifting cells toward a quiescent state (G(0)/G(1)). Extracellular signal-regulated kinase (ERK) is required for cells to pass from G(1) phase into S phase, and macrolide antibiotics can inhibit ERK1/2 phosphorylation. However, previous reports suggest that macrolide antibiotics do not affect cell growth in bronchial epithelial cells. Therefore, we studied normal human bronchial epithelial (NHBE) cells to determine whether clarithromycin (CAM) suppresses ERK, delays bronchial epithelial cells from progressing to S phase, and delays cell growth. Exposure to CAM at 10 microg/ml daily over 4 days irreversibly decreased the cell proliferation with and without growth supplements (P < 0.0001). CAM also inhibited ERK1/2 phosphorylation over the first 90 min of exposure (P < 0.05 for 30 min, P < 0.0001 for 60 min, and P < 0.01 for 90 min) and decreased the ratio of phosphorylated ERK1/2 (pERK1/2) to total ERK1/2 (tERK1/2) (P < 0.0001). Incubation with CAM for 48 h increased the proportion of cells in G(1) phase (means +/- standard deviations) from 63.5% +/- 0.9% to 79.1% +/- 1.4% (P < 0.0001), decreased that in S phase from 19.8% +/- 1.2% to 10.0% +/- 2.1% (P < 0.01), and decreased that in G(2)/M phase from 16.7% +/- 0.4% to 11.0% +/- 0.8% (P < 0.001). In contrast, the ratio of pMEK1/2 to tMEK1/2 was not altered after exposure to CAM. These results suggest that macrolide antibiotics can delay the progression of NHBE cells from G(1) phase to S phase and can slow cell growth, probably through the suppression of ERK1/2.  相似文献   

9.
Based on genetic studies that establish the role of spleen tyrosine kinase (Syk) in immune function, inhibitors of this kinase are being investigated as therapeutic agents for inflammatory diseases. Because genetic studies eliminate both adapter functions and kinase activity of Syk, it is difficult to delineate the effect of kinase inhibition alone as would be the goal with small-molecule kinase inhibitors. We tested the hypothesis that specific pharmacological inhibition of Syk activity retains the immunomodulatory potential of Syk genetic deficiency. We report here on the discovery of (4-(3-(2H-1,2,3-triazol-2-yl)phenylamino)-2-((1R,2S)-2-aminocyclohexylamino) pyrimidine-5-carboxamide acetate (P505-15), a highly specific and potent inhibitor of purified Syk (IC50 1-2 nM). In human whole blood, P505-15 potently inhibited B cell antigen receptor-mediated B cell signaling and activation (IC50 0.27 and 0.28 μM, respectively) and Fcε receptor 1-mediated basophil degranulation (IC50 0.15 μM). Similar levels of ex vivo inhibition were measured after dosing in mice (Syk signaling IC50 0.32 μM). Syk-independent signaling and activation were unaffected at much higher concentrations, demonstrating the specificity of kinase inhibition in cellular systems. Oral administration of P505-15 produced dose-dependent anti-inflammatory activity in two rodent models of rheumatoid arthritis. Statistically significant efficacy was observed at concentrations that specifically suppressed Syk activity by ~67%. Thus specific Syk inhibition can mimic Syk genetic deficiency to modulate immune function, providing a therapeutic strategy in P505-15 for the treatment of human diseases.  相似文献   

10.
11.
The Ku autoantigen is a heterodimer of 70- and 80-kD proteins recognized by autoantibodies from patients with systemic lupus erythematosus and related diseases that is the DNA-binding component of a DNA-dependent protein kinase. The catalytic activity of DNA-dependent protein kinase is carried by a 350-kD subunit (p350). In light of the recently described role of Ku in repairing double-strand DNA breaks, we investigated the regulation of Ku and p350 levels in neutrophils, a terminally differentiated cell type destined to undergo apoptosis. Since the appearance of double-strand DNA breaks is characteristic of apoptosis, we were interested in the possibility that Ku might oppose programmed cell death. Analysis of peripheral blood cells by flow cytometry using anti-Ku and anti-p350 monoclonal antibodies revealed that neutrophils were unstained, whereas resting (G0) lymphocytes were positive. The absence of Ku in mature neutrophils was confirmed by Western blotting and enzyme-linked immunosorbent assay for Ku antigen. In contrast, the human promyelocytic leukemia line, HL-60, which undergoes differentiation toward neutrophils after dimethylsulfoxide treatment, was positive for Ku and p350. In view of the short lifespan of neutrophils and the prolonged half-life of Ku and p350 (> 5 d), these data suggested that Ku was actively degraded during myeloid differentiation. Analysis of HL-60 cells by flow cytometry revealed that Ku staining was bimodal. Cells in G1/G0, S, or G2/M were all stained positively, whereas cells with a subdiploid DNA content characteristic of apoptosis were Ku negative. Similar results were obtained with phytohemagglutin-stimulated human lymphocytes. These data suggest that the Ku antigen is actively degraded in both myeloid cells destined to undergo apoptosis and apoptotic lymphocytes, raising the possibility that degradation of Ku may help to prevent the inappropriate repair of fragmented nuclear DNA during apoptosis.  相似文献   

12.
Mammalian target of rapamycin (mTOR), a serine/threonine kinase, regulates cell growth and proliferation in part via the activation of p70 S6 kinase (S6K). Rapamycin is an antineo-plastic agent that, in complex with FKBP12, is a specific inhibitor of mTOR through interaction with its FKBP12-rapamycin binding domain, thereby causing G(1) cell cycle arrest. However, cancer cells often develop resistance to rapamycin, and alternative inhibitors of mTOR are desired. 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) blocks mTOR kinase activity, but it also inhibits phosphatidylinositol 3-kinase (PI3K), an enzyme that regulates cellular functions other than proliferation. We hypothesized that a close structural analog, 2-piperazinyl-8-phenyl-4H-1-benzopyran-4-one (LY303511) might inhibit mTOR-dependent cell proliferation without unwanted effects on PI3K. In human lung epithelial adenocarcinoma (A549) cells, LY303511, like rapamycin, inhibited mTOR-dependent phosphorylation of S6K, but not PI3K-dependent phosphorylation of Akt. LY303511 blocked proliferation in A549 as well as in primary pulmonary artery smooth muscle cells, without causing apoptosis. In contrast to rapamycin, LY303511 reduced G(2)/M progression as well as G(2)/M-specific cyclins in A549 cells. Consistent with an additional mTOR-independent kinase target, LY303511 inhibited casein kinase 2 activity, a known regulator of G(1) and G(2)/M progression. In addition to its antiproliferative effect in vitro, LY303511 inhibited the growth of human prostate adenocarcinoma tumor implants in athymic mice. Given its inhibition of cell proliferation via mTOR-dependent and independent mechanisms, LY303511 has therapeutic potential with antineoplastic actions that are independent of PI3K inhibition.  相似文献   

13.
In cultured intact LLC-PK1 renal epithelial cells, a nonhydrolyzable ATP analogue, ATP gamma S, inhibits AVP-stimulated cAMP formation. In LLC-PK1 membranes, several ATP analogues inhibit basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in a dose-dependent manner. The rank order potency of inhibition by ATP analogues suggests that a P2y type of ATP receptor is involved in this inhibition. The compound ATP gamma S inhibits agonist-stimulated adenylate cyclase activity in solubilized and in isobutylmethylxanthine (IBMX) and quinacrine pretreated membranes, suggesting that ATP gamma S inhibition occurs independent of AVP and A1 adenosine receptors and of phospholipase A2 activity. The ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity is not affected by pertussis toxin but is attenuated by GDP beta S, suggesting a possible role for a pertussis toxin insensitive G protein in the inhibition. Exposure of intact LLC-PK cells to ATP gamma S results in a significant increase in protein kinase C activity. However, neither of two protein kinase C inhibitors (staurosporine and H-7) prevents ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity, suggesting that this inhibition occurs by a protein kinase C independent mechanism. These findings suggest the presence of functional P2y purinoceptors coupled to two signal transduction pathways in cultured renal epithelial cells. The effect of P2y purinoceptors to inhibit AVP-stimulated adenylate cyclase activity may be mediated, at least in part, by a pertussis toxin insensitive G protein.  相似文献   

14.
Summary.  Lysophosphatidic acid (LPA), its sphingolipid homolog sphingosine 1-phosphate (S1P) and several other related molecules constitute a family of bioactive lipid phosphoric acids that function as receptor-active mediators with roles in cell growth, differentiation, inflammation, immunomodulation, apoptosis and development. LPA and S1P are present in physiologically relevant concentrations in the circulation. In isolated cell culture systems or animal models, these lipids exert a range of effects that suggest that S1P and LPA could play important roles in maintaining normal vascular homeostasis and in vascular injury responses. LPA and S1P act on a series of G protein-coupled receptors, and LPA may also be an endogenous regulator of PPARγ activity. In this review, we discuss potential roles for lysolipid signaling in the vasculature and mechanisms by which these bioactive lipids could contribute to cardiovascular disease.  相似文献   

15.
4-Sodium phenylbutyrate (4-PBA) has been used for many years in the treatment of urea cycle defects and has recently been studied as a chemotherapeutic agent for certain malignancies. 4-PBA has been shown to cause growth arrest, cellular differentiation, and apoptosis in certain malignant cells. Recently, it was shown that IB3-1 cells (a cystic fibrosis cell line, Delta508/W128X) treated with 4-PBA demonstrated a partial correction of the cystic fibrosis chloride channel defect. We were interested in evaluating the effect of 4-PBA on cell growth and cell cycle regulation in IB3-1 cells treated with 2 to 10 mM concentrations. We found that cells treated with 2 mM concentrations of 4-PBA for 96 h underwent a significant decrease in cell growth (P <.007). Using flow cytometry, we were able to demonstrate that growth arrest occurred at the G(1) phase of the cell cycle. This was detected as early as 24 h in IB3-1 cells treated with 5 mM 4-PBA (P <.03). Furthermore, the percentage of IB3-1 cells with less than a 2N DNA content increased with higher concentrations of 4-PBA, although this was not associated with an increase in apoptosis. Finally, p21(Waf1/Cip1/Sdi1) protein levels were induced in IB3-1 cells receiving 2 and 5 mM concentrations of 4-PBA as early as 24 h of exposure, suggesting that G(1) phase growth arrest in IB3-1 cells treated with 4-PBA is regulated through the p21(Waf1/Cip1/Sdi1) pathway.  相似文献   

16.
Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)gamma, signaling molecules that act downstream of G protein-coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3Kgamma displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3Kgamma alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a G(alphai) protein-coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3Kgamma contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell-expressed PI3Kgamma contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3Kgamma, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell-expressed PI3Kgamma, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress.  相似文献   

17.
目的主要探讨三氧化二砷诱导K562细胞分化过程中TGFβ1的变化与意义。方法首先应用小剂量As2O3诱导K562细胞建立分化模型,然后采用MTT实验测定不同药物及浓度对细胞增殖的影响,RT—PCR方法检测TGF-β1在mRNA水平的表达的变化。结果1μmol/L As2O3诱导K562细胞72h后,均可观察到细胞增殖能力降低,伴随G0/G1期细胞百分比升高,TGF—β1表达升高。其具体分子机制有待进一步研究。结论小剂4量As2O3对K562细胞的增殖抑制作用可能与TGF—β1/Smad3信号通路改变有关。  相似文献   

18.
背景:间充质干细胞具有多向分化能力、免疫调节能力,并可在体外进行长期培养扩增,但其体外长期培养的生物学活性变化特点及其限制性仍不十分清晰。目的:观察体外长期培养人脐带间充质干细胞的生物活性变化特点及其限制性。方法:无菌收集剖宫产新生儿脐带,经胶原酶Ⅱ消化后,用黏附生长选择法获取人脐带间充质干细胞,胰酶消化传代;取第3代细胞进行流式分析,脂肪和成骨诱导鉴定;收集不同代的细胞分别用MTT法、流式细胞仪和爬片分析法检测细胞增殖活性、细胞周期、凋亡率及黏附能力。结果与结论:人脐带间充质干细胞的细胞表型CD105+/CD29+/CD44+/CD31-/CD34-/CD45-/HLADR-,可诱导分化为脂肪细胞和成骨细胞;传代培养第3~23代细胞形态无明显变化,生长曲线基本一致,第28代后细胞增长缓慢;流式分析发现第33代细胞较第3代G0/G1减少17.9%、S+G2/M增加103.4%、细胞凋亡率增加316.7%,差异均有显著性意义(P〈0.01),第3~18代细胞间G0/G1、S+G2/M、细胞凋亡率和黏附细胞数差异均无显著性意义(P〉0.05)。提示在体外长期培养环境中,随着传代次数的递增,人脐带间充质干细胞的增殖及黏附能力下降,细胞凋亡率增加,总的生物活性呈逐渐下降趋势,其最佳生物活性期出现在培养第3~18代之间。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号