首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC.

Methods

We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall.

Results

RV global longitudinal strain rates in ARVC (−0.68 ± 0.36 sec−1) and borderline ARVC (−0.85 ± 0.36 sec−1) were significantly reduced in comparison with HV (−1.38 ± 0.52 sec−1, p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: −5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: −0.31 ± 0.13 sec−1 vs. -0.61 ± 0.21 sec−1). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (−0.9 ± 0.3 vs. -1.4 ± 0.5 sec−1; p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively).

Conclusion

CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal.  相似文献   

2.

Background

Phase contrast velocimetry cardiovascular magnetic resonance (PC-CMR) is a powerful and versatile tool allowing assessment of in vivo motion of the myocardium. However, PC-CMR is sensitive to motion related artifacts causing errors that are geometrically systematic, rendering regional analysis of myocardial function challenging. The objective of this study was to establish an optimized PC-CMR method able to provide novel insight in the complex regional motion and strain of the rodent myocardium, and provide a proof-of-concept in normal and diseased rat hearts with higher temporal and spatial resolution than previously reported.

Methods

A PC-CMR protocol optimized for assessing the motion and deformation of the myocardium in rats with high spatiotemporal resolution was established, and ten animals with different degree of cardiac dysfunction underwent examination and served as proof-of-concept. Global and regional myocardial velocities and circumferential strain were calculated, and the results were compared to five control animals. Furthermore, the global strain measurements were validated against speckle-tracking echocardiography, and inter- and intrastudy variability of the protocol were evaluated.

Results

The presented method allows assessment of regional myocardial function in rats with high level of detail; temporal resolution was 3.2 ms, and analysis was done using 32 circumferential segments. In the dysfunctional hearts, global and regional function were distinctly altered, including reduced global peak values, increased regional heterogeneity and increased index of dyssynchrony. Strain derived from the PC-CMR data was in excellent agreement with echocardiography (r = 0.95, p < 0.001; limits-of-agreement −0.02 ± 3.92%strain), and intra- and interstudy variability were low for both velocity and strain (limits-of-agreement, radial motion: 0.01 ± 0.32 cm/s and −0.06 ± 0.75 cm/s; circumferential strain: -0.16 ± 0.89%strain and −0.71 ± 1.67%strain, for intra- and interstudy, respectively).

Conclusion

We demonstrate, for the first time, that PC-CMR enables high-resolution evaluation of in vivo circumferential strain in addition to myocardial motion of the rat heart. In combination with the superior geometric robustness of CMR, this ultimately provides a tool for longitudinal studies of regional function in rodents with high level of detail.  相似文献   

3.

Background

Assessment of longitudinal function with cardiovascular magnetic resonance (CMR) is limited to measurement of systolic excursion of the mitral annulus (MAPSE) or elaborate strain imaging modalities. The aim of this study was to develop a fast assessable parameter for the measurement of long axis strain (LAS) with CMR.

Methods

40 healthy volunteers and 125 patients with different forms of cardiomyopathy were retrospectively analyzed. Four different approaches for the assessment of LAS with CMR measuring the distance between the LV apex and a line connecting the origins of the mitral valve leaflets in enddiastole and endsystole were evaluated. Values for LAS were calculated according to the strain formula.

Results

LAS derived from the distance of the epicardial apical border to the midpoint of the line connecting the mitral valve insertion points (LAS-epi/mid) proved to be the most reliable parameter for the assessment of LAS among the different approaches.LAS-epi/mid displayed the highest sensitivity (81.6 %) and specificity (97.5 %), furthermore showing the best correlation with feature tracking (FTI) derived transmural longitudinal strain (r = 0.85). Moreover, LAS-epi/mid was non-inferior to FTI in discriminating controls from patients (Area under the curve (AUC) = 0.95 vs. 0.94, p = NS). The time required for analysis of LAS-epi/mid was significantly shorter than for FTI (67 ± 8 s vs. 180 ± 14 s, p < 0.0001). Additionally, LAS-epi/mid performed significantly better than MAPSE (Delta AUC = 0.09; p < 0.005) and the ejection fraction (Delta AUC = 0.11; p = 0.0002).Reference values were derived from 234 selected healthy volunteers. Mean value for LAS-epi/mid was −17.1 ± 2.3 %. Mean values for men were significantly lower compared to women (−16.5 ± 2.2 vs. -17.9 ± 2.1 %; p < 0.0001), while LAS decreased with age.

Conclusions

LAS-epi/mid is a novel and fast assessable parameter for the analysis of global longitudinal function with non-inferiority compared to transmural longitudinal strain.  相似文献   

4.

Background

Left ventricular (LV) hypertrophy in aortic stenosis (AS) is characterized by reduced myocardial perfusion reserve due to coronary microvascular dysfunction. However, whether this hypoperfusion leads to tissue deoxygenation is unknown. We aimed to assess myocardial oxygenation in severe AS without obstructive coronary artery disease, and to investigate its association with myocardial energetics and function.

Methods

Twenty-eight patients with isolated severe AS and 15 controls underwent cardiovascular magnetic resonance (CMR) for assessment of perfusion (myocardial perfusion reserve index-MPRI) and oxygenation (blood-oxygen level dependent-BOLD signal intensity-SI change) during adenosine stress. LV circumferential strain and phosphocreatine/adenosine triphosphate (PCr/ATP) ratios were assessed using tagging CMR and 31P MR spectroscopy, respectively.

Results

AS patients had reduced MPRI (1.1 ± 0.3 vs. controls 1.7 ± 0.3, p < 0.001) and BOLD SI change during stress (5.1 ± 8.9% vs. controls 18.2 ± 10.1%, p = 0.001), as well as reduced PCr/ATP (1.45 ± 0.21 vs. 2.00 ± 0.25, p < 0.001) and LV strain (−16.4 ± 2.7% vs. controls −21.3 ± 1.9%, p < 0.001). Both perfusion reserve and oxygenation showed positive correlations with energetics and LV strain. Furthermore, impaired energetics correlated with reduced strain. Eight months post aortic valve replacement (AVR) (n = 14), perfusion (MPRI 1.6 ± 0.5), oxygenation (BOLD SI change 15.6 ± 7.0%), energetics (PCr/ATP 1.86 ± 0.48) and circumferential strain (−19.4 ± 2.5%) improved significantly.

Conclusions

Severe AS is characterized by impaired perfusion reserve and oxygenation which are related to the degree of derangement in energetics and associated LV dysfunction. These changes are reversible on relief of pressure overload and hypertrophy regression. Strategies aimed at improving oxygen demand–supply balance to preserve myocardial energetics and LV function are promising future therapies.  相似文献   

5.

Background

Regional myocardial function is typically evaluated by visual assessment by experienced users, or by methods requiring substantial post processing time. Visual assessment is subjective and not quantitative. Therefore, the purpose of this study is to develop and validate a simple method to derive quantitative measures of regional wall function from velocity encoded Cardiovascular Magnetic Resonance (CMR), and provide associated normal values for longitudinal strain.

Method

Both fast field echo (FFE) and turbo field echo (TFE) velocity encoded CMR images were acquired in three long axis planes in 36 healthy volunteers (13 women, 23 men), age 35±12 years. Strain was also quantified in 10 patients within one week after myocardial infarction. The user manually delineated myocardium in one time frame and strain was calculated as the myocardium was tracked throughout the cardiac cycle using an optimization formulation and mechanical a priori assumptions. A phantom experiment was performed to validate the method with optical tracking of deformation as an independent gold standard.

Results

There was an excellent agreement between longitudinal strain measured by optical tracking and longitudinal strain measured with TFE velocity encoding. Difference between the two methods was 0.0025 ± 0.085 (ns). Mean global longitudinal strain in the 36 healthy volunteers was −0.18 ± 0.10 (TFE imaging). Intra-observer variability for all segments was 0.00 ± 0.06. Inter-observer variability was −0.02 ± 0.07 (TFE imaging). The intra-observer variability for radial strain was high limiting the applicability of radial strain. Mean longitudinal strain in patients was significantly lower (−0.15± 0.12) compared to healthy volunteers (p<0.05). Strain (expressed as percentage of normal strain) in infarcted regions was lower compared to remote areas (p<0.01).

Conclusion

In conclusion, we have developed and validated a robust and clinically applicable technique that can quantify longitudinal strain and regional myocardial wall function and present the associated normal values for longitudinal strain.  相似文献   

6.

Background

Quantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research. Myocardial T2 mapping is thought to be helpful in diagnosis of acute myocardial conditions associated with myocardial edema. In this study we aimed to establish a technique for myocardial T2 mapping based on gradient-spin-echo (GraSE) imaging.

Methods

The local ethics committee approved this prospective study. Written informed consent was obtained from all subjects prior to CMR. A modified GraSE sequence allowing for myocardial T2 mapping in a single breath-hold per slice using ECG-triggered acquisition of a black blood multi-echo series was developed at 1.5 Tesla. Myocardial T2 relaxation time (T2-RT) was determined by maximum likelihood estimation from magnitude phased-array multi-echo data. Four GraSE sequence variants with varying number of acquired echoes and resolution were evaluated in-vitro and in 20 healthy volunteers. Inter-study reproducibility was assessed in a subset of five volunteers. The sequence with the best overall performance was further evaluated by assessment of intra- and inter-observer agreement in all volunteers, and then implemented into the clinical CMR protocol of five patients with acute myocardial injury (myocarditis, takotsubo cardiomyopathy and myocardial infarction).

Results

In-vitro studies revealed the need for well defined sequence settings to obtain accurate T2-RT measurements with GraSE. An optimized 6-echo GraSE sequence yielded an excellent agreement with the gold standard Carr-Purcell-Meiboom-Gill sequence. Global myocardial T2 relaxation times in healthy volunteers was 52.2 ± 2.0 ms (mean ± standard deviation). Mean difference between repeated examinations (n = 5) was −0.02 ms with 95% limits of agreement (LoA) of [−4.7; 4.7] ms. Intra-reader and inter-reader agreement was excellent with mean differences of −0.1 ms, 95% LoA = [−1.3; 1.2] ms and 0.1 ms, 95% LoA = [−1.5; 1.6] ms, respectively (n = 20). In patients with acute myocardial injury global myocardial T2-RTs were prolonged (mean: 61.3 ± 6.7 ms).

Conclusion

Using an optimized GraSE sequence CMR allows for robust, reliable, fast myocardial T2 mapping and quantitative tissue characterization. Clinically, the GraSE-based T2-mapping has the potential to complement qualitative CMR in patients with acute myocardial injuries.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0127-z) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Measurement of mitral annulus (MA) dynamics is an important component of the evaluation of left ventricular (LV) diastolic function; MA velocities are commonly measured using tissue Doppler imaging (TDI). This study aimed to examine the clinical potential of a semi-automated cardiovascular magnetic resonance (CMR) technique for quantifying global LV diastolic function, using 3D volume tracking of the MA with conventional cine-CMR images.

Methods

124 consecutive patients with normal ejection fraction underwent both clinically indicated transthoracic echocardiography (TTE) and CMR within 2 months. Interpolated 3D reconstruction of the MA over time was performed with semi-automated atrioventricular junction (AVJ) tracking in long-axis cine-CMR images, producing an MA sweep volume over the cardiac cycle. CMR-based diastolic function was evaluated, using the following parameters: peak volume sweep rates in early diastole (PSRE) and atrial systole (PSRA), PSRE/PSRA ratio, deceleration time of sweep volume (DTSV), and 50% diastolic sweep volume recovery time (DSVRT50); these were compared with TTE diastolic measurements.

Results

Patients with TTE-based diastolic dysfunction (n = 62) showed significantly different normalized MA sweep volume profiles compared to those with TTE-based normal diastolic function (n = 62), including a lower PSRE (5.25 ± 1.38 s−1 vs. 7.72 ± 1.7 s−1), a higher PSRA (6.56 ± 1.99 s−1 vs. 4.67 ± 1.38 s−1), a lower PSRE/PSRA ratio (0.9 ± 0.44 vs. 1.82 ± 0.69), a longer DTSV (144 ± 55 ms vs. 96 ± 37 ms), and a longer DSVRT50 (25.0 ± 11.0% vs. 15.6 ± 4.0%) (all p < 0.05). CMR diastolic parameters were independent predictors of TTE-based diastolic dysfunction after adjusting for left ventricular hypertrophy, hypertension, and coronary artery disease. Good correlations were observed between CMR PSRE/PSRA and early-to-late diastolic annular velocity ratios (e′/a′) measured by TDI (r = 0.756 to 0.828, p < 0.001).

Conclusions

3D MA sweep volumes generated by semi-automated AVJ tracking in routinely acquired CMR images yielded diastolic parameters that were effective in identifying patients with diastolic dysfunction when correlated with TTE-based variables.  相似文献   

8.

Background

Serial surveillance endomyocardial biopsies are performed in patients who have recently undergone heart transplantation in order to detect acute cardiac allograft rejection (ACAR) before symptoms occur, however the biopsy process is associated with a number of limitations. This study aimed to prospectively and longitudinally evaluate the performance of multiparametric cardiovascular magnetic resonance (CMR) for detecting and monitoring ACAR in the early phase post-transplant, and characterize graft recovery following transplantation.

Methods

All patients receiving a heart transplant at a single UK centre over a period of 25 months were approached within one month of transplantation. Multiparametric CMR was prospectively performed on the same day as biopsy on four separate occasions (6 weeks, 10 weeks, 15 weeks and 20 weeks post-transplant). CMR included assessment of global and regional ventricular function, myocardial tissue characterization (T1 mapping, T2 mapping, extracellular volume, LGE) and pixel-wise absolute myocardial blood flow quantification. CMR parameters were compared with biopsy findings. As is standard, grade 2R or higher ACAR was considered significant.

Results

88 CMR-matched biopsies were performed in 22 patients. Eight (9%) biopsies in 5 patients demonstrated significant ACAR. Significant ACAR was associated with a reduction in circumferential strain (−12.7 ± 2.5% vs. -13.7 ± 3.6%, p = 0.047) but there was considerable overlap between groups. Whilst trends were observed between ACAR and proposed CMR markers of oedema, particularly after adjusting for primary graft dysfunction, differences were not significant. Significant improvements were seen in markers of graft structure and contractility, oedema and microvascular function over the period studied, although few parameters normalised.

Conclusions

This study provides novel insight into the myocardial injury associated with transplantation, and its recovery, however multiparametric CMR was not able to accurately detect ACAR during the early phase post-transplantation.  相似文献   

9.

Background

Three-directional phase velocity mapping (PVM) is capable of measuring longitudinal, radial and circumferential regional myocardial velocities. Current techniques use Cartesian k-space coverage and navigator-gated high spatial and high temporal resolution acquisitions are long. In addition, prospective ECG-gating means that analysis of the full cardiac cycle is not possible. The aim of this study is to develop a high temporal and high spatial resolution PVM technique using efficient spiral k-space coverage and retrospective ECG-gating. Detailed analysis of regional motion over the entire cardiac cycle, including atrial systole for the first time using MR, is presented in 10 healthy volunteers together with a comprehensive assessment of reproducibility.

Methods

A navigator-gated high temporal (21 ms) and spatial (1.4 × 1.4 mm) resolution spiral PVM sequence was developed, acquiring three-directional velocities in 53 heartbeats (100% respiratory-gating efficiency). Basal, mid and apical short-axis slices were acquired in 10 healthy volunteers on two occasions. Regional and transmural early systolic, early diastolic and atrial systolic peak longitudinal, radial and circumferential velocities were measured, together with the times to those peaks (TTPs). Reproducibilities were determined as mean ± SD of the signed differences between measurements made from acquisitions performed on the two days.

Results

All slices were acquired in all volunteers on both occasions with good image quality. The high temporal resolution allowed consistent detection of fine features of motion, while the high spatial resolution allowed the detection of statistically significant regional and transmural differences in motion. Colour plots showing the regional variations in velocity over the entire cardiac cycle enable rapid interpretation of the regional motion within any given slice. The reproducibility of peak velocities was high with the reproducibility of early systolic, early diastolic and atrial systolic peak radial velocities in the mid slice (for example) being −0.01 ± 0.36, 0.20 ± 0.56 and 0.14 ± 0.42 cm/s respectively. Reproducibility of the corresponding TTP values, when normalised to a fixed systolic and diastolic length, was also high (−13.8 ± 27.4, 1.3 ± 21.3 and 3.0 ± 10.9 ms for early systolic, early diastolic and atrial systolic respectively).

Conclusions

Retrospectively gated spiral PVM is an efficient and reproducible method of acquiring 3-directional, high resolution velocity data throughout the entire cardiac cycle, including atrial systole.  相似文献   

10.

Background

Previous studies of mechanical strain anomalies in myocardial infarction (MI) have been largely limited to analysis of one-dimensional (1D) and two-dimensional (2D) strain parameters. Advances in cardiovascular magnetic resonance (CMR) methods now permit a complete three-dimensional (3D) interrogation of myocardial regional strain. The aim of this study was to investigate the incremental value of CMR-based 3D strain and to test the hypothesis that 3D strain is superior to 1D or 2D strain analysis in the assessment of viability using a porcine model of infarction.

Methods

Infarction was induced surgically in 20 farm pigs. Cine, late gadolinium enhancement, and CMR tagging images were acquired at 11 days before (baseline), and 11 days (early) and 1 month (late) after induction of infarct. Harmonic phase analysis was performed to measure circumferential, longitudinal, and radial strains in myocardial segments, which were defined based on the transmurality of delayed enhancement. Univariate, bivariate, and multivariate logistic regression models of strain parameters were created and analyzed to compare the overall diagnostic accuracy of 3D strain analysis with 1D and 2D analyses in identifying the infarct and its adjacent regions from healthy myocardium.

Results

3D strain differed significantly in infarct, adjacent, and remote segments (p < 0.05) at early and late post-MI. In univariate, bivariate, and multivariate analyses, circumferential, longitudinal, and radial strains were significant factors (p < 0.001) in differentiation of infarct and adjacent segments from baseline values. In identification of adjacent segments, receiver operating characteristic analysis using the 3D strain multivariate model demonstrated a significant improvement (p < 0.01) in overall diagnostic accuracy in comparison with 2D (circumferential and radial) and 1D (circumferential) models (3D: 96%, 2D: 81%, and 1D: 71%). A similar trend was observed in identification of infarct segments.

Conclusions

Cumulative 3D strain information accurately identifies infarcts and their neighboring regions from healthy myocardium. The 3D interrogation of myocardial contractility provides incremental diagnostic accuracy in delineating the dysfunctional and nonviable myocardium in comparison with 1D or 2D quantification of strain. The infarct neighboring regions are the major beneficiaries of the 3D assessment of regional strain.  相似文献   

11.

Background

The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors.

Methods

Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography.

Results

Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose.

Conclusions

Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning.  相似文献   

12.

Background

Dobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial mechanics.We sought to determine the feasibility and reproducibility of CMR-FT for quantitative wall motion assessment during intermediate dose DS-CMR.

Methods

10 healthy subjects were studied at 1.5 Tesla. Myocardial strain parameters were derived from SSFP cine images using dedicated CMR-FT software (Diogenes MRI prototype; Tomtec; Germany). Right ventricular (RV) and left ventricular (LV) longitudinal strain (EllRV and EllLV) and LV long-axis radial strain (ErrLAX) were derived from a 4-chamber view at rest. LV short-axis circumferential strain (EccSAX) and ErrSAX; LV ejection fraction (EF) and volumes were analyzed at rest and during dobutamine stress (10 and 20 μg · kg-1· min-1).

Results

In all volunteers strain parameters could be derived from the SSFP images at rest and stress. EccSAX values showed significantly increased contraction with DSMR (rest: -24.1 ± 6.7; 10 μg: -32.7 ± 11.4; 20 μg: -39.2 ± 15.2; p < 0.05). ErrSAX increased significantly with dobutamine (rest: 19.6 ± 14.6; 10 μg: 31.8 ± 20.9; 20 μg: 42.4 ± 25.5; p < 0.05). In parallel with these changes; EF increased significantly with dobutamine (rest: 56.9 ± 4.4%; 10 μg: 70.7 ± 8.1; 20 μg: 76.8 ± 4.6; p < 0.05). Observer variability was best for LV circumferential strain (EccSAX ) and worst for RV longitudinal strain (EllRV) as determined by 95% confidence intervals of the difference.

Conclusions

CMR-FT reliably detects quantitative wall motion and strain derived from SSFP cine imaging that corresponds to inotropic stimulation. The current implementation may need improvement to reduce observer-induced variance. Within a given CMR lab; this novel technique holds promise of easy and fast quantification of wall mechanics and strain.  相似文献   

13.

Background

Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques. We assessed biventricular myocardial function using CMR cine-based feature tracking (FT) and compared it to speckle tracking echocardiography (STE) and to simple endocardial border delineation (EBD). In addition, the relation between parameters of myocardial deformation and clinical parameters was assessed.

Methods

Overall, 28 consecutive adult patients with repaired ToF (age 40.4 ± 13.3 years) underwent standard steady-state-free precession sequence CMR, echocardiography, and cardiopulmonary exercise testing. In addition, 25 healthy subjects served as controls. Myocardial deformation was assessed by CMR based FT (TomTec Diogenes software), CMR based EBD (using custom written software) and STE (TomTec Cardiac Performance Analysis software).

Results

Feature tracking was feasible in all subjects. A close agreement was found between measures of global left (LV) and right ventricular (RV) global strain. Interobserver agreement for FT and STE was similar for longitudinal LV global strain, but FT showed better inter-observer reproducibility than STE for circumferential or radial LV and longitudinal RV global strain. Reproducibility of regional strain on FT was, however, poor. The relative systolic length change of the endocardial border measured by EBD yielded similar results to FT global strain. Clinically, biventricular longitudinal strain on FT was reduced compared to controls (P < 0.0001) and was related to the number of previous cardiac operations. In addition, FT derived RV strain was related to exercise capacity and VE/VCO2-slope.

Conclusions

Although neither the inter-study reproducibility nor accuracy of FT software were investigated, and its inter-observer reproducibility for regional strain calculation was poor, its calculations of global systolic strain showed similar or better inter-oberver reproducibility than those by STE, and could be applied across RV image regions inaccessible to echo. ‘Global strain’ calculated by EBD gave similar results to FT. Measurements made using FT related to exercise tolerance in ToF patients suggesting that the approach could have clinical relevance and deserves further study.  相似文献   

14.

Background

In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown.

Methods

8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars.

Results

LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery.

Conclusions

Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined.  相似文献   

15.

Background

Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography.

Methods

We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain).

Results

Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p < 0.001).

Conclusions

FT-CMR delivered measurements of radial dyssynchrony from CMR cine acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.  相似文献   

16.

Background

Different limb training demands and limb preference may determine anthropometric and muscle force inter-limb asymmetries in Rhythmic Gymnastics (RG) athletes.

Purpose

The purpose of this study was to evaluate the influence of lateral preference of the lower extremity on anthropometric, range of motion, and isokinetic torque measurements of RG athletes.

Study Design

Cross sectional study

Methods

Lower limb anthropometric measurements (girth, estimated anatomical cross-sectional area), hip, knee and ankle range of motion, flexor and extensor isokinetic torques (angular velocities = 60, 180, e 240 °·s−1) and bilateral asymmetry index were evaluated in 11 international level Rhythmic Gymnastics athletes (17.9 ± 4.0 years of age; 9.1 ± 5,1 years of experience; 26.8 ± 6.0 weekly training hours).

Results

The preferred limb showed larger thigh girth and anatomical cross-sectional area, higher ankle dorsiflexor range of motion, higher hip flexor torque at 60 °·s−1 and higher plantarflexor torque at 180 °·s−1 compared to the non-preferred limb.

Conclusions

The observed differences seem to be strictly related to lateral preference and rhythmic gymnastics training.

Levels of Evidence

3  相似文献   

17.

Background

Cardiovascular Magnetic Resonance (CMR) enables non-invasive quantification of cardiac output (CO) and thereby cardiac index (CI, CO indexed to body surface area). The aim of this study was to establish if CI decreases with age and compare the values to CI for athletes and for patients with congestive heart failure (CHF).

Methods

CI was measured in 144 healthy volunteers (39 ± 16 years, range 21–81 years, 68 females), in 60 athletes (29 ± 6 years, 30 females) and in 157 CHF patients with ejection fraction (EF) below 40% (60 ± 13 years, 33 females). CI was calculated using aortic flow by velocity-encoded CMR and is presented as mean ± SD. Flow was validated in vitro using a flow phantom and in 25 subjects with aorta and pulmonary flow measurements.

Results

There was a slight decrease of CI with age in healthy subjects (8 ml/min/m2 per year, r2 = 0.07, p = 0.001). CI in males (3.2 ± 0.5 l/min/m2) and females (3.1 ± 0.4 l/min/m2) did not differ (p = 0.64). The mean ± SD of CI in healthy subjects in the age range of 20–29 was 3.3 ± 0.4 l/min/m2, in 30–39 years 3.3 ± 0.5 l/min/m2, in 40–49 years 3.1 ± 0.5 l/min/m2, 50–59 years 3.0 ± 0.4 l/min/m2 and >60 years 3.0 ± 0.4 l/min/m2. There was no difference in CI between athletes and age-controlled healthy subjects but HR was lower and indexed SV higher in athletes. CI in CHF patients (2.3 ± 0.6 l/min/m2) was lower compared to the healthy population (p < 0.001). There was a weak correlation between CI and EF in CHF patients (r2 = 0.07, p < 0.001) but CI did not differ between patients with NYHA-classes I-II compared to III-IV (n = 97, p = 0.16) or patients with or without hospitalization in the previous year (n = 100, p = 0.72). In vitro phantom validation showed low bias (−0.8 ± 19.8 ml/s) and in vivo validation in 25 subjects also showed low bias (0.26 ± 0.61 l/min, QP/QS 1.04 ± 0.09) between pulmonary and aortic flow.

Conclusions

CI decreases in healthy subjects with age but does not differ between males and females. We found no difference in CI between athletes and healthy subjects at rest but CI was lower in patients with congestive heart failure. The presented values can be used as reference values for flow velocity mapping CMR.  相似文献   

18.

Background

In the situation of acute coronary occlusion, the myocardium supplied by the occluded vessel is subject to ischemia and is referred to as the myocardium at risk (MaR). Single photon emission computed tomography has previously been used for quantitative assessment of the MaR. It is, however, associated with considerable logistic challenges for employment in clinical routine. Recently, T2-weighted cardiovascular magnetic resonance (CMR) has been introduced as a new method for assessing MaR several days after the acute event. Furthermore, it has been suggested that the endocardial extent of infarction as assessed by late gadolinium enhanced (LGE) CMR can also be used to quantify the MaR. Hence, we sought to assess the ability of endocardial extent of infarction by LGE CMR to predict MaR as compared to T2-weighted imaging.

Methods

Thirty-seven patients with early reperfused first-time ST-segment elevation myocardial infarction underwent CMR imaging within the first week after percutaneous coronary intervention. The ability of endocardial extent of infarction by LGE CMR to assess MaR was evaluated using T2-weighted imaging as the reference method.

Results

MaR determined with T2-weighted imaging (34 ± 10%) was significantly higher (p < 0.001) compared to the MaR determined with endocardial extent of infarction (23 ± 12%). There was a weak correlation between the two methods (r2 = 0.17, p = 0.002) with a bias of -11 ± 12%. Myocardial salvage determined with T2-weighted imaging (58 ± 22%) was significantly higher (p < 0.001) compared to myocardial salvage determined with endocardial extent of infarction (45 ± 23%). No MaR could be determined by endocardial extent of infarction in two patients with aborted myocardial infarction.

Conclusions

This study demonstrated that the endocardial extent of infarction as assessed by LGE CMR underestimates MaR in comparison to T2-weighted imaging, especially in patients with early reperfusion and aborted myocardial infarction.  相似文献   

19.

Background

Left ventricular segmental wall motion analysis is important for clinical decision making in cardiac diseases. Strain analysis with myocardial tissue tagging is the non-invasive gold standard for quantitative assessment, however, it is time-consuming. Cardiovascular magnetic resonance myocardial feature-tracking (CMR-FT) can rapidly perform strain analysis, because it can be employed with standard CMR cine-imaging. The aim is to validate segmental peak systolic circumferential strain (peak SCS) and time to peak systolic circumferential strain (T2P-SCS) analysed by CMR-FT against tissue tagging, and determine its intra and inter-observer variability.

Methods

Patients in whom both cine CMR and tissue tagging has been performed were selected. CMR-FT analysis was done using endocardial (CMR-FTendo) and mid-wall contours (CMR-FTmid). The Intra Class Correlation Coefficient (ICC) and Pearson correlation were calculated.

Results

10 healthy volunteers, 10 left bundle branch block (LBBB) and 10 hypertrophic cardiomyopathy patients were selected. With CMR-FT all 480 segments were analyzable and with tissue tagging 464 segments.Significant differences in mean peak SCS values of the total study group were present between CMR-FTendo and tissue tagging (-23.8 ± 9.9% vs -13.4 ± 3.3%, p < 0.001). Differences were smaller between CMR-FTmid and tissue tagging (-16.4 ± 6.1% vs -13.4 ± 3.3%, p = 0.001). The ICC of the mean peak SCS of the total study group between CMR-FTendo and tissue tagging was low (0.19 (95%-CI-0.10-0.49), p = 0.02). Comparable results were seen between CMR-FTmid and tissue tagging. In LBBB patients, mean T2P-SCS values measured with CMR-FTendo and CMR-FTmid were 418 ± 66 ms, 454 ± 60 ms, which were longer than with tissue tagging, 376 ± 55 ms, both p < 0.05. ICC of the mean T2P-SCS between CMR-FTendo and tissue tagging was 0.64 (95%-CI-0.36-0.81), p < 0.001, this was better in the healthy volunteers and LBBB group, whereas the ICC between CMR-FTmid and tissue tagging was lower.The intra and inter-observer agreement of segmental peak SCS with CMR-FTmid was lower compared with tissue tagging; similar results were seen for segmental T2P-SCS.

Conclusions

The intra and inter-observer agreement of segmental peak SCS and T2P-SCS is substantially lower with CMR-FTmid compared with tissue tagging. Therefore, current segmental CMR-FTmid techniques are not yet applicable for clinical and research purposes.  相似文献   

20.

Background

Microvascular dysfunction in HCM has been associated with adverse clinical outcomes. Advances in quantitative cardiovascular magnetic resonance (CMR) perfusion imaging now allow myocardial blood flow to be quantified at the pixel level. We applied these techniques to investigate the spectrum of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and to explore its relationship with fibrosis and wall thickness.

Methods

CMR perfusion imaging was undertaken during adenosine-induced hyperemia and again at rest in 35 patients together with late gadolinium enhancement (LGE) imaging. Myocardial blood flow (MBF) was quantified on a pixel-by-pixel basis from CMR perfusion images using a Fermi-constrained deconvolution algorithm. Regions-of-interest (ROI) in hypoperfused and hyperemic myocardium were identified from the MBF pixel maps. The myocardium was also divided into 16 AHA segments.

Results

Resting MBF was significantly higher in the endocardium than in the epicardium (mean ± SD: 1.25 ± 0.35 ml/g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001), a pattern that reversed with stress (2.00 ± 0.76 ml/g/min versus 2.36 ± 0.83 ml/g/min, P < 0.001). ROI analysis revealed 11 (31%) patients with stress MBF lower than resting values (1.05 ± 0.39 ml/g/min versus 1.22 ± 0.36 ml/g/min, P = 0.021). There was a significant negative association between hyperemic MBF and wall thickness (β = −0.047 ml/g/min per mm, 95% CI: −0.057 to −0.038, P < 0.001) and a significantly lower probability of fibrosis in a segment with increasing hyperemic MBF (odds ratio per ml/g/min: 0.086, 95% CI: 0.078 to 0.095, P = 0.003).

Conclusions

Pixel-wise quantitative CMR perfusion imaging identifies a subgroup of patients with HCM that have localised severe microvascular dysfunction which may give rise to myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号