首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨青少年肾细胞癌的临床病理特征、遗传学改变、鉴别诊断及预后.方法 对46例青少年肾细胞癌进行光镜观察及免疫组织化学染色,随访并复习相关文献.对46例肿瘤进行von Hippel-Lindau(VHL)基因区域杂合性缺失(LOH)及VHL基因突变筛查.结果 共诊断19例Xp11.2易位/TFE3基因融合相关性肾癌(Xp11 RCC)、9例透明细胞癌、17例乳头状肾细胞癌(PRCC)和1例不能分类肾细胞癌.19例Xp11 RCC均TFE3阳性,而TFEB阴性.8例肿瘤具有巢状和乳头状结构形态类似t(X;17)ASPL-TFE3型肾癌,6例肿瘤组织学类似t(X;1)PRCC-TFE3型肾癌,4例肿瘤形态像透明细胞癌,1例肿瘤组织学形态文献中未被检索到,表现为细胞核呈毛玻璃样,核仁不明显,可见核沟,肿瘤间质见大量黏液.LOH及VHL突变检测结果显示,仅1例透明细胞癌和1例2型PRCC存在LOH,并且该2型PRCC的VHL基因的一个剪切位点存在胚系突变,553+5 G→C.其余45例均未检测出VHL突变.统计学分析表明TFE3阳性肾细胞癌比TFE3阴性肾细胞癌更倾向于高病理分期(pT3/pT4),并且预后较差(P=0.035).结论 青少年肾细胞癌表现出不同的组织学形态以及分子遗传学背景.其中Xp11 RCC为最常见的肾癌亚型.TFE3阳性肾细胞癌的预后要差于TFE3阴性肾细胞癌.  相似文献   

2.
Renal cell carcinoma (RCC) is not a single entity, but comprises a group of tumors including clear cell RCC, papillary RCC and chromophobe RCC, which arise from the epithelium of renal tubules. The majority of clear cell RCCs, the major histological subtype, have genetic or epigenetic inactivation of the von Hippel-Lindau (VHL) gene. Germline mutations in the MET and fumarate hydratase (FH) genes lead to the development of type 1 and type 2 papillary RCCs, respectively, and such mutations of either the TSC1 or TSC2 gene increase the risk of RCC. Genome-wide copy number alteration analysis has suggested that loss of chromosome 3p and gain of chromosomes 5q and 7 may be copy number aberrations indispensable for the development of clear cell RCC. When chromosome 1p, 4, 9, 13q or 14q is also lost, more clinicopathologically aggressive clear cell RCC may develop. Since renal carcinogenesis is associated with neither chronic inflammation nor persistent viral infection, and hardly any histological change is evident in corresponding non-tumorous renal tissue from patients with renal tumors, precancerous conditions in the kidney have been rarely described. However, regional DNA hypermethylation on C-type CpG islands has already accumulated in such non-cancerous renal tissues, suggesting that, from the viewpoint of altered DNA methylation, the presence of precancerous conditions can be recognized even in the kidney. Genome-wide DNA methylation profiles in precancerous conditions are basically inherited by the corresponding clear cell RCCs developing in individual patients: DNA methylation alterations at the precancerous stage may further predispose renal tissue to epigenetic and genetic alterations, generate more malignant cancers, and even determine patient outcome. The list of tumor-related genes silenced by DNA hypermethylation has recently been increasing. Genetic and epigenetic profiling provides an optimal means of prognostication for patients with RCCs. Recently developed high-throughput technologies for genetic and epigenetic analyses will further accelerate the identification of key molecules for use in the prevention, diagnosis and therapy of RCCs.  相似文献   

3.
Renal cell carcinoma (RCC) is not a single entity, but comprises a group of tumors including clear cell RCC, papillary RCC and chromophobe RCC, which arise from the epithelium of renal tubules. The majority of clear cell RCCs, the major histological subtype, have genetic or epigenetic inactivation of the von Hippel-Lindau (VHL) gene. Germline mutations in the MET and fumarate hydratase (FH) genes lead to the development of type 1 and type 2 papillary RCCs, respectively, and such mutations of either the TSC1 or TSC2 gene increase the risk of RCC. Genome-wide copy number alteration analysis has suggested that loss of chromosome 3p and gain of chromosomes 5q and 7 may be copy number aberrations indispensable for the development of clear cell RCC. When chromosome 1p, 4, 9, 13q or 14q is also lost, more clinicopathologically aggressive clear cell RCC may develop. Since renal carcinogenesis is associated with neither chronic inflammation nor persistent viral infection, and hardly any histological change is evident in corresponding non-tumorous renal tissue from patients with renal tumors, precancerous conditions in the kidney have been rarely described. However, regional DNA hypermethylation on C-type CpG islands has already accumulated in such non-cancerous renal tissues, suggesting that, from the viewpoint of altered DNA methylation, the presence of precancerous conditions can be recognized even in the kidney. Genome-wide DNA methylation profiles in precancerous conditions are basically inherited by the corresponding clear cell RCCs developing in individual patients: DNA methylation alterations at the precancerous stage may further predispose renal tissue to epigenetic and genetic alterations, generate more malignant cancers, and even determine patient outcome. The list of tumor-related genes silenced by DNA hypermethylation has recently been increasing. Genetic and epigenetic profiling provides an optimal means of prognostication for patients with RCCs. Recently developed high-throughput technologies for genetic and epigenetic analyses will further accelerate the identification of key molecules for use in the prevention, diagnosis and therapy of RCCs.  相似文献   

4.
Wu A  Kunju LP  Cheng L  Shah RB 《Histopathology》2008,53(5):533-544
Aims: Recent studies suggest that paediatric renal cell carcinoma (RCC) may represent a distinct group of tumours; however, its biological behaviour and classification remain poorly understood. The aim was to analyse 13 RCCs from patients ≤23 years of age to determine their clinicopathological, immunohistochemical and molecular characteristics. Methods and results: The histological spectrum included: Xp11.2 translocation‐associated (6/13 patients, 46%), clear cell (5/13 patients, 38%), papillary (1/13 patients) and unclassified (1/13 patients) types. The Xp11.2 translocation‐associated RCCs had a wide morphological spectrum, with high nuclear grade cells with abundant cytoplasm ranging from clear to granular and architecture ranging from solid to papillary. These tumours lacked cytokeratin expression and were confirmed by nuclear reactivity for TFE3 protein. Most of these translocation‐associated tumours presented at high stage and had an unfavourable outcome. Three clear cell RCCs had unusual features that have not been previously characterized, including solid and cystic architecture, cells with abundant eosinophilic cytoplasm yet low nuclear grade and focal cytoplasmic inclusions, resembling oncocytoma. Deletion of subtelomeric 3p25 was observed in two of these RCCs. Conclusions: Xp11.2 translocation‐associated RCC represents a predominant and aggressive subtype in the paediatric age group. Increased awareness of this subtype is important due to its heterogeneous morphology.  相似文献   

5.
This study aimed to assess whether glucose transporter 1 (GLUT1) is useful in prognostication or differential diagnosis of renal tumors. GLUT1 immunostain for 228 renal tumors showed a membranous or cytoplasmic pattern. The membranous pattern was seen in 86.2% of 145 clear cell renal cell carcinomas (RCCs) and 100% of 11 transitional cell carcinomas (TCCs) but in no oncocytomas, other subtypes of RCC, or sarcomatoid areas of RCCs. The cytoplasmic pattern was seen in 55.2% of 145 clear cell RCCs, 38% of papillary RCCs (11/29), 13% of chromophobe RCCs (2/16), 22% of oncocytomas (5/23), and 82% of TCCs (9/11). Western blot showed a markedly increased GLUT1 protein content in clear cell RCCs compared with a low level in papillary RCCs and normal kidney specimens. GLUT1 expression in clear cell RCC was not significantly correlated with patient survival, tumor grade, or tumor stage. GLUT1 may be a novel target for immunotherapy and a useful marker in the differential diagnosis and classification of renal tumors.  相似文献   

6.
Urovysion fluorescence in situ hybridization (UVFISH) identifies malignant cells in urine by detecting specific urothelial carcinoma-related chromosomal abnormalities. Some renal carcinomas (RCCs) share overlapping chromosomal aberrations with urothelial carcinoma. Malignant renal cells that are shed in urine can potentially cause a positive UVFISH result. We evaluated UVFISH in RCCs to determine its potential applicability to the diagnosis and grading of RCCs. Paraffin blocks from 39 RCCs (25 clear cell, 9 papillary, 2 chromophobe, and 3 sarcomatoid) and 15 controls (5 renal oncocytomas and 10 urothelial carcinomas) were tested. Of the RCCs, 15 (40%) were UVFISH-positive (9/25 [40%] clear cell, 3/9 [30%] papillary, 1/2 [50%] chromophobe, and 2/3 [67%] sarcomatoid carcinoma) and 24 (60%) were negative. Of the 15 controls, 8 (~50%) were UVFISH-positive (2/5 [40%] oncocytomas and 6/10 [60%] urothelial carcinomas) and 7 (~50%) were UVFISH-negative. Polysomy of chromosome 17 showed a statistically significant correlation with RCC subtype, being absent in most of the clear cell RCCs (P = .0096) compared with other RCCs. Polysomy of chromosome 7 was more frequent in high-grade than low-grade RCC (P = .0197) and more likely in high-grade clear cell than low-grade clear cell RCC (P = .0120). In conclusion, we showed that RCC has overlapping chromosomal abnormalities with urothelial carcinoma and can cause a positive UVFISH result. This has implications for the interpretation of Urovysion in patients whose urine contains malignant cells but who have negative cystoscopy and a concomitant renal mass. The chromosomal abnormalities observed in RCC are not distinct from those in urothelial carcinoma; therefore, UVFISH cannot distinguish these tumor types, nor can it type or grade RCC.  相似文献   

7.
The MiT family translocation renal cell carcinomas (RCCs) are relatively rare in comparison to the conventional RCC. The cytologic features overlap with conventional clear cell RCC and papillary RCCs, thereby making the diagnosis extremely challenging. Here, we describe a case of TFE3 translocation associated RCC in a 58‐year‐old patient, with emphasis on cytomorphologic features and clues toward this diagnostic entity. Correlating the cytohistologic findings and review of touch imprints revealed that presence of hyaline nodules resembling leisegang rings and psammoma bodies in cytologic smears from kidney tumors serve as an important clue in raising a suspicion for the diagnosis of MiT family translocation RCCs.  相似文献   

8.
The current World Health Organisation (WHO) classification of renal tumours is based on characteristic histological features or specific molecular alterations. von Hippel‐Lindau (VHL) alteration is the hallmark of clear cell renal cell carcinoma (RCC). After identification of the MiT translocation family of tumours, clear cell papillary renal cancer and others, the group of ccRCC with wild‐type VHL is small. TCEB1 mutation combined with chromosome 8q loss is an emerging tumour entity with wild‐type VHL. Inactivation of TCEB1 increases HIF stabilisation via the same mechanism as VHL inactivation. Importantly, recent molecular analyses suggest the existence of another ‘VHL wild‐type’ evolutionary subtype of clear cell RCC in addition to TCEB1 mutated RCC and clear cell papillary renal cancer. These tumours are characterised by an aggressive behaviour, high tumour cell proliferation rate, elevated chromosomal instability and frequent presence of sarcomatoid differentiation. Future clinicopathological studies will have to provide data to determine whether TCEB1 tumours and clear cell RCC with wild‐type VHL are separate tumour entities or represent variants of a clear cell RCC tumour family.  相似文献   

9.
Claudin-7 has recently been suggested to be a distal nephron marker. We tested the possibility that expression of claudin-7 could be used as a marker of renal tumors originating from the distal nephron. We examined the immunohistochemical expression of claudin-7 and parvalbumin in 239 renal tumors, including 179 clear cell renal cell carcinoma (RCC)s, 29 papillary RCCs, 20 chromophobe RCCs, and 11 renal oncocytomas. In addition, the methylation specific-PCR (MSP) of claudin-7 was performed. Claudin-7 and parvalbumin immunostains were positive in 3.4%, 7.8% of clear cell RCCs, 34.5%, 31.0% of papillary RCCs, 95.0%, 80.0% of chromophobe RCCs, and 72.7%, 81.8% of renal oncocytomas, respectively. The sensitivity and specificity of claudin-7 in diagnosing chromophobe RCC among subtypes of RCC were 95.0% and 92.3%. Those of parvalbumin were 80.0% and 88.9%. The expression pattern of claudin-7 was mostly diffuse in chromophobe RCC and was either focal or diffuse in oncocytoma. All of the cases examined in the MSP revealed the presence of unmethylated promoter of claudin-7 without regard to claudin-7 immunoreactivity. Hypermethylation of the promoter might not be the underlying mechanism for loss of its expression in RCC. Claudin-7 can be used as a useful diagnostic marker in diagnosing chromophobe RCC and oncocytoma.  相似文献   

10.
Aims:  The distinction between central nervous system (CNS) metastases of clear cell renal cell carcinoma (RCC) and CNS haemangioblastoma still poses a challenge to the pathologist. Since both entities occur in von Hippel–Lindau disease, this aggravates the issue. The antibody renal cell carcinoma marker (RCC-ma) has been suggested to identify primary RCCs specifically, but its value for diagnosing metastases of RCC is controversial. The aim was to assess two distinct clones of the RCC-ma for their potential to: (i) identify primary RCCs and (ii) differentiate between CNS metastases of clear cell RCC and CNS haemangioblastomas.
Methods and results:  Using tissue microarrays, 77% ( n  = 363; PN-15) and 66% ( n  = 355; 66.4C2) of clear cell RCCs, and 93% (PN-15) and 74% (66.4C2) of papillary RCCs ( n  = 46) were immunopositive for RCC-ma, whereas none of the investigated chromophobe RCCs ( n  = 22) or any of the oncocytomas ( n  = 15) showed immunoreactivity. Importantly, 50.9% of CNS metastases of clear cell RCCs ( n  = 55) exhibited RCC-ma expression, whereas all CNS haemangioblastomas (71) were negative.
Conclusions:  Both RCC-ma clones, despite some variation in their sensitivity to detect clear cell and papillary RCCs, are of value in differentiating subtypes of primary RCC and are excellent markers for discriminating clear cell lesions in the brain.  相似文献   

11.
Four cases of late onset clear cell renal cell carcinoma (RCC), a case of gastric cancer, and a case of exocrine pancreatic cancer were identified in a Japanese family. In order to elucidate the underlying mechanism for tumorigenesis in this family, extensive genetic studies were performed including routine and spectral karyotyping (SKY), fluorescence in situ hybridisation (FISH), comparative genomic hybridisation (CGH), loss of heterozygosity studies (LOH), and VHL mutation analysis. A germline translocation t(1;3)(q32-q41;q13-q21) was identified by karyotyping in five members of the family including all three RCC cases tested. The translocation was refined to t(1;3)(q32;q13.3) by FISH analysis using locus specific genomic clones, and the two breakpoints were mapped to a 5 cM region in 3q13.3 and a 3.6 cM region in 1q32. Both CGH and allelotyping using microsatellite markers showed loss of the derivative chromosome 3 carrying a 1q segment in the three familial RCCs analysed. Additional chromosomal imbalances were identified by CGH, including amplifications of chromosomes 5 and 7 and loss of 8p and 9. No germline VHL mutation was found but two different somatic mutations, a splice (IVS1-2A>C) and a frameshift (726delG), were identified in two RCCs from the same patient confirming their distinct origin.Taken together, these results firmly support a three step model for tumorigenesis in this family. A constitutional translocation t(1q;3q) increased the susceptibility to loss of the derivative chromosome 3 which is then followed by somatic mutations of the RCC related tumour suppressor gene VHL located in the remaining copy of chromosome 3.


Keywords: familial renal cell carcinoma; translocation; von Hippel-Lindau disease; loss of heterozygosity  相似文献   

12.
Pan CC  Chen PC  Ho DM 《Histopathology》2004,45(5):452-459
AIMS: To demonstrate the diagnostic utility of MOC31, BerEP4, renal cell carcinoma marker (RCC Ma) and CD10 in the classification of RCC and renal oncocytoma, based upon a comprehensive immunohistochemical analysis. METHODS AND RESULTS: Immunohistochemistry was performed on 328 samples consisting of 256 clear cell/conventional, 27 papillary, 28 chromophobe, five collecting duct, five unclassified RCCs and seven renal oncocytomas using antibodies MOC31, BerEP4 and antibodies against cytokeratins (KL-1, CAM5.2, 34betaE12, cytokeratin 7), RCC Ma, epithelial membrane antigen, E-cadherin, CD10, CD15 and vimentin. Multivariate analysis showed that MOC31, BerEP4, RCC Ma and CD10 have discriminatory value. MOC31 and BerEP4 chiefly labelled distal tubules of normal kidney while RCC Ma and CD10 labelled the proximal tubules. Twenty-three chromophobe RCCs (82%) were reactive for MOC31, while only four clear cell RCCs and three papillary RCCs were positive for this marker. Clear cell RCCs were characterized by a high positive rate for CD10 (82%) and a low positive rate for BerEP4 (27%). Papillary RCCs frequently coexpressed RCC Ma and BerEP4 (51%). All renal oncocytomas were negative for MOC31 and CD10. CONCLUSIONS: MOC31 has diagnostic merit in discerning chromophobe RCC. The CD10+/BerEP4- profile and RCC Ma+/BerEP4+ profile achieve moderate sensitivity and good specificity for clear cell RCC and papillary RCC, respectively. The non-reactivity for both MOC31 and CD10 is helpful in distinguishing renal oncocytoma from RCC. When properly selected, antibodies have immunohistochemical diagnostic utility for the classification of renal cortical epithelial tumours.  相似文献   

13.
Carbonic anhydrase IX (CAIX), a hypoxia-induced protein, is expressed in some renal tumors. We evaluated its immunohistochemical expression in 317 primary and 42 metastatic renal neoplasms (186 clear cell, 52 papillary, 35 chromophobe, 47 unclassified, and 15 Xp11.2 translocation renal cell carcinomas [RCCs]; 26 oncocytomas; 2 metanephric adenomas; 1 urothelial carcinoma; 1 mixed epithelial and stromal tumor; and 1 angiomyolipoma); 7 neoplasms were unknown as to whether they were primary or metastatic. We also correlated expression with tumor type and grade. Variable staining was seen in clear cell, papillary, unclassified, and Xp11.2 translocation carcinomas. One chromophobe carcinoma had focal expression. No staining was seen with other tumors. An association was found between high expression and clear cell vs non-clear cell carcinomas with all cases (P < .01) and primary (P < .01) cases. An association between CAIX expression and grade (P < .01) in primary clear cell carcinomas was found. CAIX expression is more common in clear cell RCC than other renal tumor types and is associated with grade.  相似文献   

14.
肾损伤因子-1在肾上皮性肿瘤中的表达及临床意义   总被引:1,自引:0,他引:1  
目的 明细胞癌、乳头状肾细胞癌、肾嫌色细胞癌、Xp11.2易位/TFE3基因融合相关性肾癌和转移性透明细胞癌中的表达率分别是77.8%(49/63)、90.9%(20/22)、1/13、7/7和87.5%(21/24),7例嗜酸细胞腺瘤均阴性.在原发性肾透明细胞癌中,KIM-1弥漫阳性表达更易发生于Furhman细胞核Ⅲ/Ⅳ级的病例(P=0.010).肾特异性钙黏蛋白主要表达于嫌色细胞癌和嗜酸细胞腺瘤.结论 KIM-1仅表达于损伤的近曲小管和由其起源的肿瘤,对原发性和转移性肾透明细胞癌、乳头状肾细胞癌及Xp11.2易位/TFE3基因融合相关性肾癌具有高度的特异性和敏感性,与肾特异性钙黏蛋白合用可以提高原发性肾脏上皮性肿瘤组织学分类的准确性和转移性肾透明细胞癌的诊断率.  相似文献   

15.
16.
In this review, we discuss new and emerging renal cell carcinoma (RCC) entities, including anaplastic lymphoma kinase (ALK) RCC, oncocytic variant of chromophobe RCC, atrophic kidney-like renal tumour, biphasic alveolosquamoid RCC, tubulocystic RCC, thyroid-like follicular carcinoma of the kidney, succinate dehydrogenase-deficient RCC, Birt–Hogg–Dubé syndrome-associated renal tumour, hereditary leiomyomatosis/renal cell carcinoma associated RCC, tuberous sclerosis-associated RCC, PTEN hamartoma tumour syndrome, clear cell papillary RCC, acquired cystic disease-associated RCC, Xp11.2 RCC, t(6;11) RCC and renal hemangioblastoma. These tumours have clinical, pathological and genetic features distinct from other common RCCs and therefore are important to recognize. Some of them have been recognized as distinct histological subtypes in the 2016 World Health Organization Classification. However, further studies are needed to elucidate their clinicopathologic features and molecular mechanisms.  相似文献   

17.
Using immunohistochemical and enzyme biochemical methods we investigated the expression of L- and M2-pyruvate kinase (PK) in normal renal tissue, renal cell carcinomas (RCCs; of clear cell, chromophilic cell and mixed cell type) and RCC metastases. L-PK was expressed in the proximal tubules of normal renal tissue and, to a variable extent, in 23/25 primary RCCs, in 1 RCC recurrence and in 10 RCC metastases. Staining intensity and percentage of stained tissue did not correlate with tumour grade. One renal oncocytoma and all extrarenal malignancies examined lacked L-PK immunoreactivity. M2-PK was mainly expressed in the distal tubules of the normal kidney and was found in all renal tumours as well as extrarenal malignancies. Quantitative biochemical investigations yielded a two- to seventeen-fold increase in PK activity in RCCs compared to the normal renal cortex taken from the same patient, whereas fructose-1,6-bisphosphatase and cytosolic glycerol-3-phosphate dehydrogenase activity was dramatically lower in RCCs. Otherwise, the activity of all other enzymes investigated (glucose-6-phosphate dehydrogenase, enolase and lactate dehydrogenase) was not significantly changed in the RCCs. The immunocytochemical results suggest that L-PK is a useful marker for RCC and its metastases, if acetone-fixed tissue is available. The quantitative changes of the concentration of PK and other enzymes in RCCs when compared with normal renal tissue probably reflect metabolic alterations related to tumour growth.  相似文献   

18.
Histological features are usually sufficient for providing an accurate diagnosis of renal cell carcinomas (RCC). However, the morphological appearance might sometimes be misleading. For instance, RCC with papillary areas and extensive clear cell changes may be difficult to classify either as clear cell renal carcinoma or as papillary renal cell carcinoma (pRCC). We used the combination of immunohistochemistry, conventional cytogenetics, fluorescence in situ hybridization (FISH), bacterial artificial chromosomes comparative genomic hybridization arrays and high-density single nucleotides polymorphism arrays (SNP arrays) to characterize three cases of RCC showing a predominant cytology of cells with clear cytoplasm and variable amounts of papillary areas. In accordance with the 2004 World Health Organization (WHO) classification, we initially assessed the diagnosis of clear cell RCC for one of the cases and unclassified RCC for the two remaining cases. However, because of a strong immunohistochemical labeling for α-methylacyl-CoA racemase, as well as the presence of a gain of chromosomes 7 and 17, we concluded that two of these tumors were actually pRCC. As for the third case, because of the presence of both pCCR and ccCCR molecular cytogenetic aberrations, including gains of chromosomes 7 and 17, loss of chromosome Y and whole chromosome 3 loss of heterozyosity (isodisomy), the final diagnosis was hybrid tumor cc-pRCC, so-called “unclassified RCC” according to the WHO classification. Our observations demonstrate the necessity to use immunohistochemical and cytogenetic tools in all cases of RCC showing unusual features. The combination of FISH and SNP arrays is prevailing for characterizing cases with hybrid features.  相似文献   

19.
《Diagnostic cytopathology》2017,45(5):456-462
Xp11 translocation renal cell carcinoma (RCC) is a specific type of renal cell carcinoma recently placed under the “MiT family translocation RCC” at the last 2013 ISUP Vancouver classification of renal neoplasia. This tumor contains variable proportions of clear cells and could easily mimic papillary RCC, clear cell type, and clear cell papillary RCC. Given the small number of published cytologic findings of this tumor, it could easily present as a diagnostic pitfall. We describe a case of a 23‐year‐old man with a history of prior nephrectomy who presented with multiple mediastinal lymphadenopathies on imaging surveillance follow‐up. Fine‐needle aspiration of the lymph node showed tumor cells with voluminous clear to eosinophilic cytoplasm, well‐defined cell borders and hyperchromatic nuclei arranged in papillary architecture. Review of the prior nephrectomy specimen showed papillary cores surrounded by cells with voluminous clear to finely granular eosinophilic cytoplasm and distinct cell borders. Immunohistochemical stains performed on the nephrectomy specimen showed tumor positivity for CD10, E‐cadherin, a‐methylacyl coenzyme A racemase, and TFE3 supporting the diagnosis of Xp11 translocation renal cell carcinoma. Although this tumor was initially described predominantly in children, it could also occur in adults, as seen in this case. Familiarity with the cytologic findings of this tumor, use of immunohistochemical stains, or cytogenetic test to determine the type of gene fusion will be extremely useful in arriving at the correct diagnosis. Diagn. Cytopathol. 2017;45:456–462. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Chromophobe renal cell carcinoma (RCC) is a newly established category of RCC composed histologically of characteristic "chromophobe" tumor cells. Although ultrastructural and immunohistochemical studies showed that these tumor cells present several features similar to those found in the intercalated cells of the collecting duct, immunohistochemical studies using antibody panels on a large number of cases are limited. We performed an immunohistochemical study of 21 Japanese cases of chromophobe RCC, along with cases of clear RCC and renal oncocytoma, to find hallmarks useful for precise differential diagnosis of these tumors. Chromophobe RCC was positive for epithelial membrane antigen but negative for vimentin. Cytokeratins did not show constant immunoreactivity in the three types of renal tumors. Furthermore, all of the chromophobe RCCs and renal oncocytomas were positive for E-cadherin but not for N-cadherin, whereas all of the clear RCCs were negative for E-cadherin, and 58% were positive for N-cadherin. The Ki-67 labeling indices were significantly lower in cases classified as (pT1) or Grade 2 chromophobe RCC than in cases of clear RCC. Immunoreaction for E-cadherin was demonstrated to be useful for distinguishing chromophobe RCC from clear RCC, and a low Ki-67 labeling index might indicate a favorable prognosis, as reported in several previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号