首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES: The aim of study was to estimate the probability rates for unfavorable pregnancy outcomes in carriers of reciprocal chromosomal translocations involving 13 chromosome (RCT-13q). MATERIAL AND METHODS: We collected total empirical data about 232 pregnancies of 56 carriers coming from 28 pedigrees. RCT classification was based on classic cytogenetic methods for interpretation of breakpoint position. The probability rates of particular type of pathology related to the total number of pregnancies after ascertainment correction have been calculated with the help of Stengel-Rutkowski and Stene method. RESULTS: The risk figures for unbalanced offspring after 2:2 disjunction and adjacent-1 segregation for the whole group of pedigrees were calculated as 5.2 +/- 1.7% (9/173)--medium risk, for maternal (MAT) and paternal (PAT) carriers were about 6.2 +/- 2.3% (7/173) and 4.8 +/- 3.3% (2/42) respectively. Considering different segment lengths of 13q, similar values for shorter and longer segments were obtained [4.3 +/- 1.9% (5/115) for 13q21-->qter and 7.0 +/- 3.3% (4/58) for 13q12-->qter]. The risk figures for miscarriages as 36.4 +/-3.6% (63/173) and for stillbirths/early death as 4.6 +/- 31.6% (8/173) were obtained. The risk figures for unbalanced offspring after 3:1 disjunction were calculated as 7.7 +/- 7.45 (9/13). Conclusions: 1. Risk figures for different pregnancy outcomes are differ among particular forms of pathology. 2. Probability rate for unbalanced progeny at birth was calculated as a medium risk and similar values for carriers of different segments of 13q were obtained. 3. Probability rate for miscarriages was high but risk for stillbirths/early deaths of newborn was low. 4. No differences in values of rate for particular forms of pathology were found for maternal and paternal carriers of RCT-13q.  相似文献   

2.
The association of moderate mental retardation, behavioural problems, macrocephaly, dysmorphic features with iris coloboma, and supernumerary nipples was observed in two brothers with a terminal deletion 4q33-->4qter and a terminal duplication 7q34-->7qter. The aberration was detected by subtelomere FISH screening and (probably) resulted from a cryptic familial translocation (4;7)(q33;q34).  相似文献   

3.
OBJECTIVES: To present the perinatal findings and molecular cytogenetic analysis of de novo partial trisomy 16q and partial monosomy 20q and a review of the literature. CASE AND METHODS: Obstetric ultrasound at 33 weeks' gestation revealed intrauterine growth restriction (IUGR) and dolichocephaly in a 27-year-old primigravid woman. Prenatal cytogenetic diagnosis was not offered because of the late stage of gestation. A 2800-g male baby was delivered at 41 weeks' gestation by cesarean section because of fetal distress. The infant postnatally presented characteristic craniofacial dysmorphism, hypotonia, cleft palate, congenital heart defects, a subependymal cyst, and hypospadia. Cytogenetic analysis revealed an additional material attached to the terminal region of chromosome 20q. The parental karyotypes were normal. Spectral karyotyping (SKY), fluorescence in situ hybridization (FISH), and polymorphic DNA markers were used to investigate the origin of the de novo aberrant chromosome. RESULTS: SKY using 24-color probes, FISH using specific 16p, 16q, 20 centromeric, and 20q telomeric probes, and polymorphic DNA marker analysis confirmed maternal origin of the duplication of distal 16q and the deletion of terminal 20q. Karyotype of the proband was designated as 46,XY.ish der(20)t(16;20)(q22.1;q13.3)(SKY+,16qTEL+,20qTEL-). CONCLUSIONS: Partial trisomy 16q (16q22.1-->qter) and partial monosomy 20q (20q13.3-->qter) may be associated with the perinatal findings of IUGR, dolichocephaly, hypotonia, cleft palate, congenital heart defects, a subependymal cyst, and hypospadia. SKY, FISH, and genetic marker studies help in delineating the parental origin and the regions of the deletion and duplication in the de novo unbalanced translocation.  相似文献   

4.
OBJECTIVES: To present the prenatal findings and molecular cytogenetic analyses of partial trisomy 12q and partial monosomy 21q, and a review of the literature. METHODS: Amniocentesis was performed at 23 gestational weeks in a 33-year-old woman because of abnormal sonographic findings. Amniocentesis revealed a derivative chromosome 21, or der(21), with a deletion on the region of 21q22.2 and an addendum of a small chromosomal segment of unknown origin. The maternal karyotype was subsequently found to be 46,XX,t(12;21)(q24.32;q22.2). Level II ultrasound showed microcephaly, micrognathia, a ventricular septal defect, and rocker-bottom feet. The pregnancy was terminated. A malformed infant was delivered without the phenotype of holoprosencephaly (HPE). Fluorescence in situ hybridization (FISH) and polymorphic DNA markers were used to investigate the involved chromosomal segments. RESULTS: FISH study showed the absence of the signal of 21q subtelomeric probe and the presence of the signal of 12q subtelomeric probe in the der(21).The fetal karyotype was 46,XY,der(21) t(12;21)(q24.32;q22.2)mat. Genetic marker analysis showed a deletion at 21q22.2 and a breakpoint between D21S156 (present) and D21S1245 (absent). The deleted segment was measured about 4.5 Mb encompassing the HPE critical region. CONCLUSIONS: Molecular genetic analyses help in determining the prenatally detected unbalanced cryptic translocation as well as parental balanced subtle translocation. A duplication of 12q24.32-->qter and a deletion of 21q22.2-->qter may be associated with prenatal sonographic findings of microcephaly, borderline ventriculomegaly and cerebellar hypoplasia, micrognathia, a ventricular septal defect, and rocker-bottom feet. Haploinsufficiency of the HPE critical region at 21q22.3 may not cause an HPE phenotype.  相似文献   

5.
OBJECTIVES: To present the prenatal diagnosis and molecular cytogenetic analysis of a fetus with nuchal cystic hygroma and ambiguous genitalia. CASE AND METHODS: Amniocentesis was performed at 16 weeks' gestation because of the abnormal fetal sonographic finding of a large septated nuchal cystic hygroma. Genetic amniocentesis revealed a terminal deletion in the long arm of chromosome 10. The paternal karyotype was subsequently found to be 46,XY,t(10;18)(q25.3;q23). The maternal karyotype was normal. The pregnancy was terminated. A hydropic fetus was delivered with a septated nuchal cystic hygroma and ambiguous genitalia. Fluorescence in situ hybridization (FISH), microarray-based comparative genomic hybridization (CGH), and polymorphic DNA markers were used to investigate the involved chromosomal segments. RESULTS: FISH study showed absence of the 10q telomeric probe and presence of the 18q telomeric probe in the derivative chromosome 10. Microarray-based CGH analysis showed loss of distal 10q and gain of distal 18q. Polymorphic DNA marker analysis determined the breakpoints. The fetal karyotype was 46,XY,der(10)t(10;18)(q25.3;q23)pat. The chromosome aberration resulted in partial monosomy 10q (10q25.3-->qter) and partial trisomy 18q (18q23-->qter). CONCLUSIONS: The present case provides evidence that partial monosomy 10q (10q25.3-->qter) with partial trisomy 18q (18q23-->qter) can be a genetic cause of fetal cystic hygroma and ambiguous genitalia. Cytogenetic analysis for prenatally detected structural abnormalities may detect unexpected inherited chromosome aberrations.  相似文献   

6.
Patients with partial trisomy 3p seldom present major dysmorphic features, and holoprosencephaly occurs in only 10% of the cases with partial trisomy 3p. It has been suggested that multiple genetic hits or environmental exposures are required for the clinical expression of holoprosencephaly. At 16 weeks of gestation, prenatal sonography identified a fetus with holoprosencephaly, orofacial clefts, pyelectasis, and a unilateral duplex renal system. Amniocentesis revealed the karyotype of 46,XX,der(11)t(3;11)(p21;q23)pat with partial trisomy 3p (3p21-->pter) and partial monosomy 11q (11q23-->qter). The pregnancy was subsequently terminated. Postnatally, the proband showed hypotelorism, a depressed nasal bridge, orofacial clefts and holoprosencephaly-premaxillary agenesis. The present case provides evidence that partial trisomy 3p/monosomy 11q can be a genetic cause of holoprosencephaly and del(11)(q23-->qter) is associated with a duplex renal system.  相似文献   

7.
We report on a fetus and a newborn, both with partial trisomy 7q21-->qter due to different familial translocations, t(7;21)(q21.2;p12) and t(4;7)(q35;q21.2). Postmortem examination of the 19-week-old female fetus disclosed dysmorphic features, cleft palate, anomalies of the great vessels, intestinal malrotation and uterus bicornis. The newborn girl revealed a pattern of minor anomalies, cleft palate, cerebellar hypoplasia, and anomalies of pancreas, gall bladder and appendix. The clinical findings in three other reported fetuses with partial trisomy 7q described so far are reviewed. A duplication 7q21-->qter, as found in the propositi, has only been described in 11 patients who all had a concurrent partial monosomy. Patient 1 is particularly interesting since she is, to our knowledge, the first reported case with pure trisomy 7q21/22-->qter. We reviewed the phenotype of the previously described patients, compared it with the propositae, and summarized the clinical features of pure trisomy 7q21/22-->qter.  相似文献   

8.
Partial trisomy 1q is rare and mostly the result of an abnormal segregation of parental translocation chromosomes and their homologues. Only 31 cases have been described with pure partial trisomy 1q. In the fetus presented, chromosome analysis after amniocentesis had shown an unbalanced male karyotype with an aberrant chromosome 1. A de novo terminal duplication of the long arm was suspected but could not be verified by FISH in 1994. Five years after fetal death, retrospective identification of the additional material in 1q could finally be achieved by comparative genomic hybridization (CGH) using DNA extracted from formalin-fixed and paraffin-embedded fetal tissues. A direct duplication dir dup (1)(pter-->q44::q32.1-->qter) was found. Only 6 other individuals with duplication of this segment have been described so far. Comparative delineation of a dup1q phenotype with regard to size and origin of the dup (1q) segment evidenced that large duplications as well as proximal and interstitial duplications coincide with more severe visceral malformations, severe mental retar- dation and a short life span. Terminal duplications (1q32-->qter) concur with less severe malformations and longer periods of survival, but marked mental retardation. With small terminal duplications (1q42-->qter) dysmorphisms are usually mild and intellectual performance is mostly in the normal range.  相似文献   

9.
We report on the prenatal diagnosis and ultrasonographic findings of a second-trimester fetus with jumping translocation involving chromosome 22. A 28-year-old gravida 2, partus 1, Turkish woman was referred for genetic counselling and ultrasonographic examination at 18 weeks' gestation because of a high risk of trisomy 21 in triple test. Prenatal ultrasonography showed tetralogy of Fallot with a diverticular dilatation of the pulmonary artery, flattened brow, complete absence of the right upper limb, hypospadias, oligodactyly (three digits) in left hand and in both feet, and hyperechogenic abdominal foci. Amniocentesis revealed a karyotype of 46,XY[4]/46,XY,-8,+ der(8),t(8;22)(q24.3;q11.21)[2]/45, XY,-22,-8,+ der(8)t(8;22)(q24.3;q11.21)[22]/45,XY,-22,-5,+ der(5)t(5;22)(q35.3;q11.21)[44]. A C-banding and FISH study with a specific centromeric probe (D14Z1/D22Z1) for chromosome 22 was made. In our case, partial monosomy for the regions 22q11.21-->22pter, 8q24.3-->8qter and 5q35.3-->5qter may partially explain the fetal malformations.  相似文献   

10.
A prenatal diagnosis of partial monosomy 18p(18p11.2-->pter) and trisomy 21q(21q22.3-->qter) in a fetus with alobar holoprosencephaly (HPE) and premaxillary agenesis (PMA) but without the classical Down syndrome phenotype is reported. A 27-year-old primigravida woman was referred for genetic counselling at 21 weeks' gestation due to sonographic findings of craniofacial abnormalities. Level II ultrasonograms manifested alobar HPE and median orofacial cleft. Cytogenetic analysis and fluorescence in situ hybridization (FISH) on cells obtained from amniocentesis revealed partial monosomy 18p and a cryptic duplication of 21q,46,XY,der(18)t(18;21)(p11.2;q22.3), resulting from a maternal t(18;21) reciprocal translocation. The breakpoints were ascertained by molecular genetic analysis. The pregnancy was terminated. Autopsy showed alobar HPE with PMA, pituitary dysplasia, clinodactyly and classical 18p deletion phenotype but without the presence of major typical phenotypic features of Down syndrome. The phenotype of this antenatally diagnosed case is compared with those observed in six previously reported cases with monosomy 18p due to 18;21 translocation. The present study is the first report of concomitant deletion of HPE critical region of chromosome 18p11.3 and cryptic duplication of a small segment of distal chromosome 21q22.3 outside Down syndrome critical region. The present study shows that cytogenetic analyses are important in detecting chromosomal aberrations in pregnancies with prenatally detected craniofacial abnormalities, and adjunctive molecular investigations are useful in elucidating the genetic pathogenesis of dysmorphism.  相似文献   

11.
We present the case of a pregnant woman with low free beta-HCG in maternal serum Down syndrome screening that led to prenatal diagnosis of a fetus with 46,XY,der(4)t(4;11)(p14; q25). This chromosomal aneuploidy resulted from unbalanced segregation of a paternal balanced translocation, t(4;11)(p14;q25). Prenatal ultrasound revealed intrauterine growth restriction, cleft lip and palate, a thick nuchal fold, a single umbilical artery, and pyelectasis. Array-based comparative genomic hybridization and short tandem repeat markers further located the exact breakpoint of translocation. The woman had her pregnancy terminated at 23 weeks of gestational age. The proband had general appearance of Wolf-Hirschhorn syndrome and some unique findings, including single umbilical artery, severe immunoglobulin deficiency, scalp defect, and underlying bony defect. Our case underscores the importance of fetal karyotyping when low maternal serum free beta-HCG is found. It also adds information on the fetal presentations of monosomy 4p14-->pter and trisomy 11q25-->qter.  相似文献   

12.
ObjectiveTo present array comparative genomic hybridization (aCGH) characterization of partial monosomy 13q (13q21.32→qter) and partial trisomy 8p (8p12→pter) presenting with anencephaly and increased nuchal translucency (NT).Case ReportA 34-year-old primigravid woman was referred to the hospital at 12 weeks of gestation for termination of the pregnancy because of major structural abnormalities of the fetus. Prenatal ultrasound revealed a malformed fetus with anencephaly and an increased NT thickness of 5 mm at 12 weeks of gestation. Cytogenetic analysis of the fetus revealed a derivative chromosome 13. The mother was subsequently found to carry a balanced reciprocal translocation between 8p12 and 13q21. Bacterial artificial chromosome-based aCGH using fetal DNA demonstrated partial trisomy 8p and partial monosomy 13q [arr cgh 8p23.3p12 (RP11-1150M5→RP11-1145H12)×3, 13q21.32q34 (RP11-326B4→RP11-450H16)×1]. Oligonucleotide-based aCGH showed a 36.7-Mb duplication of distal 8p and a 48.4-Mb deletion of distal 13q. The fetal karyotype was 46,XY,der(13) t(8;13)(p12;q21.32)mat. The maternal karyotype was 46,XX,t(8;13)(p12;q21.32).ConclusionThe 13q deletion syndrome can be associated with neural tube defects and increased NT in the first trimester. Prenatal sonographic detection of neural tube defects should alert chromosomal abnormalities and prompt cytogenetic investigation, which may lead to the identification of an unexpected parental translocation involving chromosomal segments associated with neural tube development.  相似文献   

13.
Here we describe a foetus with intrauterine growth retardation (IUGR), cerebral malformations and a 46,XY,der(1),t(1;6)(p36.3;q25.2) karyotype owing to a familial cryptic translocation segregating in three generations. A balanced translocation was present in the mother, the maternal uncle, the aunt and the grandmother. A female first cousin with dysmorphisms, hydrocephalus and mental retardation was a carrier of a partial trisomy 1p and a partial monosomy 6q. Multiple miscarriages were present in the family pedigree. Parents of the foetus had three other pregnancies: a male with a balanced translocation, and two foetuses with 1p36.3-pter monosomy and 6q25.2-qter trisomy.  相似文献   

14.
We report the prenatal diagnosis of partial trisomy 3p(3p23-->pter) and monosomy 7q(7q36-->qter) in a fetus with microcephaly, alobar holoprosencephaly and cyclopia. A 26-year-old primigravida woman was referred for genetic counselling at 23 gestational weeks due to sonographic findings of intra-uterine growth retardation and cranio-facial abnormalities. Level II ultrasonograms further demonstrated alobar holoprosencephaly, a proboscis above the eye and a single median orbit consistent with cyclopia. Genetic analysis and fluorescence in situ hybridization on cells obtained from amniocentesis showed distal 3p trisomy (3p23-->pter) and 7q36 deletion, 46,XX,der(7)t(3;7)(p23;q36), resulting from a paternal t(3;7) reciprocal translocation. The pregnancy was terminated. Autopsy further confirmed the presence of arrhinencephaly, agenesis of the corpus callosum and a single ventricle of the brain. The phenotype of this antenatally diagnosed case is compared with those observed in 10 previously reported cases with simultaneous occurrence of partial trisomy 3p and terminal deletion 7q. All cases are associated with severe forms of holoprosencephaly and facial dysmorphism. This delineates an autosomal imbalance syndrome or a dosage effect involving duplication of distal 3p/deficiency of terminal 7q and dysmorphogenesis of the forebrain and mid-face.  相似文献   

15.
OBJECTIVE: Clinical features of the distal 10q trisomy syndrome consist of mental retardation, facial dysmorphism and renal and cardiac anomalies. The presence of a sacrococcygeal teratoma (SCT) in a fetus with distal 10q trisomy has not been reported yet. METHODS: A 33-year-old, G5, P2 woman with a singleton pregnancy was referred to our clinic at 24 weeks of gestation for further evaluation of a fetal sacral exophytic mass. Detailed fetal sonographic examination together with chromosomal analysis by amniocentesis was performed. RESULTS: The scan revealed a large SCT together with a persistent right umbilical vein, cardiomegaly, bilateral mild hydronephrosis and intrauterine growth retardation. The fetal karyotype showed distal 10q trisomy (10q24.3-->qter) distal monosomy 17 (p13-->pter). The fetus died after a preterm delivery at 28 weeks of gestation. Postnatal examination confirmed the prenatal findings and added the typical facial features of this syndrome, which consisted of prominent forehead, small nose with depressed nasal bridge, micrognathia and bow-shaped mouth. CONCLUSION: This case provides further evidence of a possible association between chromosomal aberrations in SCTs.  相似文献   

16.
It has been postulated that the deletion of band 13q22 may be associated with digital malformations, especially thumb and big toe anomalies. We report a family where the mother is carrying a balanced translocation between chromosomes 5p15 and 13q22. The offspring have a specific and well-defined phenotype depending on which is the unbalanced chromosome in the karyotype. When a partial trisomy of 13q22-->qter is present, the fetuses have polydactyly in the four limbs, and when the fetus is carrying a partial monosomy of this portion, an oligodactyly in all members can be observed.  相似文献   

17.
BACKGROUND: Regarding the literature on the results of preimplantation genetic diagnosis (PGD) in reciprocal chromosomal translocation carriers seems to prevail a view that this method reduces the frequency of miscarriages, and the pregnancy rate is directly proportional to the number of normal spermatozoa. Therefore, we compared the results of sperm karyotype analysis of a carrier of familial t(2;7)(p11.2;q22) with PGD results. The carrier was ascertained as his wife had had two miscarriages. METHODS: Empirical data from a pedigree of t(2;7)(p11.2;q22) carrier was collected. A tri-color fluorescence in situ hybridization method (FISH) was used to show the meiotic segregation pattern in sperm of the proband. PGD of blastomeres from a single ICSI cycle and standard prenatal diagnosis procedures to confirm the PGD results was performed. RESULTS: Meiotic segregation pattern showed only 34.2% of normal/balanced spermatozoa. The high rate (42%) of miscarriages was observed in this family, which could be explained by chromosomal unbalanced karyotypes as a product of fertilization by unbalanced spermatozoa found with a frequency of approximately 66%. The lack of unbalanced progeny at birth suggests a natural selection of unbalanced fetuses. The 37.5% of normal/balanced embryos received after a single ICSI cycle and PGD was similar to the percentage of normal/balanced spermatozoa (34.2%). After 38 weeks a healthy girl with normal karyotype was born. CONCLUSION: The presented study is an optimistic message for translocation carriers showing that even in case with more than 60% of genetically unbalanced sperm there is a reasonable chance for reproductive success.  相似文献   

18.
We investigated a girl with dysmorphic features and moderate developmental delay by subtelomeric FISH (fluorescence in-situ hybridization). We found an unbalanced cryptic translocation, t(9;14)(q34.3;q32.33), resulting in a subtelomeric deletion of 14q and duplication of 9q deriving from a balanced translocation in the mother. A review of the literature suggests that the phenotype of our case is related to the 14 qter deletion, without signs of concomitant partial trisomy 9. The case reinforces the value of subtelomeric screening for genetic counselling.  相似文献   

19.
We report a prenatal case of a maternally inherited abnormal chromosome 16, originally interpreted as a pericentric inversion only, but after family studies re-interpreted as a pericentric inversion (16) accompanied by an unbalanced (7;16) translocation. Because of the inversion 16 and an elder son with developmental delay and craniofacial dysmorphic features, in the past karyotyped as 46,XY, the chromosomes 16 of the mother and son were carefully re-examined. Using a whole chromosome 16 paint and sub-telomere probes of 16p and 16q, the karyotype of the mother was shown to be 46,XX,inv(16)(p11.2q23.2).ish t(7;16)(q36;p13.3)inv(16). Subsequently one chromosome 16 of the elder son appeared to be a der(16)t(7;16)(q36;p13.3). This is probably the result of a meiotic crossover between the chromosomes 16 in the mother. The prenatal karyotype was finally interpreted as 46,XY,inv(16)(p11.2q23.2).ish der(16)t(7;16)(q36;p13.3)inv(16). This is the same cytogenetic imbalance as his elder brother: a partial trisomy of chromosome 7 (q36-->qter) and a partial monosomy of chromosome 16 (p13.3-->pter).  相似文献   

20.
ObjectiveWe present prenatal diagnosis and molecular cytogenetic characterization of a de novo interchromosomal insertion of ins(1; 8)(p22.1; q22q23) at amniocentesis.Case reportA 34-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Conventional cytogenetic analysis revealed a chromosome 1p22.1 interstitial duplication and a chromosome 8q22-q23 interstitial deletion. The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis using the DNA extracted from cultured amniocytes revealed no genomic imbalance. Metaphase fluorescence in situ hybridization (FISH) analysis on cultured amniocytes showed an interchromosomal insertion of ins(1; 8)(p22.1; q22q23) or ins(1; 8) (1pter→1p22.1::8q23→8q22::1p22.1→1qter; 8pter→8q22::8q23→8qter). The long arm of chromosome 8 between bands 8q22 and 8q23 had been directly inserted into the short arm of chromosome 1 at band 1p22.1. The karyotype was 46,XY,ins(1; 8)(p22.1; q22q23) or 46,XY,ins(1; 8)(1pter→1p22.1::8q23→8q22::1p22.1→1qter; 8pter→8q22::8q23→8qter). After genetic counseling, the parents decided to continue the pregnancy. A phenotypically normal male baby was delivered at term.ConclusionFISH and aCGH are useful for genetic counseling and molecular cytogenetic characterization of a de novo interchromosomal insertion detected by amniocentesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号