首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Type 2 diabetes (T2D) is associated with reduced gut microbiome diversity, although the cause is unclear. Metabolites generated by gut microbes also appear to be causative factors in T2D. We therefore searched for serum metabolites predictive of gut microbiome diversity in 1018 females from TwinsUK with concurrent metabolomic profiling and microbiome composition. We generated a Microbial Metabolites Diversity (MMD) score of six circulating metabolites that explained over 18% of the variance in microbiome alpha diversity. Moreover, the MMD score was associated with a significantly lower odds of prevalent (OR[95%CI] = 0.22[0.07;0.70], P = .01) and incident T2D (HR[95%CI] = 0.31[0.11,0.90], P = .03). We replicated our results in 1522 individuals from the ARIC study (prevalent T2D: OR[95%CI] = 0.79[0.64,0.96], P = .02, incident T2D: HR[95%CI] = 0.87[0.79,0.95], P = .003). The MMD score mediated 28%[15%,94%] of the total effect of gut microbiome on T2D after adjusting for confounders. Metabolites predicting higher microbiome diversity included 3-phenylpropionate(hydrocinnamate), indolepropionate, cinnamoylglycine and 5-alpha-pregnan-3beta,20 alpha-diol monosulfate(2) of which indolepropionate and phenylpropionate have already been linked to lower incidence of T2D. Metabolites correlating with lower microbial diversity included glutarate and imidazole propionate, of which the latter has been implicated in insulin resistance. Our results suggest that the effect of gut microbiome diversity on T2D is largely mediated by microbial metabolites, which might be modifiable by diet.  相似文献   

2.
Type 1 diabetes (T1D) is a complex autoimmune disease, and first stages of the disease typically develop early in life. Genetic as well as environmental factors are thought to contribute to the risk of developing autoimmunity against pancreatic beta cells. Several environmental factors, such as breastfeeding or early introduction of solid food, have been associated with increased risk for developing T1D. During the first years of life, the gut microbial community is shaped by the environment, in particular by dietary factors. Moreover, the gut microbiome has been described for its role in shaping the immune system early in life and early data suggest associations between T1D risk and alterations in gut microbial communities. In this article, we discuss environmental factors influencing the colonization process of the gut microbial community. Furthermore, we review possible interactions between the microbiome and the host that might contribute to the risk of developing T1D.  相似文献   

3.
Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome‐wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D has been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D‐triggering factors, especially environmental factors. In this review, we summarize the current aetiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future.  相似文献   

4.
Diabetes mellitus is a looming epidemic worldwide, affecting almost all major sections of society, creating burdens on global health and economy. A large number of studies have identified a series of multiple risk factors such as genetic predisposition, epigenetic changes, unhealthy lifestyle, and altered gut microbiota that cause increased adiposity, β‐cell dysfunction, hyperglycemia, hypercholesterolemia, adiposity, dyslipidaemia, metabolic endotoxemia, systemic inflammation, intestinal permeability (leaky gut), defective secretion of incretins and oxidative stress associated with type 2 diabetes (T2D). Recent studies have proposed multifactorial interventions including dietary manipulation in the management of T2D. The same interventions have also been recommended by many national and international diabetes associations. These studies are aimed at deciphering the gut microbial influence on health and disease. Interestingly, results from several genomic, metagenomic and metabolomic studies have provided substantial information to target gut microbiota by dietary interventions for the management of T2D. Probiotics particularly lactobacilli and bifidobacteria have recently emerged as the prospective biotherapeutics with proven efficacy demonstrated in various in vitro and in vivo animal models adequately supported with their established multifunctional roles and mechanism of action for the prevention and disease treatment. The dietary interventions in conjunction with probiotics – a novel multifactorial strategy to abrogate progression and development of diabetes – hold considerable promise through improving the altered gut microbial composition and by targeting all the possible risk factors. This review will highlight the new developments in probiotic interventions and future prospects for exploring probiotic therapy in the prevention and control of lifestyle diseases like T2D. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.

Purpose of Review

The objective of this review is to critically assess the contributing role of the gut microbiota in human obesity and type 2 diabetes (T2D).

Recent Findings

Experiments in animal and human studies have produced growing evidence for the causality of the gut microbiome in developing obesity and T2D. The introduction of high-throughput sequencing technologies has provided novel insight into the interpersonal differences in microbiome composition and function.

Summary

The intestinal microbiota is known to be associated with metabolic syndrome and related comorbidities. Associated diseases including obesity, T2D, and fatty liver disease (NAFLD/NASH) all seem to be linked to altered microbial composition; however, causality has not been proven yet. Elucidating the potential causal and personalized role of the human gut microbiota in obesity and T2D is highly prioritized.
  相似文献   

6.
Over the past decade, the gut microbiome has emerged as a novel and largely unexplored source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health.  相似文献   

7.

Background:

Recent evidence suggests that the gut microbiota plays an important role in human metabolism and energy homeostasis and is therefore a relevant factor in the assessment of metabolic health and flexibility. Understanding of these host–microbiome interactions aids the design of nutritional strategies that act via modulation of the microbiota. Nevertheless, relating gut microbiota composition to host health states remains challenging because of the sheer complexity of these ecosystems and the large degrees of interindividual variation in human microbiota composition.

Methods:

We assessed fecal microbiota composition and host response patterns of metabolic and inflammatory markers in 10 apparently healthy men subjected to a high-fat high-caloric diet (HFHC, 1300 kcal/day extra) for 4 weeks. DNA was isolated from stool and barcoded 16S rRNA gene amplicons were sequenced. Metabolic health parameters, including anthropomorphic and blood parameters, where determined at t=0 and t=4 weeks.

Results:

A correlation network approach revealed diet-induced changes in Bacteroides levels related to changes in carbohydrate oxidation rates, whereas the change in Firmicutes correlates with changes in fat oxidation. These results were confirmed by multivariate models. We identified correlations between microbial diversity indices and several inflammation-related host parameters that suggest a relation between diet-induced changes in gut microbiota diversity and inflammatory processes.

Conclusions:

This approach allowed us to identify significant correlations between abundances of microbial taxa and diet-induced shifts in several metabolic health parameters. Constructed correlation networks provide an overview of these relations, revealing groups of correlations that are of particular interest for explaining host health aspects through changes in the gut microbiota.  相似文献   

8.
The intestinal tract is one of the most complex organs of the human body. It has to exercise various functions including food and water absorption, as well as barrier and immune regulation. These functions affect not only the gut itself, but influence the overall health of the organism. Diseases involving the gastrointestinal tract such as inflammatory bowel disease and colorectal cancer therefore severely affect the patient's quality of life and can become life-threatening. Intestinal epithelial cells (IECs) play an important role in intestinal inflammation, infection, and cancer development. IECs not only constitute the first barrier in the gut against the lumen, they also constantly signal information about the gut lumen to immune cells, thereby influencing their behaviour. In contrast, by producing various antimicrobial peptides, IECs shape the microbial community within the gut. IECs also respond to cytokines and other mediators of immune cells in the lamina propria. Interactions between epithelial cells and immune cells in the intestine are responsible for gut homeostasis, and modulations of this crosstalk have been reported in studies of gut diseases. This review discusses the wide field of immune-epithelial interactions and shows the importance of immune-epithelial crosstalk in the intestine to gut homeostasis and the overall health status.  相似文献   

9.
People with human immunodeficiency virus (HIV) (PWH) have reduced gut barrier integrity (“leaky gut”) that permits diffusion of microbial antigens (microbial translocation) such as lipopolysaccharide (LPS) into the circulation, stimulating inflammation. A potential source of this disturbance, in addition to gut lymphoid tissue CD4+ T-cell depletion, is the interaction between the gut barrier and gut microbes themselves. We evaluated the relationship of gut barrier integrity, as indexed by plasma occludin levels (higher levels corresponding to greater loss of occludin from the gut barrier), to gut microbial diversity. PWH and people without HIV (PWoH) participants were recruited from community sources and provided stool, and 16S rRNA amplicon sequencing was used to characterize the gut microbiome. Microbial diversity was indexed by Faith’s phylogenetic diversity (PD). Participants were 50 PWH and 52 PWoH individuals, mean ± SD age 45.6 ± 14.5 years, 28 (27.5%) women, 50 (49.0%) non-white race/ethnicity. PWH had higher gut microbial diversity (Faith’s PD 14.2 ± 4.06 versus 11.7 ± 3.27; p = 0.0007), but occludin levels were not different (1.84 ± 0.311 versus 1.85 ± 0.274; p = 0.843). Lower gut microbial diversity was associated with higher plasma occludin levels in PWH (r = −0.251; p = 0.0111), but not in PWoH. A multivariable model demonstrated an interaction (p = 0.0459) such that the correlation between Faith’s PD and plasma occludin held only for PWH (r = −0.434; p = 0.0017), but not for PWoH individuals (r = −0.0227; p = 0.873). The pattern was similar for Shannon alpha diversity. Antiretroviral treatment and viral suppression status were not associated with gut microbial diversity (ps > 0.10). Plasma occludin levels were not significantly related to age, sex or ethnicity, nor to current or nadir CD4 or plasma viral load. Higher occludin levels were associated with higher plasma sCD14 and LPS, both markers of microbial translocation. Together, the findings suggest that damage to the gut epithelial barrier is an important mediator of microbial translocation and inflammation in PWH, and that reduced gut microbiome diversity may have an important role.  相似文献   

10.
11.
《Gut microbes》2013,4(5):555-568
ABSTRACT

The microbiome in the gut is a diverse environment, housing the majority of our bacterial microbes. This microecosystem has a symbiotic relationship with the surrounding multicellular organism, and a balance and diversity of specific phyla of bacteria support general health. When gut bacteria diversity diminishes, there are systemic consequences, such as gastrointestinal and psychological distress. This pathway of communication is known as the microbiome–gut–brain axis. Interventions such as probiotic supplementation that influence microbiome also improve both gut and brain disorders. Recent evidence suggests that aerobic exercise improves the diversity and abundance of genera from the Firmcutes phylum, which may be the link between the positive effects of exercise on the gut and brain. The purpose of this review is to explain the complex communication pathway of the microbiome–gut–brain axis and further examine the role of exercise on influencing this communication highway.  相似文献   

12.
The gut microbiome is a complex microbial community, recognized for its potential role in physiology, health, and disease. The available evidence supports the role of gut dysbiosis in pancreatic disorders, including acute pancreatitis (AP). In AP, the presence of gut barrier damage resulting in increased mucosal permeability may lead to translocation of intestinal bacteria, necrosis of pancreatic and peripancreatic tissue, and infection, often accompanied by multiple organ dysfunction syndrome. Preserving gut microbial homeostasis may reduce the systemic effects of AP. A growing body of evidence suggests the possible involvement of the gut microbiome in various pancreatic diseases, including AP. This review discusses the possible role of the gut microbiome in AP. It highlights AP treatment and supplementation with prebiotics, synbiotics, and probiotics to maintain gastrointestinal microbial balance and effectively reduce hospitalization, morbidity and mortality in an early phase. It also addresses novel therapeutic areas in the gut microbiome, personalized treatment, and provides a roadmap of human microbial contributions to AP that have potential clinical benefit.  相似文献   

13.
Gut microbiota is vital for human health. Shifts in the microbial diversity can affect bacterial function, and dysbiosis is associated with a variety of gastrointestinal disorders, including celiac disease (CD) and irritable bowel syndrome (IBS). The distinction between IBS and non-celiac gluten sensitivity (NCGS) is unclear, and it is conceivable that the gut microbiota profile of these patients may overlap. To our knowledge, no existing literature has evaluated the microbial characteristics in CD, IBS, and NCGS. Hence, this systematic review aims to compare the gut microbiota profile in these three diagnoses. A literature search was conducted in PubMed (Medline) until April 2019. Studies investigating bacterial diversity in the gut of patients with CD, IBS, and NCGS were eligible. Inclusion criteria were observational studies and randomized controlled trials reporting bacterial profile at baseline. Ninety-one articles were identified, of which 13 trials were eligible for inclusion. Overall, the bacterial composition of the gut microbiota of patients with CD and those with IBS shared the many similarities. The microbial richness was correspondingly reduced in these patient-groups compared with healthy controls, but this was not reported for NCGS. Our findings suggest that the bacterial profiles of patients with IBS and CD share certain disease-specific trends. Fewer similarities were observed between the bacterial profiles of patients with IBS and NCGS. Notably, the data are limited; thus, no solid conclusions can be made on the basis of these findings alone. The suggested trends can be a valuable basis for further research.  相似文献   

14.
The world population is aging, which poses a significant burden to the economy and health care system. As people age, so do their gut microbiomes. Age-related changes in gut microbiome have been reported, including decreased microbial diversity and increased Proteobacteria. Recently, we characterized the gut microbiome of a group of long-living (≥ 90 years old) Chinese people. Interestingly, the diversity of their gut microbiome was greater than that of a young adult control group. We also identified several potentially beneficial bacteria enriched in the long-living Chinese group. These results were validated using data from an independent Italian cohort that included a group of long-living individuals. Other recent studies have found similar results. Here, we provide a summary of these discoveries and discuss their implications in healthy aging.  相似文献   

15.
It is increasingly apparent that the microbial ecosystems in the mammalian gastrointestinal tract play an intricate role in health and disease. There is a growing interest in the development of targeted strategies for modulating health through the modification of these microbiota.Ecologists are faced with the challenge of understanding the structure and function of ecosystems, the component parts of which interact with each other in complex and diffuse ways. The human gut microbiota, with its high species richness and diversity (up to 1000 bacterial species per individual) including members of all three domains of life, situated in the dynamic environment of the gastrointestinal tract, is probably among the most complex ecosystems on this planet.In order to elucidate the mechanistic foundations, and physiological significance, of beneficial or pathogenic relationships between the gut microbiota and their hosts, researchers require tractable model ecosystems that allow to recapitulate and investigate host–microbe and microbe–microbe interactions. This review discusses ex vivo gastrointestinal models systems that can be used to gain mechanistic insights into the emergent properties of the host–microbial superorganism.  相似文献   

16.
Factors shaping the human intestinal microbiota range from environmental influences, like smoking and exercise, over dietary patterns and disease to the host's genetic variation. Recently, we could show in a microbiome genome-wide association study (mGWAS) targeting genetic variation influencing the β diversity of gut microbial communities, that approximately 10% of the overall gut microbiome variation can be explained by host genetics. Here, we report on the application of a new method for genotype-β-diversity association testing, the distance-based F (DBF) test. With this we identified 4 loci with genome-wide significant associations, harboring the genes CBEP4, SLC9A8, TNFSF4, and SP140, respectively. Our findings highlight the utility of the high-performance DBF test in β diversity GWAS and emphasize the important role of host genetics and immunity in shaping the human intestinal microbiota.  相似文献   

17.
Background and aimThe gut microbiota (GM) plays an essential role in maintaining health, and imbalance in its composition is associated with the physiopathogenesis of metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Diet and antibiotics are known modulators of GM, but the influence of physical exercise in modulating the diversity and abundance of hindgut bacteria is still poorly understood. The aim of this systematic review was to investigate the scientific evidence about the effect of physical exercise on GM modulation in subjects with obesity and T2DM.Methods and resultsA search in PubMed, Web of Science, Scopus, Cochrane and Embase databases using keywords related to gut microbiota, physical exercise and metabolic diseases was performed. Eight clinical studies met the inclusion criteria, six in subjects with obesity and two in individuals with T2DM. In three studies carried out in individuals with obesity, exercise was able to positively modulate the diversity of GM and the abundance of some species of bacteria, mostly by increasing the Bifidobacteriaceae family, and the Bacteroides and Akkermansia genera, and by decreasing the Proteobacteria phylum. The studies in subjects with T2DM found that physical exercise may reduce metabolic endotoxemia markers.ConclusionsPhysical exercise may be a beneficial modulation strategy of GM composition in metabolic diseases, specifically aerobic exercises carried out for at least 6 weeks with moderate or high intensity. Nevertheless, well-designed clinical trials are needed to clarify the role of physical exercise on GM in subjects with obesity and T2DM.  相似文献   

18.
Background and aimsDisordered eating (DE) in type 1 diabetes (T1D) includes insulin restriction for weight loss with serious complications. Gut microbiota-derived short chain fatty acids (SCFA) may benefit host metabolism but are reduced in T1D. We evaluated the hypothesis that DE and insulin restriction were associated with reduced SCFA-producing gut microbes, SCFA, and intestinal microbial diversity in adults with T1D.Methods and resultsWe collected stool samples at four timepoints in a hypothesis-generating gut microbiome pilot study ancillary to a weight management pilot in young adults with T1D. 16S ribosomal RNA gene sequencing measured the normalized abundance of SCFA-producing intestinal microbes. Gas-chromatography mass-spectrometry measured SCFA (total, acetate, butyrate, and propionate). The Diabetes Eating Problem Survey—Revised (DEPS-R) assessed DE and insulin restriction. Covariate-adjusted and Bonferroni-corrected generalized estimating equations modeled the associations. COVID-19 interrupted data collection, so models were repeated restricted to pre-COVID-19 data.Data were available for 45 participants at 109 visits, which included 42 participants at 65 visits pre-COVID-19. Participants reported restricting insulin “At least sometimes” at 53.3% of visits. Pre-COVID-19, each 5-point DEPS-R increase was associated with a ?0.34 (95% CI -0.56, ?0.13, p = 0.07) lower normalized abundance of genus Anaerostipes; and the normalized abundance of Lachnospira genus was ?0.94 (95% CI -1.5, ?0.42), p = 0.02 lower when insulin restriction was reported “At least sometimes” compared to “Rarely or Never”.ConclusionDE and insulin restriction were associated with a reduced abundance of SCFA-producing gut microbes pre-COVID-19. Additional studies are needed to confirm these associations to inform microbiota-based therapies in T1D.  相似文献   

19.
Functional diversity within the simple gut microbiota of the honey bee   总被引:4,自引:0,他引:4  
Animals living in social communities typically harbor a characteristic gut microbiota important for nutrition and pathogen defense. Accordingly, in the gut of the honey bee, Apis mellifera, a distinctive microbial community, composed of a taxonomically restricted set of species specific to social bees, has been identified. Despite the ecological and economical importance of honey bees and the increasing concern about population declines, the role of their gut symbionts for colony health and nutrition is unknown. Here, we sequenced the metagenome of the gut microbiota of honey bees. Unexpectedly, we found a remarkable degree of genetic diversity within the few bacterial species colonizing the bee gut. Comparative analysis of gene contents suggests that different species harbor distinct functional capabilities linked to host interaction, biofilm formation, and carbohydrate breakdown. Whereas the former two functions could be critical for pathogen defense and immunity, the latter one might assist nutrient utilization. In a γ-proteobacterial species, we identified genes encoding pectin-degrading enzymes likely involved in the breakdown of pollen walls. Experimental investigation showed that this activity is restricted to a subset of strains of this species providing evidence for niche specialization. Long-standing association of these gut symbionts with their hosts, favored by the eusocial lifestyle of honey bees, might have promoted the genetic and functional diversification of these bee-specific bacteria. Besides revealing insights into mutualistic functions governed by the microbiota of this important pollinator, our findings indicate that the honey bee can serve as a model for understanding more complex gut-associated microbial communities.  相似文献   

20.
Gut microbiota are involved in the development or prevention of various diseases such as type 2 diabetes,fatty liver, and malignancy such as colorectal cancer,breast cancer and hepatocellular carcinoma. Alzheimer'sdisease, osteoporosis, sarcopenia, atherosclerotic stroke and cardiovascular disease are major diseases associated with decreased activities of daily living(ADL), especially in elderly people. Recent analyses have revealed the importance of gut microbiota in the control of these diseases. The composition or diversity of these microbiota is different between patients with these conditions and healthy controls, and administration of probiotics or prebiotics has been shown effective in the treatment of these diseases. Gut microbiota may affect distant organs through mechanisms that include regulating the absorption of nutrients and/or the production of microbial metabolites, regulating and interacting with the systemic immune system, and translocating bacteria/bacterial products through disrupted mucosal barriers.Thus, the gut microbiota may be important regulators in the development of diseases that affect ADL. Although adequate exercise and proper diet are important for preventing these diseases, their combination with interventions that manipulate the composition and/or diversity of gut microbiota could be a promising strategy for maintaining health condition and preserving ADL. This review thus summarizes current understanding of the role of gut microbiota in the development or prevention of diseases closely associated with the maintenance of ADL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号