首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Throughout the adult life of most mammals, new neurons are continuously generated in the dentate gyrus of the hippocampal formation. Recent work has documented specific cognitive deficits after elimination of adult hippocampal neurogenesis in rodents, suggesting that these neurons may contribute to information processing in hippocampal circuits. Young adult-born neurons exhibit enhanced excitability and have altered capacity for synaptic plasticity in hippocampal slice preparations in vitro. Still, little is known about the effect of adult-born granule cells on hippocampal activity in vivo. To assess the impact of these new neurons on neural circuits in the dentate, we recorded perforant-path evoked responses and spontaneous network activity from the dentate gyrus of urethane-anesthetized mice whose hippocampus had been focally X-irradiated to eliminate the population of young adult-born granule cells. After X-irradiation, perforant-path responses were reduced in magnitude. In contrast, there was a marked increase in the amplitude of spontaneous γ-frequency bursts in the dentate gyrus and hilus, as well as increased synchronization of dentate neuron firing to these bursts. A similar increase in gamma burst amplitude was also found in animals in which adult neurogenesis was eliminated using the GFAP:TK pharmacogenetic ablation technique. These data suggest that young neurons may inhibit or destabilize recurrent network activity in the dentate and hilus. This unexpected result yields a new perspective on how a modest number of young adult-generated granule cells may modulate activity in the larger population of mature granule cells, rather than acting solely as independent encoding units.  相似文献   

2.
Adult-born neurons are continuously generated and incorporated into the circuitry of the hippocampus throughout life in mammals. Cumulative evidence supports a physiological role for adult-born neurons, yet it not clear whether this subset of dentate granule cells makes a unique contribution to hippocampal function. Perturbation or ablation of adult hippocampal neurogenesis leads to deficits in the acquisition of learned associations or memory recall, whereas an increase in adult hippocampal neurogenesis enhances some forms of learning and memory. The observed effects thus far appear to be task-dependent, species-specific, and sensitive to the timing of manipulations. Here, we review the recent evidence correlating adult-born dentate granule cells (DGCs) with hippocampal-dependent behavior and focus on the dynamic properties of this neuronal population that may underlie its function. We further discuss a framework for future investigations of how newly integrated neurons may contribute to hippocampal processing using advanced genetic techniques with enhanced temporal resolution.  相似文献   

3.
The hippocampus has been implicated in many cognitive and emotional behaviors and in the physiology of the stress response. Within the hippocampus, the dentate gyrus has been implicated in the detection of novelty. The dentate is also a major target for stress hormones and modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Whether these functions of the dentate integrate or segregate remains unknown, as most investigations of its role in stress and learning are separate.Since the exciting discovery of adult neurogenesis in the dentate gyrus, adult-born neurons have been implicated in both novelty detection and the stress response. In this perspective we will discuss the literature that implicates the hippocampus, and potentially, adult-born neurons in these two functions. We will attempt to reconcile the seemingly contradictory behavioral results for the function of adult-born neurons. Finally, we will speculate that a key function of adult-born neurons within hippocampal function may be to modulate the stress response and perhaps assign stress salience to the sensory context.  相似文献   

4.
Studies of experimental mesial temporal lobe epilepsy (mTLE) indicate that prolonged seizures in the adult not only damage the hippocampal formation but also dramatically stimulate neurogenesis. Endogenous neural progenitor cells (NPCs) located in the adult rodent dentate gyrus and striatal subventricular zone are stimulated by experimental status epilepticus (SE) to generate increased numbers of dentate granule cells (DGCs) and olfactory interneurons, respectively ( Bengzon et al., 1997 ; Parent et al., 1997, 2002 ; Scott et al., 1998 ). In this review, we discuss current knowledge regarding the consequences of seizure activity on NPC proliferation, focusing on the hippocampus, and on the migration and integration of adult-born hippocampal neurons. We also describe the effects of seizure-induced neurogenesis on hippocampal network function and the potential relevance of aberrant neurogenesis to human mTLE.  相似文献   

5.
The hippocampus is a key brain structure involved in the short- and long-term processing of declarative memory. Since adult hippocampal neurogenesis was first found, numerous studies have tried to establish the contribution of newborn neurons to hippocampus-dependent cognitive functions. However, this large amount of research has generated contradictory results. In this paper, we review the body of evidence investigating the relationship between hippocampal neurogenesis and learning to conclude the functional role of adult-born hippocampal neurons. First, factors that could explain discrepancies among experiments are taken into account. Then, in addition to methodological differences, we emphasize the importance of the age of the newborn neurons studied, as to how their maturation influences both their properties and potential functionality. Next, we discuss which declarative memory components could require involvement of adult hippocampal neurogenesis, taking into consideration the representational demands of the task, its difficulty and the level of performance reached by the subject. Finally, other factors that could modulate neurogenesis and memory, such as stress levels or previous experience of the animal, should also be taken into consideration in interpreting experiments focused on neurogenesis. In conclusion, our analysis of published studies suggests that new adult-born neurons, under certain circumstances, have a crucial and irreplaceable role in hippocampal learning.  相似文献   

6.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

7.
To explore the role of adult hippocampal neurogenesis in novelty processing, we assessed novel object recognition (NOR) in mice after neurogenesis was arrested using focal x-irradiation of the hippocampus, or a reversible, genetic method in which glial fibrillary acidic protein-positive neural progenitor cells are ablated with ganciclovir. Arresting neurogenesis did not alter general activity or object investigation during four exposures with two constant objects. However, when a novel object replaced a constant object, mice with neurogenesis arrested by either ablation method showed increased exploration of the novel object when compared with control mice. The increased novel object exploration did not manifest until 4-6 weeks after x-irradiation or 6 weeks following a genetic ablation, indicating that exploration of the novel object is increased specifically by the elimination of 4- to 6-week-old adult born neurons. The increased novel object exploration was also observed in older mice, which exhibited a marked reduction in neurogenesis relative to young mice. Mice with neurogenesis arrested by either ablation method were also impaired in one-trial contextual fear conditioning (CFC) at 6 weeks but not at 4 weeks following ablation, further supporting the idea that 4- to 6-week-old adult born neurons are necessary for specific forms of hippocampal-dependent learning, and suggesting that the NOR and CFC effects have a common underlying mechanism. These data suggest that the transient enhancement of plasticity observed in young adult-born neurons contributes to cognitive functions.  相似文献   

8.
Neural stem cells (NSCs) give rise to neurons during development. NSCs persist and neurogenesis continues in restricted regions of postnatal and adult brains. Adult‐born neurons integrate into existing neural circuits by synaptic connections and participate in the regulation of brain function. Thus, understanding NSCs and neurogenesis may be crucial in the development of new strategies for brain repair. Here, we introduce the lineage of NSCs from embryonic to adult stages and summarize recent studies on maturation and integration of adult‐born neurons. We also discuss the regulation and potential functions of adult neurogenesis in physiological and pathological conditions.  相似文献   

9.
Traumatic brain injury(TBI) is a major cause of mortality and morbidity in the pediatric population. With advances in medical care, the mortality rate of pediatric TBI has declined. However, more children and adolescents are living with TBI-related cognitive and emotional impairments, which negatively affects the quality of their life. Adult hippocampal neurogenesis plays an important role in cognition and mood regulation. Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases, including TBI. Promoting endogenous hippocampal neurogenesis after TBI merits significant attention. However, TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus, which results in aberrant migration and impaired dendrite development of adult-born neurons. Therefore, a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains. Secondary injuries, such as neuroinflammation and oxidative stress, exert a significant impact on hippocampal neurogenesis. Currently, a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries. In this review, we discuss the uniqueness of pediatric TBI, adult hippocampal neurogenesis after pediatric TBI, and current efforts that promote neuroprotection to the developing brains, which can be leveraged to facilitate neuroregeneration.  相似文献   

10.
A fundamental question in the field of adult neurogenesis relies in addressing whether neurons generated in the adult dentate gyrus are needed for hippocampal function. Increasing evidence is accumulating in support of the notion that hippocampus-dependent behaviors activate new neurons and that those neurons are highly relevant for information processing. More specifically, immature new neurons under development that have unique functional characteristics begin to emerge as a highly relevant population in the dentate gyrus network. This review focuses on how hippocampus-dependent behaviors activate adult-born neurons and how modulation and ablation of adult hippocampal neurogenesis alter spatial and associative memory. While several contradictory findings emerge when analyzing the literature, evidence in favor of a relevant role of adult-born neurons in hippocampal function is compelling.  相似文献   

11.
Integration of adult generated neurons during epileptogenesis   总被引:1,自引:0,他引:1  
Adult generated neurons in the dentate gyrus become functionally integrated into the existing hippocampal circuit by forming synapses with mature neurons. It is now well established that seizure activity increases neural proliferation, but only recently has the fate of seizure-induced newborn neurons been examined. An emerging consensus proposes that newborn neurons are highly sensitive to their environment, such that synaptic integration is profoundly altered following insults such as seizures. Whether these changes contribute to or counteract epileptogenesis is a subject of great interest because neurogenesis provides a potential target for therapeutic intervention. In this review, we summarize the current understanding of the functional integration of adult generated granule cells in the normal rodent hippocampus, and describe how this process can be altered during epileptogenesis.  相似文献   

12.
Neurogenesis increases in the adult rodent forebrain subventricular zone (SVZ) after experimental stroke. Newborn neurons migrate to the injured striatum, but few survive long-term and little evidence exists to suggest that they integrate or contribute to functional recovery. One potential strategy to improve stroke recovery is to stimulate neurogenesis and integration of adult-born neurons by using treatments that enhance neurogenesis. We examined the influence of retinoic acid (RA), which stimulates neonatal SVZ and adult hippocampal neurogenesis, and environmental enrichment (EE), which enhances survival of adult-born hippocampal neurons. We hypothesized that the combination of RA and EE would promote survival of adult-generated SVZ-derived neurons and improve functional recovery after stroke. Adult rats underwent middle cerebral artery occlusion, received BrdU on days 5-11 after stroke and were treated with RA/EE, RA alone, EE/vehicle or vehicle alone and were killed 61 days after stroke. Rats underwent repeated MRI and behavioral testing. We found that RA/EE treatment preserved striatal and hemisphere tissue and increased SVZ neurogenesis as demonstrated by Ki67 and doublecortin (DCx) immunolabeling. All treatments influenced the location of BrdU- and DCx-positive cells in the post-stroke striatum. RA/EE increased the number of BrdU/NeuN-positive cells in the injured striatum but did not lead to improvements in behavioral function. These results demonstrate that combined pharmacotherapy and behavioral manipulation enhances post-stroke striatal neurogenesis and decreases infarct volume without promoting detectable functional recovery. Further study of the integration of adult-born neurons in the ischemic striatum is necessary to determine their restorative potential.  相似文献   

13.
14.
In adult mammals, thousands of new neurons integrate in the olfactory bulb (OB) each day. This process of adult neurogenesis has received a great deal of scientific attention aimed at understanding how mature neural networks withstand neuronal replacement, and medical interest to explore the promise that these cells may be manipulated for brain repair therapies. In the present review, we focus on the mechanisms and consequences of the functional integration of newborn interneurons in the OB network. We first describe the steps of synaptic integration and functional maturation of adult-born interneurons in the OB. We then examine the physiological control of cell maturation and survival. Finally, we explore the potential impact of adult neurogenesis on the function of the OB.  相似文献   

15.
Adult hippocampal neurogenesis is thought to be essential for learning and memory, and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of Disabled-1, an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain-of-function and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus, and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders.  相似文献   

16.
The adult mammalian olfactory bulb (OB) is continuously supplied with adult-born neurons. While some new neurons die shortly after arrival into the OB, others persist throughout the life of the animal. Here we followed the long-term morphological changes in adult-born periglomerular neurons and granule cells from the mouse OB well after they mature. We present a dataset of dendritic morphology and synaptic distributions from >100 adult-born neurons as imaged in vivo and reconstructed in 3D. The dataset currently includes a substantial range of neuronal ages (0.5-11 months old). Using this dataset, we show that the morphological steady-state which adult-born periglomerular neurons reach soon after maturation is not maintained in older neurons. Rather, total dendritic length decreases after 6 months of age. We find that this morphological decrease in "old" periglomerular neurons is regulated by the age of the animal, and is independent of neuronal age. This suggests that morphological development of adult-born neurons is regulated extrinsically. Our dendritic morphology dataset of 3D reconstructions is made available to the scientific community so it may serve as a useful resource for comparative morphological studies of the OB, and in particular of adult neurogenesis.  相似文献   

17.
Investigations of adult neurogenesis in recent years have revealed numerous differences among mammalian species, reflecting the remarkable diversity in brain anatomy and function of mammals. As a mechanism of brain plasticity, adult neurogenesis might also differ due to behavioural specialization or adaptation to specific ecological niches. Because most research has focused on rodents and only limited data are available on other mammalian orders, it is hotly debated whether, in some species, adult neurogenesis also takes place outside of the well-characterized subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus. In particular, evidence for the functional integration of new neurons born in 'non-neurogenic' zones is controversial. Considering the promise of adult neurogenesis for regenerative medicine, we posit that differences in the extent, regional occurrence and completion of adult neurogenesis need to be considered from a species-specific perspective. In this review, we provide examples underscoring that the mechanisms of adult neurogenesis cannot simply be generalized to all mammalian species. Despite numerous similarities, there are distinct differences, notably in neuronal maturation, survival and functional integration in existing synaptic circuits, as well as in the nature and localization of neural precursor cells. We also propose a more appropriate use of terminology to better describe these differences and their relevance for brain plasticity under physiological and pathophysiological conditions. In conclusion, we emphasize the need for further analysis of adult neurogenesis in diverse mammalian species to fully grasp the spectrum of variation of this adaptative mechanism in the adult CNS.  相似文献   

18.
Eisch AJ  Harburg GC 《Hippocampus》2006,16(3):271-286
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.  相似文献   

19.
Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and glucocorticoids. However, a number of studies clearly show that prolonged sleep loss can inhibit hippocampal neurogenesis independent of adrenal stress hormones. In conclusion, while modest sleep restriction may interfere with the enhancement of neurogenesis associated with learning processes, prolonged sleep disruption may even affect the basal rates of cell proliferation and neurogenesis. These effects of sleep loss may endanger hippocampal integrity, thereby leading to cognitive dysfunction and contributing to the development of mood disorders.  相似文献   

20.
The demonstration that progenitor cells in regions of the adult mammalian brain such as the dentate gyrus of the hippocampus can undergo mitosis and generate new cells that differentiate into functionally integrated neurons throughout life has marked a new era in neuroscience. In recent years, a wide range of investigations has been directed at understanding the physiological mechanisms and functional relevance of this form of brain plasticity. Our current knowledge of adult hippocampal neurogenesis indicates that the production of new cells in the brain follows a multi-step process during which newborn cells are submitted to various regulatory factors that influence cell proliferation, maturation, fate determination and survival. As details of the dynamics of morphological maturation and functional integration of newborn neurons in corticohippocampal circuits have become clearer, an increasing number of studies have examined how environmental and/or behavioural factors can modulate neurogenesis and affect hippocampal-dependent learning and memory. In this article we present an overview of recent literature that relates neurogenesis to hippocampal function on the basis of correlative studies investigating the modulation of neurogenesis by learning and behavioural experience, and the consequences of the loss of hippocampal neurogenesis for memory function. We also highlight experimental evidence that immature neurons exhibit unique electrophysiological characteristics and therefore may constitute a specific cell population particularly inclined to undergo activity-dependent plasticity. Moreover, we review recent work that reveals an unsuspected mechanistic link between synaptic plasticity and the proliferation and survival of new hippocampal neurons. From the present background of research, we argue that the incorporation of functional adult-generated neurons into existing neural networks provides a higher capacity for plasticity, which may favour the encoding and storage of certain types of memories. Depending on their birth date and maturation stage, new neurons might be implicated in the encoding/storage process of the task at hand or may help future learning experience. Finally, we highlight critical issues to be addressed in order to decipher the exact contribution of newly generated neurons to cognitive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号