首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThe aim of this study was to survey fourth-year medical students, both those choosing and those not choosing diagnostic radiology as their specialty, regarding factors influencing their choice of specialty and their perceptions of radiology.MethodsA voluntary anonymous online survey hyperlink was sent to 141 US medical schools for distribution to fourth-year students. Topics included demographics, radiology education, specialty choice and influencing factors, and opinions of radiology.ResultsA representative sampling (7%) of 2015 fourth-year medical students (n = 1,219; 51% men, 49% women) participated: 7% were applying in radiology and 93% were not. For respondents applying in radiology, the most important factor was intellectual challenge. For respondents applying in nonradiology specialties, degree of patient contact was the most important factor in the decision not to choose radiology; job market was not listed as a top-three factor. Women were less likely than men to apply in radiology (P < .001), with radiology selected by 11.8% of men (56 of 476) and only 2.8% of women (13 of 459). Respondents self-identifying as Asian had a significantly higher (P = .015) likelihood of selecting radiology (19 of 156 [12.2%]) than all other races combined (44 of 723 [6.1%]). Respondents at medical schools with required dedicated medical imaging rotations were more likely to choose radiology as a specialty, but most schools still do not require the clerkship (82%).ConclusionsThe reasons fourth-year medical students choose, or do not choose, diagnostic radiology as a specialty are multifactorial, but noncontrollable factors, such as the job market, proved less compelling than controllable factors, such as taking a radiology rotation.  相似文献   

2.
IntroductionConcerns about radiologists being replaced by artificial intelligence (AI) from the lay media could have a negative impact on medical students’ perceptions of radiology as a viable specialty. The purpose of this study was to evaluate United States of America medical students’ perceptions about radiology and other medical specialties in relation to AI.MethodsAn anonymous, web-based survey was sent to 32 radiology interest groups at United States medical schools. The survey was comprised of 6 questions assessing medical student perceptions of AI and its potential impact on radiology and other medical specialties. Responses were voluntary and collected over a 6-month period from November 2017 to April 2018.ResultsA total of 156 students responded with representation from each year of medical school. Over 75% agreed that AI would have a significant role in the future of medicine. Most (66%) agreed that diagnostic radiology would be the specialty most greatly affected. Nearly half (44%) reported that AI made them less enthusiastic about radiology. The majority of students (57%) obtained their information about AI from online articles. Thematic analysis of free answer comments revealed mostly neutral comments towards AI, however, the negative responses were the strongest and most detailed.ConclusionsUS medical students believe that AI will play a significant role in medicine, particularly in radiology. However, nearly half are less enthusiastic about the field of radiology due to AI. As the majority receive information about AI from online articles, which may have negative sentiments towards AI's impact on radiology, formal AI education and medical student outreach may help combat misinformation and help prevent the dissuading of medical students who might otherwise consider the specialty.  相似文献   

3.
4.
To explore the perspectives of entering medical students, a questionnaire was completed anonymously by 171 students in September of their first year of medical school. The authors investigated their attitudes toward radiology relative to other specialties and their perspective concerning which factors would influence their eventual choice of a specialty. Upon entering medical school, 33.3% of the students indicated that they had chosen a specialty, and 7.4% of these students had selected radiology. Radiology was perceived as a well-paid specialty with a pleasant lifestyle. These are factors that were perceived as very important regarding influence on eventual choice of specialty. However, radiology was believed to have an undesirably low level of patient contact and was perceived as not being intellectually exciting. We plan to follow this group of students prospectively through medical school to see whether their attitudes change toward radiology as a career.  相似文献   

5.
ObjectiveTo understand how women and historically underrepresented minority medical students perceive radiology as a potential career choice.MethodsMedical students representing a broad spectrum of radiology exposure from a single institution were invited to participate in a mixed-methods study. Participants completed a 16-item survey about demographics and perceptions of radiology. Ten focus groups were administered to probe decision making regarding career selection. The themes influencing women and historically underrepresented minority students are presented.ResultsForty-nine medical students, including 29 (59%) women and 17 (35%) underrepresented minorities, participated. Most participants (28 of 48, 58%) reported men outnumbered women in radiology. Female participants reported a lack of mentorship and role models as major concerns. Outreach efforts focused on the family-friendly nature of radiology were viewed as patronizing. Demographic improvements in the field were viewed as very slow. Forty-six percent (22 of 48) of participants indicated that radiology had a less underrepresented racial or ethnic workforce than other medical specialties. Minority participants especially noted a lack of radiology presence in mainstream media, so students have few preconceived biases. A failure to organically connect with the mostly White male radiologists because of a lack of shared background was a major barrier. Finally, participants described a hidden curriculum that pushes minority medical students away from specialty fields like radiology and toward primary care fields to address underserved communities and health care disparities.DiscussionWomen and historically underrepresented minority medical students perceive major barriers to choosing a career in radiology. Radiology departments must develop sophisticated multilevel approaches to improve diversity.  相似文献   

6.
PurposeTo determine if there was a difference in the level of knowledge about interventional radiology (IR) between medical students in preclinical years of training compared with medical students in clinical years of training at two medical schools and to compare awareness of IR based on the curriculum at each school: one with required radiology education and one without such a requirement.Materials and MethodsAn anonymous survey was distributed to students at two medical schools; the survey assessed knowledge of IR, knowledge of training pathways, and preferred methods to increase exposure. Responses of the preclinical and clinical groups were compared, and responses from the clinical groups at each school were compared.Results“Poor” or “fair” knowledge of IR was reported by 84% (n = 217 of 259) of preclinical students compared with 62% of clinical students (n = 110 of 177; P < .001). IR was being considered as a career by 11% of all students (15%, n = 40 of 259 preclinical; 5%, n = 9 of 177 clinical). The main reason respondents were not considering IR was “lack of knowledge” (65%, n = 136 of 210 preclinical; 20%, n = 32 of 162 clinical). Students in the clinical group at the institution with a required radiology rotation reported significantly better knowledge of IR than clinical students from the institution without a required clerkship (P = .017).ConclusionsThere are significant differences in knowledge of IR between preclinical and clinical students. Required radiology education in the clinical years does increase awareness of IR.  相似文献   

7.
ObjectivesOur institution has developed an educational program in which first-year radiology residents teach first-year medical students during gross anatomy laboratory sessions. The purpose of this study is to assess the impact of this program on medical student knowledge and perceptions of radiology, and on resident attitudes toward teaching.Materials and MethodsFirst-year resident pairs taught small groups of medical students during weekly 15-minute interactive sessions, and were evaluated on teaching skills by senior residents. A survey about attitudes toward radiology and a knowledge quiz were sent to the medical students, and a survey about attitudes toward teaching was sent to the first-year radiology residents, both pre-course and post-course.ResultsStudents’ radiology knowledge significantly increased between the pre-course and post-course survey across all categories tested (P < 0.001). Additionally, there were significant improvements in terms of students’ confidence in radiologic anatomy skills, perceived importance of radiology for medical training, familiarity with the field of radiology, and perception that radiologists are friendly (P < 0.001). Radiology residents felt more confident in their teaching proficiency (P < 0.001) by the conclusion of the course.ConclusionsResident-led small-group teaching sessions during anatomy laboratory are mutually beneficial for medical students and radiology residents. The program also allows radiology residents to be exposed early on in residency to teaching and academic medicine.  相似文献   

8.
While the number of women entering medical schools is approaching 50% nationally, women continue to be underrepresented in a number of specialties including diagnostic radiology. While diagnostic radiology has many characteristics that might be desirable to women, such as reasonable call hours, flexible scheduling, and high salaries, women still do not choose diagnostic radiology as a career. This article examines the literature to discern possible reasons for why women are entering diagnostic radiology at a lower rate. We address trends among women in academic medicine, which resemble trends among women in diagnostic radiology, and examine the effects of gender and socialization in medical school on specialty choices among women. The current literature suggests a constellation of factors may be responsible for the gender differences in diagnostic radiology. We suggest that further research is needed to elucidate why women do not seem to be choosing diagnostic radiology as frequently as one might predict based on the lifestyle of diagnostic radiologists and the numbers of women currently entering medical school. Once these reasons are made clear, it will be possible for residency program directors and medical schools to ensure that women are making informed specialty choices, whatever those choices may be.  相似文献   

9.
Rationale and objectivesTo promote opportunities for medical students to gain early exposure to radiology and research, our institution has initiated programs which fund summer radiology research projects for rising second-year medical students. This study assesses the impact of these faculty-mentored summer research experiences on medical student perceptions of radiology and research, in terms of both knowledge and interest.Materials and methodsA voluntary, anonymous survey was administered to students both before and after the summer research period. Both the pre-program survey and post-program survey included 7-point Likert-scale questions (1 = strongly disagree; 7 = strongly agree) to evaluate students’ perceptions about research and students’ perceptions about radiology as a specialty. Faculty mentors were sent an analogous post-program survey that included an evaluation of their student's research skills.ResultsThe surveys were completed by 9 of 11 students and 10 of 11 mentors. Students’ perceived knowledge of radiology as a specialty improved (P = 0.02) between the pre-program survey and post-program survey. Similarly, there was an increase in students’ perceived knowledge of research skills (P = 0.02) between the pre-program survey and post-program survey, with student ratings of research skills consistent with those of mentors. High student interest in both radiology and research was maintained over the course of the program.ConclusionOur pilot study suggests that summer research experiences can improve knowledge of radiology and research among medical students. Continued evaluation of this annual program will allow us to enhance the benefit to medical students and thereby bolster interest in academic radiology.  相似文献   

10.
The authors conducted an anonymous survey to assess positive and negative factors that may affect medical students’ decisions to pursue a career in interventional radiology (IR). The survey was sent to registrants for the Midwest IR Student Symposium in 2016 and/or 2017, with a response rate of 13%; male and female responses were then compared. Female and male medical students shared similar rankings of factors affecting their decisions about choosing IR as a career, such as concern about lifestyle and excitement about therapeutic applications. Access to female IR mentors and diversification of the currently male-dominated workplace were important, gender-specific concerns.  相似文献   

11.
PurposeTo understand factors influencing the choice and ranking of Interventional Radiology (IR) training programs among a cohort of medical students and diagnostic radiology residents pursuing careers in IR.Materials and methodsAn IRB approved, 34 question online survey (surveymonkey.com) evaluated the impact of twenty-two different factors and demographics on IR training program selection for medical students and residents. The factors analyzed included programmatic features, location characteristics, academic reputation, program size, benefits/financial incentives, emphasis on clinical care, and future job opportunities. Comparison of Likert scale responses between medical students and residents were performed by using unpaired two-sample t-tests.Results181 (145 male, 35 female) individuals responded to the survey, 74 medical students (40.9%) and 107 residents (59.1%). Medical students and residents both selected variety of IR cases as the most important and highest rated factor when choosing an IR program. Medical students ranked availability of a mentor (p = .03), inpatient consultation service (p = .003), outpatient clinic experience (p = .003), and ICU rotation experience (p < .001) significantly higher. Residents rated job placement/accomplishments of prior fellows (p = .03) and opinion of spouse/significant others (p = .002) significantly higher than medical students.ConclusionsThe top rated factors are similar among medical students and residents however medical students value the clinical aspects of the program (ICU experience, inpatient consultation service, outpatient clinic) more than residents. Residents placed more value on job placement opportunities in selecting an IR program.  相似文献   

12.
13.
The integrated interventional radiology (IR) residency accepted its first applicants in 2017. Achieving specialty status represents a significant milestone for IR; recognizing the expanding role of IR as part of an interdisciplinary team. However, this transition has had challenges that were well predicted by Heitkamp and Gunderman in 2014 and are reflected in the history of many specialties. New specialties often have complex relationships with their “parent” specialties, creating debates and tension regarding training, licensure, and scope of practice. Many of these factors have been discussed in opinion pieces by leaders in the field, reflecting upon the transition. There have also been surveys of matched IR/DR residents. However, there are few firsthand accounts of the challenges faced by trainees during such a transition, challenges that often are not well captured by an online survey.  相似文献   

14.
PurposeRadiation oncology curriculum development is challenging because of limited numbers of trainees at any single institution. The goal of this project is to implement and evaluate a standardized medical student clerkship curriculum following the multi-institutional cooperative group research model.MethodsDuring the 2013 academic year, a standardized curriculum was implemented at 11 academic medical centers consisting of three 1-hour lectures and a hands-on radiation treatment planning workshop. After the curriculum, students completed anonymous evaluations using Likert-type scales (1 = “not at all” to 5 = “extremely”) and free responses. Evaluations asked students to rate their comfort, before and after the curriculum, with radiation oncology as a specialty, knowledge of radiotherapy planning methods, and ability to function as a radiation oncology resident. Nonparametric statistical tests were used in the analysis.ResultsEighty-eight students at 11 academic medical centers completed the curriculum de novo, with a 72.7% (64 of 88) survey response rate. Fifty-seven students (89.1%) reported intent to pursue radiation oncology as their specialty. Median (interquartile range) student ratings of the importance of curricular content were as follows: overview, 4 (4-5); radiation biology/physics, 5 (4-5); practical aspects/emergencies, 5 (4-5); and planning workshop, 4 (4-5). Students reported that the curriculum helped them better understand radiation oncology as a specialty (5 [4-5]), increased specialty decision comfort (4 [3-5]), and would help the transition to radiation oncology residency (4 [4-5]). Students rated their specialty decision comfort significantly higher after completing the curriculum (4 [4-5] versus 5 [5-5]; P < .001).ConclusionsA national standardized curriculum was successfully implemented at 11 academic medical centers, providing proof of principle that curriculum development can follow the multi-institutional cooperative group research model.  相似文献   

15.
《Radiologia》2022,64(6):516-524
ObjectivesTo analyze medical students’ perceptions of the impact of artificial intelligence in radiology.Material and methodsA structured questionnaire comprising 28 items organized into six sections was distributed to students of medicine in Spain in December 2019.ResultsA total of 341 students responded. Of these, 27 (7.9%) included radiology among their three main choices for specialization, and 51.9% considered that they clearly understood what artificial intelligence is. The overall rate of correct answers to the objective true-or-false questions about artificial intelligence was 70.7%. Whereas 75.9% expressed their disagreement with the hypothesis that artificial intelligence would replace radiologists, only 41.9% disagreed with the hypothesis that the demand for radiologists would decrease in the future. Only 36.7% expressed concerns about the role of artificial intelligence related to choosing radiology as a specialty. A greater proportion of students in the early years of medical school agreed with statements that radiologists accept artificial-intelligence-related technological changes and work with the industry to apply them as well as with statements about the need to include basic training about artificial intelligence in the medical school curriculum.ConclusionsThe students surveyed are aware of the impact of artificial intelligence in daily life, but not of the current debate about its potential applications in radiology. In general, they think that artificial intelligence will revolutionize radiology without having an alarming effect on the employability of radiologists. The students surveyed think that it is necessary to provide basic training about artificial intelligence in undergraduate medical school programs.  相似文献   

16.
PurposeThe aim of this study was to develop, implement, and evaluate the effectiveness of an online multidisciplinary approach for teaching diagnostic radiology to medical students.MethodsAn online 10-session case-based learning course was designed and taught by a multidisciplinary team of radiologists, surgeons, and internists. Session topics included common clinical case scenarios for different systems and were hosted on a videoconferencing platform. Students from six medical schools across Texas enrolled in the course. The effectiveness of each session was evaluated using a pretest-posttest design. Students completed a final survey after the course to evaluate their experience.ResultsAn average of 108 attended the live sessions, with attendance peaking at 220. On average, 75 students completed both the pretest and posttest of each session. Posttest scores were an average of 46% higher than pretest scores. A total of 109 students completed the final survey; more than 90% of participants agreed that the program was relevant, that its multidisciplinary approach was valuable, and that it increased their knowledge of imaging as a diagnostic tool. Seventy-four percent said that the program increased their interest in radiology. Almost all participants said that the topics presented were thought to be “excellent and clinically important to learn” by most of the students (70%). Participants reported increased confidence in basic radiology skills after completion of the program.ConclusionsAn online multidisciplinary approach can be feasibly implemented to address the radiology education needs of a large number of medical students across a group of medical schools.  相似文献   

17.
Rationale and objectivesDuring the COVID-19 pandemic, medical educators and students are facing unprecedented challenges while navigating the new virtual landscape that social-distancing policies mandate. In response to these challenges, a new virtual introduction to radiology elective was established with unique online resources and curriculum.Materials and methodsA previously in-person 2-week introductory radiology elective was converted into a completely virtual experience using an internally developed, open-source, peer-reviewed, web-based teaching modules combined with virtual lectures, interdisciplinary conferences, and readout sessions of de-identified cases loaded to a DICOM viewer. Students from the first four months of course enrollment completed a multiple choice pre- and post-course knowledge assessments and a 5-point Likert Scale survey as part of their educational experience.ResultsIn total, 26 4th-year medical students participated over 4 separate 2-week sessions from July to October of 2020. This included 12 students from the home intuition and 14 visiting students. On average, students scored 62.2% on the 55-question pre-test and 89.0% on the same test upon completion of the course, a statistically significant increase (p < 0.001). All 26 students felt engaged throughout the course. All 26 agreed (23 “strongly agreed”) that they were more comfortable looking at imaging studies following the course. All 26 also agreed (21 “strongly agreed”) that the course helped them prepare for their future clinical rotations and careers.ConclusionInitial pilot program using unique web-based resources and student encounters during a two-week virtual introductory radiology elective proved to be a positive educational experience for the first 26 students enrolled.  相似文献   

18.
PurposeTo evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital.Material and methodsA total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations).ResultsMedical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey.ConclusionsRadiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses.  相似文献   

19.
PurposeIn 2015, only 1.5% of female Canadian medical students pursued radiology as a specialty, versus 5.6% of men. The aim of this study was to determine what factors attract and deter Canadian medical students from pursuing a career in radiology, and why fewer women than men pursue radiology as a specialty.MethodsAn anonymous online survey was e-mailed to English-speaking Canadian medical schools, and 12 of 14 schools participated. Subgroup analyses for gender and radiology interest were performed using the Fisher exact test (P < .05).ResultsIn total, 917 students (514 women; 403 men) responded. Direct patient contact was valued by significantly more women who were not considering specialization in radiology (87%), compared with women who were (70%; P < .0001). Physics deterred more women (47%) than it did men (21%), despite similar educational backgrounds for the two gender groups in physical sciences (P < .0001). More women who were considering radiology as a specialty rated intellectual stimulation as being important to their career choice (93%), compared with women who were not (80%; P = .002). Fewer women who were not interested in radiology had done preclinical observerships in radiology (20%), compared with men who were not interested in radiology (28%; P = .04).ConclusionsA perceived lack of direct patient contact dissuades medical students from pursuing radiology as a career. Women have less preclinical radiology exposure than do men. Programs that increase preclinical exposure to radiology subspecialties that have greater patient contact should be initiated, and an effort to actively recruit women to such programs should be made.  相似文献   

20.
PurposeTraditionally, the pediatric radiology elective for medical students and pediatric residents constituted a morning teaching session focused mainly on radiography and fluoroscopy. A more structured elective was desired to broaden the exposure to more imaging modalities, create a more uniform educational experience, and include assessment tools.MethodsIn 2012, an introductory e-mail and formal syllabus, including required reading assignments, were sent to participants before the start date. A rotating weekly schedule was expanded to include cross-sectional imaging (ultrasound, CT, MR) and nuclear medicine. The schedule could accommodate specific goals of the pediatric resident or medical student, as requested. Starting in 2013, an online pre-test and post-test were developed, as well as an online end-of-rotation survey specific to the pediatric radiology elective. Taking the Image Gently pledge was required. A scavenger hunt tool, cue cards, and electronic modules were added.ResultsPre-test and post-test scores, averaged over 2 years, showed improvement in radiology knowledge, with scores increasing by 27% for medical students and 21% for pediatric residents. Surveys at the end of the elective were overwhelmingly positive, with constructive criticism and complimentary comments.ConclusionsWe have successfully created an elective experience in radiology that dedicates time to education while preserving the workflow of radiologists. We have developed tools to provide a customized experience with many self-directed learning opportunities. Our tools and techniques are easily translatable to a general or adult radiology elective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号