首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3 variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2ROD variant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles.  相似文献   

2.
A series of injectable and biocompatible delivery DOX-loaded supramolecular hydrogels were fabricated by using presynthesized DOX-2N-β-CD, Pluronic F-127 and α-CD through host–guest interactions and cooperative multivalent hydrogen bonding interactions. The compositions and morphologies of these hydrogels were confirmed by PXRD and SEM measurements. Moreover, the Rheological measurements of these hydrogels were studied and the studies found that they showed a unique thixotropic behavior, indicting a fast self-healing property after the continuous oscillatory shear stress. Using α-CD as a capping agent, slow and sustained DOX release was observed at different pH values after 72 h. The amount of DOX released at pH 7.4 was determined to be 49.0% for hydrogel 1, whereas the releasing amount of the DOX was increased to 66.3% for hydrogel 1 during the same period at pH 5.5 (P < 0.05), indicating a higher release rate of the drug under more acidic conditions. Taking hydrogel 1 as a representative material, the toxicities of DOX and hydrogel 1 on ovarian cancer cells (SKOV-3) at different exposure durations were examined. The results revealed that hydrogel 1 was less cytotoxic than free DOX to SKOV-3 cells (P < 0.05), suggesting sustained release by these hydrogels in the presence of ovarian cancer cells. It is anticipated that this exploration can provide a new strategy for preparing drug delivery systems.

A series of injectable and biocompatible delivery DOX-loaded supramolecular hydrogels were fabricated by using presynthesized DOX-2N-β-CD, Pluronic F-127 and α-CD through host–guest interactions and cooperative multivalent hydrogen bonding interactions.  相似文献   

3.
PD 404,182 (PD) is a synthetic compound that was found to compromise HIV integrity via interaction with a nonenvelope protein viral structural component (A. M. Chamoun et al., Antimicrob. Agents Chemother. 56:672–681, 2012). The present study evaluates the potential of PD as an anti-HIV microbicide and establishes PD''s virucidal activity toward another pathogen, herpes simplex virus (HSV). We show that the anti-HIV-1 50% inhibitory concentration (IC50) of PD, when diluted in seminal plasma, is ∼1 μM, similar to the IC50 determined in cell culture growth medium, and that PD retains full anti-HIV-1 activity after incubation in cervical fluid at 37°C for at least 24 h. In addition, PD is nontoxic toward vaginal commensal Lactobacillus species (50% cytotoxic concentration [CC50], >300 μM), freshly activated human peripheral blood mononuclear cells (CC50, ∼200 μM), and primary CD4+ T cells, macrophages, and dendritic cells (CC50, >300 μM). PD also exhibited high stability in pH-adjusted Dulbecco''s phosphate-buffered saline with little to no activity loss after 8 weeks at pH 4 and 42°C, indicating suitability for formulation for transportation and storage in developing countries. Finally, for the first time, we show that PD inactivates herpes simplex virus 1 (HSV-1) and HSV-2 at submicromolar concentrations. Due to the prevalence of HSV infection, the ability of PD to inactivate HSV may provide an additional incentive for use as a microbicide. The ability of PD to inactivate both HIV-1 and HSV, combined with its low toxicity and high stability, warrants additional studies for the evaluation of PD''s microbicidal candidacy in animals and humans.  相似文献   

4.
Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro. Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 μM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 μM for itraconazole, 5 and 12 μM for hydroxyitraconazole, 3 and 6 μM for posaconazole, and 3 and 11 μM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 μM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 μM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 μM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 μM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs.  相似文献   

5.
We selected the G-quadruplex motif located in the nuclease-hypersensitive elements (NHE) III1 region of the c-Myc promoter and for the first time performed its interaction studies with a designed peptide (QW10). Our CD results showed that the peptide bound to the c-Myc G-quadruplex and induced a significant blue shift in the positive peak of 20 nm in KCl alone or with 40wt% PEG200 or 20wt% PEG8000 in comparison to NaCl. Our Native Gel results confirmed that peptide binding destabilized the duplex and stabilized the unimolecular G-quadruplex and not binding to i-motif. UV thermal results confirmed destabilization of bimolecular structure and stabilization of unimolecular G-quadruplex. QW10 showed preferential binding towards c-MYC promoter G4 with binding constant (Kb) values of the order of 0.05 ± 0.2 μM, 0.12 ± 0.1 μM and 0.05 ± 0.3 μM for complexes in K+ alone or 40wt% PEG 200 or 20wt% PEG 8000 respectively. QW10 showed preferential cytotoxicity with IC50 values of 11.10 μM and 6.44 μM after 72 and 96 hours'' incubation on Human Breast Carcinoma MDA-MB 231 cells and was found to be non-toxic with Human Embryonic Kidney (HEK-1) cells. Interestingly, we observed reduction of c-Myc gene expression by 2.5 fold due to QW10 binding and stabilizing c-MYC G4. Our study for the first time provides an expanded overview of significant structural change in human c-Myc promoter G-quadruplex upon peptide binding in potassium.

We selected the G-quadruplex motif located in the nuclease-hypersensitive elements (NHE) III1 region of the c-Myc promoter and for the first time performed its interaction studies with a designed peptide (QW10).  相似文献   

6.
Rapid, quantitative, and objective determination of the susceptibilities of human cytomegalovirus (HCMV) clinical isolates to ganciclovir has been assessed by an assay that uses a fluorochrome-labeled monoclonal antibody to an HCMV immediate-early antigen and flow cytometry. Analysis of the ganciclovir susceptibilities of 25 phenotypically characterized clinical isolates by flow cytometry demonstrated that the 50% inhibitory concentrations (IC50s) of ganciclovir for 19 of the isolates were between 1.14 and 6.66 μM, with a mean of 4.32 μM (±1.93) (sensitive; IC50 less than 7 μM), the IC50s for 2 isolates were 8.48 and 9.79 μM (partially resistant), and the IC50s for 4 isolates were greater than 96 μM (resistant). Comparative analysis of the drug susceptibilities of these clinical isolates by the plaque reduction assay gave IC50s of less than 6 μM, with a mean of 2.88 μM (±1.40) for the 19 drug-sensitive isolates, IC50s of 6 to 8 μM for the partially resistant isolates, and IC50s of greater than 12 μM for the four resistant clinical isolates. Comparison of the IC50s for the drug-susceptible and partially resistant clinical isolates obtained by the flow cytometry assay with the IC50s obtained by the plaque reduction assay showed an acceptable correlation (r2 = 0.473; P = 0.001), suggesting that the flow cytometry assay could substitute for the more labor-intensive, subjective, and time-consuming plaque reduction assay.  相似文献   

7.
We designed, synthesized, and identified two novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-04810 and GRL-05010, containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, bis-tetrahydrofuranylurethane (bis-THF), and a difluoride moiety, both of which are active against the laboratory strain HIV-1LAI (50% effective concentrations [EC50s], 0.0008 and 0.003 μM, respectively) with minimal cytotoxicity (50% cytotoxic concentrations [CC50s], 17.5 and 37.0 μM, respectively, in CD4+ MT-2 cells). The two compounds were active against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to various antiviral regimens. GRL-04810 and GRL-05010 also blocked the infectivity and replication of each of the HIV-1NL4-3 variants selected by up to 5 μM lopinavir (EC50s, 0.03 and 0.03 μM, respectively) and atazanavir (EC50s, 0.02 and 0.04 μM, respectively). Moreover, they were active against darunavir (DRV)-resistant variants (EC50 in 0.03 to 0.034 μM range for GRL-04810 and 0.026 to 0.043 μM for GRL-05010), while DRV had EC50s between 0.02 and 0.174 μM. GRL-04810 had a favorable lipophilicity profile as determined with the partition (log P) and distribution (log D) coefficients of −0.14 and −0.29, respectively. The in vitro blood-brain barrier (BBB) permeability assay revealed that GRL-04810 and GRL-05010 may have a greater advantage in terms of crossing the BBB than the currently available PIs, with apparent penetration indexes of 47.8 × 10−6 and 61.8 × 10−6 cm/s, respectively. The present data demonstrate that GRL-04810 and GRL-05010 exert efficient activity against a wide spectrum of HIV-1 variants in vitro and suggest that two fluorine atoms added to their bis-THF moieties may well enhance their penetration across the BBB.  相似文献   

8.
In order to promote the photosynthetic growth rate of Chlorella in the presence of flue gas CO2 from coal-fired power plants, spermidine was first used to enhance cellular resistance to a high CO2 concentration (15%) and high light intensity (30 000 lux). It was found that low concentrations (100–300 μM) of spermidine significantly enhanced the photosynthetic growth rate of Chlorella. The accelerated cell division decreased the cell diameter from 3.64 μm to 2.71 μm and the fractal dimension from 1.60 to 1.49, and the activity of total superoxide dismutase (T-SOD) increased from 0.48 U mL−1 to 5.33 U mL−1. Expression levels of key enzymes of photosystems I and II, ATP synthase and transportase markedly increased, thereby enhancing the electron transport and energy supply that reduced oxidative damage. Finally, an enhanced cellular resistance to the high CO2 concentration and high light intensity increased the biomass yield from 0.11 g L−1 to 1.71 g L−1 (300 μM).

Spermidine enhanced resistance of Chlorella to high levels of CO2 and light intensity.  相似文献   

9.
2B4 is a cell surface glycoprotein related to CD2 and implicated in the regulation of natural killer and T lymphocyte function. A recombinant protein containing the extracellular region of mouse (m)2B4 attached to avidin-coated fluorescent beads bound to rodent cells, and binding was completely blocked by CD48 monoclonal antibodies (mAbs). Using surface plasmon resonance, we showed that purified soluble mCD48 bound m2B4 with a six- to ninefold higher affinity (K d ≈ 16 μM at 37°C) than its other ligand, CD2. Human CD48 bound human 2B4 with a similar affinity (K d ≈ 8 μM). The finding of an additional ligand for CD48 provides an explanation for distinct functional effects observed on perturbing CD2 and CD48 with mAbs or by genetic manipulation.  相似文献   

10.
Iron acquisition is crucial for the growth of Aspergillus fumigatus. A. fumigatus biofilm formation occurs in vitro and in vivo and is associated with physiological changes. In this study, we assessed the effects of Fe chelators on biofilm formation and development. Deferiprone (DFP), deferasirox (DFS), and deferoxamine (DFM) were tested for MIC against a reference isolate via a broth macrodilution method. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to DFP, DFM, DFP plus FeCl3, or FeCl3 alone. A preformed biofilm was exposed to DFP with or without FeCl3. The DFP and DFS MIC50 against planktonic A. fumigatus was 1,250 μM, and XTT gave the same result. DFM showed no planktonic inhibition at concentrations of ≤2,500 μM. By XTT testing, DFM concentrations of <1,250 μM had no effect, whereas 2,500 μM increased biofilms forming in A. fumigatus or preformed biofilms (P < 0.01). DFP at 156 to 2,500 μM inhibited biofilm formation (P < 0.01 to 0.001) in a dose-responsive manner. Biofilm formation with 625 μM DFP plus any concentration of FeCl3 was lower than that in the controls (P < 0.05 to 0.001). FeCl3 at ≥625 μM reversed the DFP inhibitory effect (P < 0.05 to 0.01), but the reversal was incomplete compared to the controls (P < 0.05 to 0.01). For preformed biofilms, DFP in the range of ≥625 to 1,250 μM was inhibitory compared to the controls (P < 0.01 to 0.001). FeCl3 at ≥625 μM overcame inhibition by 625 μM DFP (P < 0.001). FeCl3 alone at ≥156 μM stimulated biofilm formation (P < 0.05 to 0.001). Preformed A. fumigatus biofilm increased with 2,500 μM FeCl3 only (P < 0.05). In a strain survey, various susceptibilities of biofilms of A. fumigatus clinical isolates to DFP were noted. In conclusion, iron stimulates biofilm formation and preformed biofilms. Chelators can inhibit or enhance biofilms. Chelation may be a potential therapy for A. fumigatus, but we show here that chelators must be chosen carefully. Individual isolate susceptibility assessments may be needed.  相似文献   

11.
Isolated rat thymocytes were preincubated with various catecholamines, alone and together with 3,5,3′-triiodothyronine (T3), and the accumulation of the glucose analogues, 2-deoxy-d-glucose (2-DG) and 3-O-methylglucose (3-O-MG), was then measured. Epinephrine induced a time- and dose-dependent increase in the 15-min accumulation of 2-DG; at a concentration of 100 μM epinephrine, the effect was evident after a preincubation period of only 5 min. The lowest concentration of epinephrine at which a significant effect was evident was 1 μM. Epinephrine also produced a dose-dependent increase in the accumulation of 3-O-MG, and the lowest concentration at which a significant effect was evident was again 1 μM. Isoproterenol, a β-adrenergic agonist, like epinephrine, increased the accumulation of 2-DG, whereas the α-agonist, phenylephrine, had no effect. The response to epinephrine was inhibited by the β-antagonist, alprenolol, but the α-antagonist, phentolamine, had no effect. As previously demonstrated, T3 increased 2-DG accumulation, and like epinephrine, its effect was blocked by alprenolol. Neither T3 (0.1 nM) nor epinephrine (0.1 μM) had any effect when acting alone, but when added together at these concentrations, they significantly increased the accumulation of both 2-DG and 3-O-MG. Neither T3 with isoproterenol nor T3 with phenylephrine produced a comparable synergistic effect. But T3 (0.1 nM) acting with isoproterenol (0.1 μM) and phenylephrine (0.1 μM) together, synergistically increased 2-DG accumulation. In addition, the α-antagonist, phentolamine, which alone had no effect, inhibited the synergistic effect induced by T3 and epinephrine. The effects of epinephrine and T3 alone, as well as their combined synergistic effect on 2-DG accumulation, were not blocked by the inhibitor of protein synthesis, puromycin.  相似文献   

12.
Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure–activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 μM for MIN A and 3.2 μM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 μM) and the plant pathogen Alternaria alternata (0.6 μM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5–3.8 μM) and A. alternata (MIC = 0.1–0.5 μM), but with partial retention of the cytotoxic effect (∼10–20 μM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2–0.6 μM), and greatly reduced or abolished cytotoxic activity (>20 μM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities.

Both the substitution of free hydroxyl substituents and extending/branching of the fatty acid moiety improved the antifungal potency and limits the cytotoxicity of cyanobacterial cyclic lipopeptides puwainaphycin/minutissamides.  相似文献   

13.
Vancomycin, linezolid, and daptomycin are very active against staphylococci, but isolates with decreased susceptibility to these antimicrobial agents are isolated sporadically. A total of 19,350 Staphylococcus aureus isolates (51% methicillin resistant [MRSA]) and 3,270 coagulase-negative staphylococci (CoNS) were collected consecutively from 82 U.S. medical centers from January 2008 to December 2011 and tested for susceptibility against ceftaroline and comparator agents by the reference broth microdilution method. Among S. aureus strains, 14 isolates (0.07%) exhibited decreased susceptibility to linezolid (MIC, ≥8 μg/ml), 18 (0.09%) to daptomycin (MIC, ≥2 μg/ml), and 369 (1.9%) to vancomycin (MIC, ≥2 μg/ml; 368 isolates at 2 μg/ml and 1 at 4 μg/ml). Fifty-one (1.6%) CoNS were linezolid resistant (MIC, ≥8 μg/ml), and four (0.12%) were daptomycin nonsusceptible (MIC, ≥2 μg/ml). Ceftaroline was very active against S. aureus overall (MIC50/90, 0.5/1 μg/ml; 98.5% susceptible), including MRSA (MIC50/90, 0.5/1 μg/ml; 97.2% susceptible). All daptomycin-nonsusceptible and 85.7% of linezolid-resistant S. aureus isolates were susceptible to ceftaroline. Against S. aureus isolates with a vancomycin MIC of ≥2 μg/ml, 91.9, 96.2, and 98.9% were susceptible to ceftaroline, daptomycin, and linezolid, respectively. CoNS strains were susceptible to ceftaroline (MIC50/90, 0.25/0.5 μg/ml; 99.1% inhibited at ≤1 μg/ml), including methicillin-resistant (MIC50/90, 0.25/0.5 μg/ml), linezolid-resistant (MIC50/90, 0.5/0.5 μg/ml), and daptomycin-nonsusceptible (4 isolates; MIC range, 0.03 to 0.12 μg/ml) strains. In conclusion, ceftaroline demonstrated potent in vitro activity against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin, and it may represent a valuable treatment option for infections caused by these multidrug-resistant staphylococci.  相似文献   

14.
Human parotid secretory protein (PSP; BPIF2A) is predicted to be structurally similar to bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. Based on the locations of known antimicrobial peptides in the latter two proteins, potential active peptides in the PSP sequence were identified. One such peptide, GL13NH2 (PSP residues 141 to 153) was shown previously to interfere with LPS binding and agglutinate bacteria without bactericidal activity. By introducing three additional positively charged lysine residues, the peptide was converted to the novel bactericidal cationic peptide GL13K (MIC for Pseudomonas aeruginosa, 8 μg/ml [5.6 μM]). We investigated the antibiofilm activity of GL13K against static, monospecies biofilms of P. aeruginosa PAO1. Two-hour exposure of a 24-h biofilm to 64 μg/ml (44.8 μM) GL13K reduced biofilm bacteria by 102, and 100 μg/ml (70 μM) GL13K reduced bacteria by 103. Similar results could be achieved on 48-h-old biofilms. Lower concentrations of GL13K (32 μg/ml [22.4 μM]) were successful in reducing biofilm cell numbers in combination with tobramycin. This combination treatment also achieved total eradication of the biofilm in a majority (67.5%) of tested samples. An alanine scan of GL13K revealed the importance of the leucine residue in position six of the peptide sequence, where replacement led to a loss of antibiofilm activity, whereas the impact of replacing charged residues was less pronounced. Bacterial metalloproteases were found to partially inactivate GL13K but not a d amino acid version of the peptide.  相似文献   

15.
PI-103 is a phosphatidylinositol 3-kinase inhibitor that includes multiple receptor affinity modifications, and it is also a therapeutic drug candidate primarily for human malignant tumors. However, its metabolic fate and potential drug–drug interactions involving human cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) enzymes remain unknown. In this study, our results demonstrated that the intrinsic clearance (CLint) values of oxidated metabolite (M1) in human liver microsomes (HLM) and human intestine microsomes (HIM) were 3.10 and 0.08 μL min−1 mg−1, respectively, while PI-103 underwent efficient glucuronidation with CLint values of 15.59 and 211.04 μL min−1 mg−1 for mono-glucuronide (M2) by HLM and HIM, respectively. Additionally, reaction phenotyping results indicated that CYP1A1 (51.50 μL min−1 mg−1), 1A2 (46.96 μL min−1 mg−1), and UGT1A1 (18.80 μL min−1 mg−1), 1A7 (8.52 μL min−1 mg−1), 1A8 (8.38 μL min−1 mg−1), 1A9 (34.62 μL min−1 mg−1), 1A10 (107.01 μL min−1 mg−1) were the most important contributors for the oxidation and glucuronidation of PI-103. Chemical inhibition assays also suggest that CYP1A2 and UGT1A1, 1A9 play a predominant role in the metabolism of PI-103 in HLM. Significant activity correlations were detected between phenacetin-N-deacetylation and M1 (r = 0.760, p = 0.004) as well as β-estradiol-3-O-glucuronide and M2 (r = 0.589, p = 0.044), and propofol-O-glucuronidation and M2 (r = 0.717, p = 0.009). Furthermore, the metabolism of PI-103 revealed marked species differences, and dogs, rats, mice and mini-pigs were not the appropriate animal models. Gene silencing of breast cancer resistance protein (BCRP) or multidrug resistance-associated protein (MRPs) transporter results indicated that M2 was mainly excreted by BCRP, MRP1 and MRP4 transporters. Moreover, PI-103 displayed broad-spectrum inhibition towards human CYPs and UGTs isozymes with IC50 values ranging from 0.33 to 6.89 μM. Among them, PI-103 showed potent non-competitive inhibitory effects against CYP1A2, 2C19, 2E1 with IC50 and Ki values of less than 1 μM. In addition, PI-103 exhibited moderate non-competitive inhibition against UGT1A7, 2B7, and moderate mixed-type inhibition towards CYP2B6, 2C9 and UGT1A3. Their IC50 and Ki values were 1.16–6.89 and 0.56–5.64 μM, respectively. In contrast, PI-103 could activate the activity of UGT1A4 in a mechanistic two-site model with a Ki value of 13.76 μM. Taken together, PI-103 was subjected to significant hepatic and intestinal metabolism. CYP1A1, 1A2 and UGT1A1, 1A7, 1A8, 1A9, 1A10 were the main contributing isozymes, whereas BCRP, MRP1 and MRP4 contributed most to the efflux excretion of M2. Meanwhile, PI-103 had a potent and broad-spectrum inhibitory effect against human CYPs and UGTs isozymes. These findings could improve understanding of the metabolic fates and efflux transport of PI-103. The inhibited human CYP and UGT activities could trigger harmful DDIs when PI-103 is co-administered with clinical drugs primarily cleared by these CYPs or UGTs isoforms. Additional in vivo studies are required to evaluate the clinical significance of the data presented herein.

Metabolic activity and disposition characteristics of PI-103.  相似文献   

16.
Fusidic acid (FA) activity was evaluated against 2,002 clinical staphylococcal isolates collected in U.S. hospitals during 2014. FA (MIC50/90, 0.12/0.12 μg/ml) inhibited 99.8% of Staphylococcus aureus isolates at ≤1 μg/ml. Only four S. aureus isolates displayed FA values of >2 μg/ml (three strains with fusC and one with an L461K substitution in fusA), and they were isolated from patients in four states. In conclusion, FA demonstrated sustained, potent activity against this recent collection of U.S. staphylococci.  相似文献   

17.
Polyether-ether-ketone (PEEK) has been used clinically for intervertebral fusion and internal fixators in spine and trauma surgery because of its mechanical properties and bioinertness. The present study aimed to assess the suitability of PEEK as an alternative material to cobalt–chromium–molybdenum alloy in total knee arthroplasty (TKA) and evaluate the in vivo wear property on the contact surface of the PEEK-on-highly cross-linked polyethylene (HXLPE). PEEK prosthesis was designed and manufactured using injection molding based on the computed tomography data of a standard goat right hind limb. Fifteen goats underwent TKA using PEEK-on-HXLPE prosthesis on the right hind limb. The goats were sacrificed at 12, 24, and 48 weeks postoperatively. The mean surface roughness (Ra) of the retrieved components, proinflammatory cytokines in the synovial fluid, and characteristics of wear particles in the synovial membrane were investigated using laser confocal microscopy, ELISA and polarized light microscopy. The Ra of the femoral component was about 0.08, 0.1, 0.2, and 0.26 μm at pre-study, 12-, 24-, and 48 weeks in the retrievals, respectively. The Ra of the HXLPE bearing samples was approximately 0.38, 0.4, 0.1, and 0.42 μm at pre-study, 12-, 24-, and 48 weeks in the retrievals, respectively. The median size of the particles was 2.63 μm, 1.98 μm, and 3.00 μm at 12, 24, and 48 weeks, respectively. The particles ranged in size from 0.4 μm to 15 μm, and particles <1 μm accounted for 7–13%, those of size 2–5 μm accounted for 67–76%, and those >5 μm accounted for 11–22%. Levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) were significantly increased in synovial fluids at 24- and 48 weeks after surgery. Wear occurred on the surfaces of the PEEK and HXLPE material and the size of most wear particles was 1–5 μm. This induced an inflammatory response in the synovial membrane and release of proinflammatory cytokines. A high polishing process may be necessary to lengthen the life of the PEEK prosthesis by reducing the wear and the generation of debris. The PEEK prosthesis as a new generation of artificial joints is promising to be used clinically in the future.

Polyether-ether-ketone (PEEK) has been used clinically for intervertebral fusion and internal fixators in spine and trauma surgery because of its mechanical properties and bioinertness.  相似文献   

18.
Arbekacin is a broad-spectrum aminoglycoside licensed for systemic use in Japan and under clinical development as an inhalation solution in the United States. We evaluated the occurrence of organisms isolated from pneumonias in U.S. hospitalized patients (PHP), including ventilator-associated pneumonia (VAP), and the in vitro activity of arbekacin. Organism frequency was evaluated from a collection of 2,203 bacterial isolates (339 from VAP) consecutively collected from 25 medical centers in 2012 through the SENTRY Antimicrobial Surveillance Program. Arbekacin activity was tested against 904 isolates from PHP collected in 2012 from 62 U.S. medical centers and 303 multidrug-resistant (MDR) organisms collected worldwide in 2009 and 2010 from various infection types. Susceptibility to arbekacin and comparator agents was evaluated by the reference broth microdilution method. The four most common organisms from PHP were Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella spp., and Enterobacter spp. The highest arbekacin MIC among S. aureus isolates from PHP (43% methicillin-resistant S. aureus [MRSA]) was 4 μg/ml. Among P. aeruginosa isolates from PHP, only one had an arbekacin MIC of >16 μg/ml (MIC50 and MIC90, 1 and 4 μg/ml), and susceptibility rates for gentamicin, tobramycin, and amikacin were 88.0, 90.0, and 98.0%, respectively. Arbekacin (MIC50, 2 μg/ml) and tobramycin (MIC50, 4 μg/ml) were the most potent aminoglycosides tested against Acinetobacter baumannii. Against Enterobacteriaceae from PHP, arbekacin and gentamicin (MIC50 and MIC90, 0.25 to 1 and 1 to 8 μg/ml for both compounds) were generally more potent than tobramycin (MIC50 and MIC90, 0.25 to 2 and 1 to 32 μg/ml) and amikacin (MIC50 and MIC90, 1 to 2 and 2 to 32 μg/ml). Arbekacin also demonstrated potent in vitro activity against a worldwide collection of well-characterized MDR Gram-negative and MRSA strains.  相似文献   

19.
β-Lactam antibiotic resistance mediated by metallo-β-lactamases (MBL) has threatened global public health. There are currently no available inhibitors of MBLs for clinical use. We previously reported the ruthenium-catalyzed meta-selective C–H nitration synthesis method, leading to some meta-mercaptopropanamide substituted aryl tetrazoles as new potent MBL inhibitors. Here, we described the structure–activity relationship of meta- and ortho-mercaptopropanamide substituted aryl tetrazoles with clinically relevant MBLs. The resulting most potent compound 13a showed IC50 values of 0.044 μM, 0.396 μM and 0.71 μM against VIM-2, NDM-1 and IMP-1 MBL, respectively. Crystallographic analysis revealed that 13a chelated to active site zinc ions via the thiol group and interacted with the catalytically important residues Asn233 and Tyr67, providing further structural information for the development of thiol based MBL inhibitors.

Compound 13a showed IC50 values of 0.044 μM, 0.396 μM and 0.71 μM against VIM-2, NDM-1 and IMP-1 MBL, respectively. It binds to chelates via active site zinc ions and forms interactions with residues on the L1 and L3 loops of VIM-2.  相似文献   

20.
In the present study, GRL008, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), and darunavir (DRV), both of which contain a P2-bis-tetrahydrofuranyl urethane (bis-THF) moiety, were found to exert potent antiviral activity (50% effective concentrations [EC50s], 0.029 and 0.002 μM, respectively) against a multidrug-resistant clinical isolate of HIV-1 (HIVA02) compared to ritonavir (RTV; EC50, >1.0 μM) and tipranavir (TPV; EC50, 0.364 μM). Additionally, GRL008 showed potent antiviral activity against an HIV-1 variant selected in the presence of DRV over 20 passages (HIVDRVRP20), with a 2.6-fold increase in its EC50 (0.097 μM) compared to its corresponding EC50 (0.038 μM) against wild-type HIV-1NL4-3 (HIVWT). Based on X-ray crystallographic analysis, both GRL008 and DRV showed strong hydrogen bonds (H-bonds) with the backbone-amide nitrogen/carbonyl oxygen atoms of conserved active-site amino acids G27, D29, D30, and D30′ of HIVA02 protease (PRA02) and wild-type PR in their corresponding crystal structures, while TPV lacked H-bonds with G27 and D30′ due to an absence of polar groups. The P2′ thiazolyl moiety of RTV showed two conformations in the crystal structure of the PRA02-RTV complex, one of which showed loss of contacts in the S2′ binding pocket of PRA02, supporting RTV''s compromised antiviral activity (EC50, >1 μM). Thus, the conserved H-bonding network of P2-bis-THF-containing GRL008 with the backbone of G27, D29, D30, and D30′ most likely contributes to its persistently greater antiviral activity against HIVWT, HIVA02, and HIVDRVRP20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号