首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leishmania amazonensis presents two developmental stages that gain access to the host macrophage through phagocytosis. The protozoan resides in a membrane-bound compartment, the parasitophorous vacuole (PV), which can fuse with the endocytic system. For evaluation of the parasite/host-cell interaction process and of PV biogenesis, the two parasite forms or host-cell membrane whose surface had previously been labeled with specific probes for lipids, proteins, and sialoglycoconjugates were allowed to interact for periods varying from 5 to 15 min for adhesion and from 30 to 60 min for PV formation. The fate of fluorescent probes was followed by confocal laser scanning microscopy. In host cells previously labeled with PKH26, DTAF and FITC-thiosemicarbazide, which label membrane lipids, proteins, and sialoglycoconjugates, respectively, interaction with both protozoan forms revealed that adhesion to the macrophage was sufficient for labeling of the parasite surface. In addition, recently formed PVs displayed strongly labeled intravacuolar parasites, except for amastigote-macrophage interaction in a DTAF-labeled macrophage that displayed slight labeling of intravacuolar parasites, with the membrane lining the PV evidently being stained. Therefore, the vacuole modulation presents some particularities such that different host-cell membrane components may be selected, depending on the protozoan form involved. Thereafter, amastigotes labeled with the probes mentioned above displayed a diffuse labeling pattern after interaction with unlabeled macrophages, suggesting the spreading of Leishmania surface molecules during the initial parasite-invasion stages. In particular, intravacuolar DTAF-labeled amastigotes showed a delineating halo around the PV, with the intravacuolar parasite being partially labeled. Promastigotes could not be labeled with 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) or with fluorescein-5-thiosemicarbazide, but promastigotes labeled with PKH26 lost the fluorescent probe during the invasion process such that slightly labeled promastigotes were seen inside the PV. These observations indicate the existence of a dynamic process of exchange of membrane-associated glycoproteins and lipids between the parasite and the host cell. Received: 15 May 1999 / Accepted: 10 September 1999  相似文献   

2.
On the basis of amino acid sequencing and immunological cross-reactivity, the Plasmodium falciparum parasitophorous vacuole antigens QF116 and exp-1/CRA are apparently identical. The epitope recognized by an inhibitory monoclonal antibody directed against QF116 is located proximal to the C-terminus of the protein. The QF116 protein is processed during maturation by the cleavage of a 22-amino-acid signal peptide and acylated as measured by labeling with myristic acid.  相似文献   

3.
Among several protease inhibitors tested, only leupeptin was found to modify qualitatively the processing of P126, a major antigen of the parasitophorous vacuole of Plasmodium falciparum, and to inhibit the release of merozoites. Whereas P126 is normally processed upon merozoite release into 2 polypeptides of 50 and 73 kDa which are discharged in the culture medium, leupeptin treatment led to the recovery of a 56 kDa fragment which was recognized by a monoclonal antibody specific for the 50 kDa polypeptide and of a 73 kDa fragment comigrating with the one obtained in normal culture conditions. Mild trypsinization of the 56 kDa polypeptide gave rise to a 50 kDa product the tryptic fragments of which comigrated with those of the 50 kDa antigen obtained from untreated cultures.  相似文献   

4.
The intracellular development and differentiation of the Plasmodium parasite in the host liver is a prerequisite for the actual onset of malaria disease pathology. Since liver-stage infection is clinically silent and can be completely eliminated by sterilizing immune responses, it is a promising target for urgently needed innovative antimalarial drugs and/or vaccines. Discovered more than 65 years ago, these stages remain poorly understood regarding their molecular repertoire and interaction with their host cells in comparison to the pathogenic erythrocytic stages. The differentiating and replicative intrahepatic parasite resides in a membranous compartment called the parasitophorous vacuole, separating it from the host-cell cytoplasm. Here we outline seminal work that contributed to our present understanding of the fundamental dynamic cellular processes of the intrahepatic malarial parasite with both specific host-cell factors and compartments.  相似文献   

5.
A mutation -specific PCR assay was used to determine the dynamics of pyrimethamine-resistant P. falciparum parasites in sulphadoxine-pyrimethamine treated children, 0-5 years, from a village in Tanzania. The assay is based on the observation that a point mutation in the dihydrofolate reductase (DHFR) gene confers resistance to pyrimethamine. The PCR assay was used on blood samples collected from treated children on days 0,2,7,14,21and 28. Preliminary results revealed that pyrimethamine-sensitive parasites seemed to be completely cleared after 7 or 14 days of treatment but re-surfaced after 21 days. It was observed that in those children without mixed infection on day 0, pyrimethamine-resistant parasites appeared after 7 days. The implifications of these findings are discussed.  相似文献   

6.
Hemozoin, the detoxification product of hemoglobin heme, piles up as electron-dense material in the food vacuole (FV) of intraerythrocytic malaria parasites (malaria pigment). In infected individuals, pigment is internalized by both circulating and resident phagocytes, thus modulating their functions. Synthetic beta-hematin, prepared in vitro from hematin (ferriprotoporphyrin IX hydroxide) in acidic condition, is spectroscopically identical to hemozoin. In this electron microscopy study, native and synthetic hemozoin also prove to be morphologically indistinguishable (large polygonal crystals with apparent transverse banding) and to undergo the same process when internalized by phagocytes (primarily a direct uptake of crystals, similar to what is described for asbestos fibers). On the contrary,whole parasites appear to follow a classical endocytic pathway. This suggests that there may be differences between the ingestion of free particles and whole parasites in terms of modulation of phagocytes' functions.  相似文献   

7.
We report on the characterization of monoclonal antibodies against Plasmodium falciparum schizonts, which recognize parasite proteins of 130 kDa and 20 kDa. The 130-kDa protein was released by alkaline sodium carbonate treatment, suggesting that the protein is a peripheral membrane protein, while the 20-kDa protein remained associated with the membranes following alkali treatment, suggesting it may be an integral membrane protein. Both proteins were localized to large cytoplasmic vesicles within the cytoplasm of trophozoite and schizont-infected erythrocytes by immunofluorescence assay and confocal microscopy. Both proteins colocalized with Bodipy-ceramide in trophozoite and immature schizont-infected erythrocytes, but not in segmenters. The 130-kDa protein was localized by immunoelectron microscopy (IEM) to Maurer's clefts underneath knobs in a knobby and cytoadherent (K+/C+) P. falciparum strain. No IEM reactivity was obtained in a knobless and non-cytoadherent (K/C) parasite strain. We investigated stage-specific protein expression and protein localization by indirect immunofluorescence assay. Bodipy-ceramide colocalization assays with Rhop-3 and serine-rich antigen (SERA)-specific antibodies were performed. A similar colocalization in trophozoites and schizonts was obtained using the rhoptry-specific antibody 1B9 reactive with the 110-kDa Rhop-3 protein. In segmenters, unlike trophozoites and immature schizonts, there was no Bodipy-ceramide colocalization with antibody 1B9. A difference in protein colocalization was seen using specific antibody 152.3F7.1.1, reactive with SERA. Antibodies to SERA colocalized with Bodipy-ceramide in schizonts, including segmenters. Collectively the data suggest that Rhop-3 transits through the intracellular network en route to the rhoptries and both vesicle-specific proteins may function in the intracellular network. Received: 4 January 2000 / Accepted: 9 August 2000  相似文献   

8.
Toxoplasma gondii sporozoites form two parasitophorous vacuoles during development within host cells, the first (PV1) during host cell invasion and the second (PV2) 18 to 24 h postinoculation. PV1 is structurally distinctive due to its large size, yet it lacks a tubulovesicular network (C. A. Speer, M. Tilley, M. Temple, J. A. Blixt, J. P. Dubey, and M. W. White, Mol. Biochem. Parasitol. 75:75-86, 1995). Confirming the finding that sporozoites have a different electron-dense-granule composition, we have now found that sporozoites within oocysts lack the mRNAs encoding the 5' nucleoside triphosphate hydrolases (NTPase). NTPase first appears 12 h postinfection. Other tachyzoite dense-granule proteins, GRA1, GRA2, GRA4, GRA5, and GRA6, were detected in oocyst extracts, and antibodies against these proteins stained granules in the sporozoite cytoplasm. In contrast to tachyzoite invasion of host cells, however, sporozoites did not exocytose the dense-granule proteins GRA1, GRA2, or GRA4 during PV1 formation. Even after NTPase induction, these proteins were retained within cytoplasmic granules rather than being secreted into PV1. Only GRA5 was secreted by the sporozoite during host cell invasion, becoming associated with the membrane surrounding PV1. Microinjection of sporozoite-infected cells with fluorescent dyes showed that PV1 is impermeable to fluorescent dyes with molecular masses as small as 330 Da, indicating that PV1 lacks channels through which molecules can pass from the host cytoplasm into the vacuole. By contrast, lucifer yellow rapidly diffused into PV2, demonstrating the presence of molecular channels. These studies indicate that PV1 and PV2 are morphologically, immunologically, and functionally distinct, and that PV2 appears to be identical to the tachyzoite vacuole. The inaccessibility of PV1 to host cell nutrients may explain why parasite replication does not occur in this vacuole.  相似文献   

9.
Leishmaniasis is transmitted by sand flies leading to parasite inoculation into skin. In the mammalian host, the parasite primarily resides in skin macrophages (MΦ) and dendritic cells (DC). MΦ are silently invaded by the parasite eliciting a stress response, whereas DC become activated, release IL-12, and prime antigen-specific T cells. Here we review the basics of the immune response against this human pathogen and elucidate the role and function DC and MΦ for establishment of protective immunity against leishmaniasis. We focus on cell type-specific differences in parasite uptake, phagocyte activation and processing of parasite antigens to facilitate an understanding how their respective function may be modulated e.g. under therapeutic considerations.  相似文献   

10.
Following secretion into the parasitophorous vacuole, dense granule proteins, referred to as GRA proteins, are targeted to different locations including a complex of tubular membranes that are connected with the vacuolar membrane. To further define the formation of this intravacuolar network, we have investigated the secretion, trafficking and membrane association of GRA4 and GRA6 within the parasitophorous vacuole. In extracellular parasites, GRA4 and GRA6 were found exclusively in dense secretory granules where they were packaged primarily as soluble proteins. Following release into the vacuole, GRA6 was rapidly translocated to the posterior end of the parasite where, like previously reported for GRA2, it bound to a cluster of multi-lamellar vesicles that give rise to the network. In contrast, GRA4 was distributed throughout the lumen of the vacuole and only later became associated with the mature network that is found dispersed throughout the vacuole. Cell fractionation and treatment with denaturing agents established that the association of GRA4 with the network membranes was mediated by strong protein-protein interactions. In contrast, GRA6 was predominantly influenced by hydrophobic interactions, and a phosphorylated form of this protein present within the vacuole showed increased association with the network membranes. Cross-linking studies established that GRA4 and GRA6 specifically interact with GRA2 to form a multimeric complex that is stably associated with the intravacuolar network. Formation of this protein complex, which is based on both protein-protein and hydrophobic interactions, may participate in nutrient or protein transport within the vacuole.  相似文献   

11.
Little is known about how the malaria parasite transports and targets proteins into the host erythrocyte. Parasite proteins exported into the host cell not only have to cross the parasite plasma membrane but also must traverse the parasitophorous vacuolar membrane (PVM) that surrounds the parasite. The PVM of Plasmodium chabaudi-infected erythrocytes was analyzed by immunofluorescence using an antibody against a known PVM protein, a fluorescent lipid probe, and electron microscopy. These analyses reveal qualitatively different membranous projections from the PVM. Some PVM projections are uniformly labeled with the antibody and with lipid probes and probably correspond to the Maurer's clefts. In contrast to this uniform labeling of the PVM and projections, a 93-kDa P. chabaudi erythrocyte membrane-associated protein is occasionally detected in vesicle-like structures adjacent to the parasite. These vesicle-like structures are found only coincident with protein synthesis and are located at discrete sites on the PVM. These observations suggest that the 93-kDa protein does not move along the membranous projections of the PVM toward the erythrocyte membrane. It is proposed that the 93-kDa protein is secreted directly into the erythrocyte cytoplasm at discrete PVM domains and then binds to the cytoplasmic face of the erythrocyte membrane. Supplementary material: Additional documentary material has been deposited in electronic form and can be obtained from http://link.springer.de/link/service/journals/00436/index.htm Received: 27 July 1998 / Accepted: 4 November 1998  相似文献   

12.
The IRG proteins: a function in search of a mechanism   总被引:1,自引:0,他引:1  
Howard J 《Immunobiology》2008,213(3-4):367-375
The IRG proteins (p47 GTPases) constitute one of the strongest resistance systems known to be active against intracellular pathogens in mice. The proteins are induced by interferons and assemble on phagosomes and parasitophorous vacuoles of a number of different micro-organisms in all cell types assayed. There are presently three experimentally based views as to how they exert their cell-autonomous activity against intracellular pathogens: blocking of interferon-mediated acceleration of phagosome maturation, induction of autophagic membranes, and direct destruction of the parasitophorous vacuole membrane. Failure of hemopoietic stem cells during infection is associated with targeted deletion of one IRG protein, Irgm1. The significance of this non-cell-autonomous phenotype is discussed.  相似文献   

13.
Resistance to chloroquine has been linked to polymorphisms within the pfcrt gene of the human malarial parasite Plasmodium falciparum. Here, we have investigated the prevalence of the pfcrt allele associated with chloroquine resistance in the peripheral blood and the placenta of pregnant women diagnosed with a P. falciparum infection. Our molecular epidemiological data show an unequal distribution with a significant under-representation of parasites carrying the mutated pfcrt allele in the placenta, as compared to the peripheral blood. In comparison, no differences were seen with regard to pfmdr1 polymorphisms of these parasites. Our data suggest a selective disadvantage of the polymorphic and a selective advantage of the wild-type pfcrt haplotype in the placenta, supporting the model that the human host provides various microenvironments that favor genetically distinct P. falciparum populations.  相似文献   

14.
Inhibitors of dihydrofolate reductase (DHFR) have been mainstays in the treatment of falciparum malaria. Resistance to one of these antifolates, pyrimethamine, is now common in Plasmodium falciparum populations. Antifolates have not traditionally been recommended for treatment of vivax malaria. However, recent studies have suggested that a third-generation antifolate, WR99210, is remarkably effective even against highly pyrimethamine-resistant parasites from both species. Two methods were used to identify a compound that is effective against quadruple mutant alleles from P. falciparum (N51I/C59R/S108N/I164L) and from Plasmodium vivax (57L/111L/117T/173F). The first was simple yeast system used to screen a panel of WR99210 analogs. The biguanide prodrug, JPC-2056, of the 2-chloro-4-trifluoromethoxy analog of WR99210 was effective against both the P. falciparum and P. vivax enzymes, and has been selected for further development. The second method compared the analogs in silico by docking them in the known structure of the P. falciparum DHFR-thymidylate synthase. The program reproduced well the position of the triazine ring, but the calculated energies of ligand binding were very similar for different compounds and therefore did not reproduce the observed trends in biological activity. The WR99210 family of molecules is flexible due to a long bridge between the triazine ring and the substituted benzene. During docking, multiple conformations were observed for the benzene ring part of the molecules in the DHFR active site, making computer-based predictions of binding energy less informative than for more rigid ligands. This flexibility is a key factor in their effectiveness against the highly mutant forms of DHFR.  相似文献   

15.
Apoptosis mediated by Fas/FasL has been implicated in pulmonary disorders. However, little is known about the relationship between Fas and FasL in the process of lung injury during malaria infection. Paraffin-embedded lung tissues from malaria patients were divided into two groups: those with pulmonary edema (PE) and those without pulmonary edema (non-PE). Normal lung tissues were used as the control group. Cellular expression of Fas, FasL, and the markers of apoptotic caspases, including cleaved caspase-3 and cleaved caspase-8 in the lung tissues were investigated by the immunohistochemistry (IHC) method. Semi-quantitative analysis of IHC staining revealed that cellular expression of Fas, FasL, cleaved caspase-8, and cleaved caspase-3 were significantly increased in the lungs of patients with PE compared with the lungs of patients with non-PE and control groups (all P < 0.05). In addition, significant positive correlations were obtained between Fas and apoptosis (rs = 0.937, P < 0.001) and FasL and apoptosis (rs = 0.808, P < 0.001). Significant positive correlations were found between Fas and FasL expression (rs = 0.827, P < 0.001) and between cleaved caspase-8 and cleaved caspase-3 expression (rs = 0.823, P < 0.001), which suggests that Fas-dependent initiator and effector caspases, including cleaved caspase-8 and caspase-3, are necessary for inducing apoptosis in the lungs of patients with severe P. falciparum malaria. The Fas/FasL system and downstream activation of caspases are important mediators of apoptosis and may be involved in the pathogenesis of pulmonary edema in severe P. falciparum malaria patients. The proper regulation of the Fas/FasL pathway can be a potential treatment for pulmonary complications in falciparum malaria patients.  相似文献   

16.
N-terminal processing of proteins exported by malaria parasites   总被引:2,自引:0,他引:2  
Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence.  相似文献   

17.
The malaria parasite P. falciparum exports a large number of proteins to its host cell, the mature human erythrocyte. Although the function of the majority of these proteins is not well understood, many exported proteins appear to play a role in modification of the erythrocyte following invasion. Protein export to the erythrocyte is a secretory process that begins with entry to the endoplasmic reticulum. For most exported proteins, this step is mediated by hydrophobic signal peptides found towards the N-terminal end of proteins. The signal peptides present on P. falciparum exported proteins often differ in length from those found in other systems, and generally contain a highly extended N-terminal region. Here we have investigated the function of these extended N-terminal regions, using the exported parasite protein GBP130 as a model. Surprisingly, several deletions of the extended N-terminal regions of the GBP130 signal peptide have no effect on the ability of the signal peptide to direct a fluorescent reporter to the secretory pathway. Addition of the same N-terminal extension to a canonical signal peptide does not affect transport of either soluble or membrane proteins to their correct respective subcellular localisations. Finally, we show that extended signal peptides are able to complement canonical signal peptides in driving protein traffic to the apicoplast of the parasite, and are also functional in a mammalian cell system. Our study is the first detailed analysis of an extended P. falciparum signal peptide and suggests that N-terminal extensions of exported Plasmodium falciparum proteins are not required for entry to the secretory system, and are likely to be involved in other, so far unknown, processes.  相似文献   

18.
The obligate intracellular microsporidia have developed a unique invasion mechanism to infect their host cells. Spores explosively evert a tube-like structure and extrude the infectious spore content through this organelle into the host cell. Spores from species of the genus Encephalitozoon were also shown to be efficiently internalized by phagocytosis, which led to the hypothesis that spore germination from inside a phagosome might contribute to the infection process. Here, we challenge this hypothesis by quantifying Encephalitozoon cuniculi infection rates of J774 cells that were incubated with the phagocytosis inhibitor cytochalasin D. We demonstrate that the invasion rate in cytochalasin D-treated cells is identical to untreated controls, although phagocytic uptake of E. cuniculi spores was less than 10% of control samples. This study suggests that germination of phagocytosed spores is not a significant infection mode for E. cuniculi.  相似文献   

19.
Preliminary sequence analysis of Plasmodium falciparum has shown that the proteome of this organism is enriched in intrinsically unstructured proteins (IUPs), which are either completely disordered or contain large disordered regions. IUPs have been characterized as a unique class of proteins that plays an important role in biology and disease. In this study, the IUP contents in the proteomes of apicomplexan parasites, especially the proteome of P. falciparum and its various life cycle stages, have been evaluated with DisEMBL-1.4. Compared with other proteomes, apicomplexan species are extremely abundant in proteins containing long disordered regions, and the IUP contents in mammalian Plasmodium species are higher than in most other apicomplexan parasites. The proteome of the P. falciparum sporozoite appears to be distinct from the other life cycle stages in having an even higher content of disordered proteins. The abundance of IUPs in the P. falciparum proteome correlates with its enrichment in repetitive sequences. The structural plasticity of IUPs, which allows promiscuous binding interactions, may favour parasite survival both by inhibiting the generation of effective high affinity antibody responses and by facilitating the interactions with host molecules necessary for attachment and invasion of host cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号