首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Acta biomaterialia》2014,10(12):5106-5115
The goal of this project is to engineer a defined, synthetic poly(ethylene glycol) (PEG) hydrogel as a model system to investigate smooth muscle cell (SMC) proliferation in three-dimensions (3-D). To mimic the properties of extracellular matrix, both cell-adhesive peptide (GRGDSP) and matrix metalloproteinase (MMP) sensitive peptide (VPMSMRGG or GPQGIAGQ) were incorporated into the PEG macromer chain. Copolymerization of the biomimetic macromers results in the formation of bioactive hydrogels with the dual properties of cell adhesion and proteolytic degradation. Using these biomimetic scaffolds, the authors studied the effect of scaffold properties, including RGD concentration, MMP sensitivity, and network crosslinking density, as well as heparin as an exogenous factor on 3-D SMC proliferation. The results indicated that the incorporation of cell-adhesive ligand significantly enhanced SMC spreading and proliferation, with cell-adhesive ligand concentration mediating 3-D SMC proliferation in a biphasic manner. The faster degrading hydrogels promoted SMC proliferation and spreading. In addition, 3-D SMC proliferation was inhibited by increasing network crosslinking density and exogenous heparin treatment. These constructs are a good model system for studying the effect of hydrogel properties on SMC functions and show promise as a tissue engineering platform for vascular in vivo applications.  相似文献   

2.
Liu SQ  Tieche C  Alkema PK 《Biomaterials》2004,25(10):1869-1882
Synthetic polymers, including polytetrafluoroethylene and Dacron, and biomatrix proteins, including collagen and fibrin, have been used for the construction of vascular substitutes. However, these materials induce inflammatory reactions, contributing to thrombosis, smooth muscle cell (SMC) proliferation, and neointima formation, processes leading to the failure of vascular substitutes. Thus, a pressing issue in vascular reconstruction is to construct vascular substitutes with surface materials that are inflammation-resistant. Here, we demonstrate that the vascular elastic laminae exhibit such a property. Aortic specimens from donor rats were treated with 0.1M NaOH for various times, resulting in elastic lamina-collagen matrix scaffolds with and without the basal lamina. Matrix scaffolds were implanted into the host aorta with three different surface materials, including the elastic lamina, basal lamina, and adventitial collagen, and observed for leukocyte adhesion, endothelial migration, cell proliferation, and neointimal formation on these surfaces. It was found that the elastic lamina was associated with significantly lower leukocyte adhesion, BrdU incorporation, and neointima formation than the basal lamina and adventitial collagen, while the migration of endothelial cells was comparable on all three surfaces. The adventitial collagen matrix was associated with leukocyte infiltration from blood and subsequent SMC migration from the host aorta, whereas the elastic laminae were resistant to such processes. The morphology of the implanted elastic laminae appeared normal at all times. These observations suggest that the vascular elastic laminae exhibit inflammation-resistant properties and inhibit SMC mitogenic activities compared with collagen-containing matrices and may be considered a potential surface material for vascular reconstruction.  相似文献   

3.
Novel synthetic biodegradable polymer substrates with specific chemical micropatterns were fabricated from poly(DL-lactic-coglycolic acid) (PLGA) and diblock copolymers of poly(ethylene glycol) and poly(DL-lactic acid) (PEG/PLA). Thin films of PLGA and PEG/PLA supported and inhibited, respectively, retinal pigment epithelial (RPE) cell proliferation, with a corresponding cell density of 352,900 and 850 cells/cm2 after 7 days (from an initial seeding density of 15,000 cells/cm2). A microcontact printing technique was used to define arrays of circular (diameter of 50 microm) PLGA domains surrounded and separated by regions (width of 50 microm) of PEG/PLA. Reversed patterns composed of PEG/PLA circular domains surrounded by PLGA regions were also fabricated. Both micropatterned surfaces were shown to affect initial RPE cell attachment, limit cell spreading, and promote the characteristic cuboidal cell morphology during the 8-h period of the experiments. In contrast, RPE cells on plain PLGA (control films) were elongated and appeared fibroblast-like. The reversed patterns had continuous PLGA regions that allowed cell-cell interactions and thus higher cell adhesion. These results demonstrate the feasibility of fabricating micropatterned synthetic biodegradable polymer surfaces to control RPE cell morphology.  相似文献   

4.
Improved biodegradable vascular grafts and stents are in demand, particularly for pediatric patients. Poly(L-lactic acid) (PLLA) is an FDA-approved biodegradable polymer of potential use for such applications. However, tissue culture studies have shown that endothelial cell (EC) attachment and growth occurs relatively slowly on PLLA surfaces. This slow growth has been attributed to the fact that PLLA represents a hydrophobic substrate, relatively devoid of active functional groups. As a result, the slow EC recovery on the luminal side of PLLA stents provides an increased risk of induced thrombosis. In the present study, surface modification of PLLA substrates has been examined as a potential route to enhance EC growth. For this purpose, PLLA surfaces were modified via pulsed plasma deposition of thin films of poly(vinylacetic acid). The -COOH surface groups, introduced by the plasma deposition, were employed to conjugate fibronectin (FN), followed by attachment of vascular endothelial growth factor to FN. Pig Aorta ECs (PAE) and kinase-insert domain-containing receptor (KDR)-transfected PAE showed increased cell adhesion and proliferation, as well as substantially improved cell retention under fluidic shear stress on surface-modified PLLA compared with untreated PLLA. Although KDR-transfected PAE exhibited better cell proliferation than PAE, normal EC functions, including EC morphology, nitric oxide production, and KDR expression, were observed when cells were grown on surface-modified PLLA. The results obtained clearly indicate that this combined surface modification technique using poly(vinylacetic acid) deposition, FN conjugation, and vascular endothelial growth factor surface delivery can enhance endothelialization on PLLA, particularly when employed in conjunction with the growth of KDR-transfected ECs.  相似文献   

5.
Biodegradable tubular scaffolds have been developed for vascular graft application. This study was focused to improve the adhesion and proliferation of vascular smooth muscle cells (SMCs) in a tubular scaffold. Tubular scaffolds (ID 4 mm, OD 6 mm) were fabricated from a biodegradable elastic polymer, poly(L-lactide-co-ε-caprolactone) (PLCL) (50:50, M n 1.58 × 105), by an extrusion/particulate leaching method. SMCs suspended in a collagen solution were infiltrated in tubular PLCL scaffolds under vacuum and incubated for 1 h at 37°C to form a collagenous gel. Results from SEM image analysis showed that collagen was infiltrated into the inside of the scaffolds. Cell adhesion and proliferation rate increased in collagen/SMC-incorporated tubular PLCL scaffolds as compared with the scaffolds in which only SMCs were seeded. From SEM image and histological analysis, we further found that SMCs grew on the inside as well as on the surface of collagen/SMCs-incorporated scaffolds and the cells continued to grow as a monolayer on collagen fibers. In particular, cell proliferation and elastin contents were the highest in a PLCL scaffold with 50–100 μm pore size than any other scaffolds used in this experiment. A collagen/SMC-incorporated PLCL scaffold may support SMC growth and functions and can be used as a scaffold for tissue engineering to facilitate small-diameter vascular-tissue formation.  相似文献   

6.
Gas plasma surface modification of three-dimensional poly (D,L-lactide) scaffolds fabricated by a novel vibrating particle fabrication technique was demonstrated to enhance cell adhesion, proliferation, and differentiation over 10 days in culture using human embryonic palatal mesenchyme cells. Characterization of corresponding two-dimensional treated surfaces revealed decreased contact angle measurements of 54.2 +/- 0.6 degrees for treated surfaces compared to 72.3 +/- 0.7 degrees for control surfaces (p < 0.05). SEM of treated surfaces revealed increased surface roughness combined with marked pitting and erosion. This may contribute to increased cell adhesion. WST-1 cell proliferation assay measurements as an index of cell numbers revealed a statistically significant increase in proliferation activity on treated surfaces on days 1 and 4 compared with controls. There was a fivefold increase in WST-1 activity for both control and treated groups over 10 days. Confocal laser micrographs revealed increased cell numbers on treated specimens throughout all layers of the scaffold, indicating that the glow discharge process enhanced cell proliferation throughout the entire scaffold architecture. Scanning electron micrographs demonstrated increased cell adhesion for treated specimens at the polymer surface most evident after days 1 and 4 of culture. Alkaline phosphatase (ALP)-specific activity peaked by day 7 for control and treated surfaces, indicating cellular differentiation. There was a trend for increased protein production on the treated specimens compared with controls at the initial time points although the differences were not statistically significant. These results demonstrated that gas plasma surface modification enhances osteoblast-like cell function in a three-dimensional scaffold model.  相似文献   

7.
Designer Collagens are based on streptococcal collagen-like (Scl) proteins that form a triple helix similar to mammalian collagens but that are non-platelet aggregating. In contrast to the numerous cell-binding sites on collagen, Scl2 from Streptococcus pyogenes serotype M28 does not contain any known cell-binding sites and thus provides a blank slate in terms of cellular interactions. In the current study, Scl2 protein was modified to include receptor binding motifs that interact with α1 and/or α2 integrin subunits. The modfied Scl2 proteins have been demonstrated to mediate differential endothelial cell (EC) and smooth muscle cell (SMC) adhesion via these integrins and to retain the non-platelet aggregating properties of the “parent” Scl2. Thromboresistant scaffolds which selectively bind ECs vs. SMCs would be desirable for vascular repair or replacement.Despite the potential of these Scl proteins in vascular applications, the utility of this recombinant protein family is currently limited to coatings due to the inability of Scl proteins to assemble into stable three-dimensional networks. To address this limitation, the Scl2 proteins were functionalized with photocrosslinking sites to enable incorporation into a hydrogel matrix. Characterization studies confirmed that the functionalization of the Scl2 proteins did not disrupt triple helix conformation, integrin binding or cell adhesion. Bioactive hydrogels were fabricated by combining the functionalized Scl2 proteins with poly(ethylene glycol) diacrylate (PEGDA) and photocrosslinking. EC and SMC adhesion studies confirmed cell-specific adhesion due to selective integrin binding to the two receptor binding motifs investigated. These results serve to highlight the potential of this novel biomaterial platform in the development of improved tissue engineered vascular grafts.  相似文献   

8.
Positive and negative signals regulate the proliferation in vitro of vascular smooth muscle cells (SMC), a principle cell type in the blood vessel wall. Immune interferon (IFN-gamma, a type II IFN) retards the growth of human SMC, but the effect of type I IFN (IFN-alpha or beta) is unknown. Furthermore, the capacity of SMC to produce IFN is uncharacterized. If type I IFN alters SMC growth and is produced by this cell type, an autocrine inhibitory loop could operate in vascular growth control. To test this possibility, we compared the effects of IFN-alpha, beta, and gamma on the growth of SMC stimulated by platelet-derived growth factor, interleukin-1 or tumor necrosis factor alpha. IFN-beta and IFN-gamma, but not IFN-alpha, consistently retarded growth of SMC cultures (measured by net DNA accumulation and cell number). We investigated whether SMC could produce IFN-beta, a mediator characteristically produced by fibroblasts. Vascular SMC treated with poly(I):poly(C) or tumor necrosis factor-alpha expressed IFN-beta mRNA. SMC treated with poly(I):poly(C) or Newcastle Disease virus elaborated biologically active IFN-beta as well. Our results establish that IFN-beta inhibits human vascular SMC growth and that these cells can express the IFN-beta gene. These findings show that human vascular SMC have the capacity of producing a potential autocrine growth regulator.  相似文献   

9.
Cyclosporin A (CsA) has been suggested to potentiate graft vascular disease by stimulation of smooth muscle cell (SMC) proliferation. Both the in vitro and in vivo data are discordant, showing both stimulatory and inhibitory effects of CsA on vascular SMC proliferation. The direct and endothelial cell-mediated effects of CsA on vascular SMC proliferation were examined in vitro using the incorporation of [3H]thymidine. All experiments were done in serum-free conditions. The exposure of SMC to CsA (0.0001 to 0.1 micrograms/ml) had no effect on proliferation. High doses of CsA (0.5 to 10.0 micrograms/ml) were toxic to the SMC and endothelial cells; 90% of SMC population died within 3 to 6 days of exposure to 10.0 micrograms/ml CsA. In the studies on the endothelial cell-mediated effect of CsA, the endothelial cell-conditioned medium (ECCM) significantly increased SMC proliferation. This stimulatory effect was significantly attenuated when the ECCM was obtained from endothelial cells exposed to CsA. Endothelin (ET) is suggested to be an endothelial-cell-derived growth factor for SMC, and implicated as a possible cause of the uncontrolled proliferation of SMC during development of graft vascular disease. Exposure of SMC to levels of recombinant ET similar to the levels found in the ECCM (0.19 + 0.01 pg/ml) significantly increased SMC proliferation. CsA increased fivefold ET concentration in the ECCM. However, despite this rise in ET levels, there was a 45% decrease in SMC proliferation. In conclusion, CsA does not exert a direct modulatory effect on SMC proliferation in vitro, but may inhibit SMC proliferation indirectly via endothelial cell-derived factors. These unidentified factor(s) inhibit SMC proliferation and abolish the mitogenic effect of ET on SMC.  相似文献   

10.
背景:通过增加表面活性基团对生物支架材料进行表面改性,可提高材料对细胞的亲和力,有效提高材料的细胞相容性。 目的:合成表面改性聚合膜左旋聚乳酸-多聚赖氨酸(PLLA-PLL),并观察其对骨髓基质细胞黏附、增殖的影响。 方法:通过开环聚合反应合成不同组分高分子聚合膜PLLA139-PLL131,PLLA77-PLL72,PLLA45-PLL246,将人骨髓基质细胞接种至不同组分聚合膜PLLA-PLL表面、左旋聚乳酸及商品化的细胞培养板,寻找最佳PLLA-PLL组分。 结果与结论:与左旋聚乳酸比较,不同组分PLLA-PLL聚合膜细胞黏附量均升高,以PLLA77-PLL72聚合膜组增高显著(P < 0.05),所以最佳组分为PLLA77-PLL72,连续培养结果显示PLLA77-PLL72聚合膜表面骨髓基质细胞骨架蛋白表达丰富,清晰有序,增殖实验也证实了PLLA77-PLL72聚合膜可促进骨髓基质细胞增殖。  相似文献   

11.
Yim EK  Reano RM  Pang SW  Yee AF  Chen CS  Leong KW 《Biomaterials》2005,26(26):5405-5413
Cells are known to be surrounded by nanoscale topography in their natural extracellular environment. The cell behavior, including morphology, proliferation, and motility of bovine pulmonary artery smooth muscle cells (SMC) were studied on poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) surfaces comprising nanopatterned gratings with 350 nm linewidth, 700 nm pitch, and 350 nm depth. More than 90% of the cells aligned to the gratings, and were significantly elongated compared to the SMC cultured on non-patterned surfaces. The nuclei were also elongated and aligned. Proliferation of the cells was significantly reduced on the nanopatterned surfaces. The polarization of microtubule organizing centers (MTOC), which are associated with cell migration, of SMC cultured on nanopatterned surfaces showed a preference towards the axis of cell alignment in an in vitro wound healing assay. In contrast, the MTOC of SMC on non-patterned surfaces preferentially polarized towards the wound edge. It is proposed that this nanoimprinting technology will provide a valuable platform for studies in cell-substrate interactions and for development of medical devices with nanoscale features.  相似文献   

12.
We have combined automated fluorescence microscopy with a combinatorial approach for creating polymer blend gradients to yield a rapid screening method for characterizing cell proliferation on polymer blends. A gradient in polymer blend composition of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) was created in the form of a strip-shaped film and was annealed to allow PLLA to crystallize. Fourier transform infrared (FTIR) microspectroscopy was used to determine the composition in the gradients and atomic force microscopy was used to characterize surface topography. Osteoblasts were cultured on the gradients and proliferation was assessed by automated counting of cells using fluorescence microscopy. Surface roughness varied with composition, was smooth on PDLLA-rich regions and was rough on the PLLA-rich regions. Cell adhesion was similar on all regions of the gradients while proliferation was faster on the smooth, PDLLA-rich end of the gradients than on the rough, PLLA-rich end of the gradients. These results demonstrate the feasibility of a new, combinatorial approach for evaluating cell proliferation on polymer blends.  相似文献   

13.
Polyglycolic acid (PGA) is commonly used as a scaffold for tissue engineering. Recent studies utilized PGA as a scaffold for vascular tissue engineering using bovine and porcine smooth muscle cells (SMCs). In engineered vessels, the SMCs displayed high rates of mitosis and dedifferentiation in areas where PGA fragments were present. We hypothesized that PGA breakdown products, sequestered within a SMC vessel at the conclusion of culture, led to increased proliferation and dedifferentiation of vascular SMCs. To test this hypothesis, the current study assessed possible means by which PGA breakdown products could lead to changes in SMC phenotype. SMCs grown in high concentrations of PGA breakdown products showed, by Western blotting, decreased expression of calponin, a marker for SMC differentiation. The same was true for SMCs grown in glycolic acid (GA), which also showed decreased expression of proliferating cell nuclear antigen (PCNA), a marker for SMC proliferation. In contrast, cells grown in varying amounts of NaCl or HCl showed little change in differentiation. We conclude that, independent of acidity or osmolality, plausible products of PGA degradation appear to induce dedifferentiation of porcine SMCs in vitro. Because of dedifferentiation and decreased mitosis, commercially available PGA may not represent an optimal scaffold for vascular tissue engineering.  相似文献   

14.
Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) (p(AAm-co-EG/AAc) applied to model surfaces prevent protein adsorption and cell adhesion. Subsequently, IPN surfaces functionalized with the RGD cell-binding domain from rat bone sialoprotein (BSP) modulated bone cell adhesion, proliferation, and matrix mineralization. The objective of this study was to utilize the same biomimetic modification strategy to produce functionally similar p(AAm-co-EG/AAc) IPNs on clinically relevant titanium surfaces. Contact angle goniometry and X-ray photoelectron spectroscopy (XPS) data were consistent with the presence of the intended surface modifications. Cellular response was gauged by challenging the surfaces with primary rat calvarial osteoblast (RCO) surfaces in serum-containing media. IPN modified titanium and negative control (RGE-IPN) surfaces inhibit cell adhesion and proliferation, while RGD-modified IPNs on titanium supported osteoblast attachment and spreading. Furthermore, the latter surfaces supported significant mineralization despite exhibiting lower levels of proliferation than positive control surfaces. These results suggest that with the appropriate optimization, this approach may be practical for surface engineering of osseous implants.  相似文献   

15.
It has been recognized that adhesion and proliferation of cells on biodegradable polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactide-co-glycolide) (PLGA) depend on the surface properties. The chloric acid (CA) treatment of these films was developed to increase surface wettability and to improve adhesion and proliferation of human chondrocytes and NIH/3T3 fibroblasts. The CA-treated films were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis (ESCA), and scanning electron microscopy (SEM). The changes of the film surface water contact angle gradually decreased with increase of CA treatment time, owing to the oxygen-based functional groups incorporated on the surface by CA treatment and were in the order PGA > PLGA > PLA due to the number of methyl group on the backbone chain. In ESCA analysis, as CA treatment time increased, the carbon (binding energy, approximately 285 eV) ratio decreased in film surfaces, whereas the oxygen (approximately 532 eV) ratio increased. The human chondrocytes from articular cartilage and mouse NIH/3T3 fibroblasts adhered for 1 day and grown for 2 days on the CA-treated films were counted and observed by SEM. As the surface wettability increased, the number of cells adhered and grown on the surface increased. In conclusion, this study demonstrated that the surface wettability of the biodegradable polymer plays an important role for cell adhesion and proliferation behavior for the application of the tissue engineering.  相似文献   

16.
The adhesion of three Escherichia coli strains on to six poly(methacrylates) differing in hydrophobicity and surface charge was measured as a function of time under laminar flow conditions. Polymers used were poly(methy) methacrylate) (PMMA), poly(hydroxyethy) methacrylate) (PHEMA) and copolymers of MMA or HEMA with either 15% methacrylic acid (MAA) or 15% trimethylaminoethyl methacrylate-HCl salt (TMAEMA-CI). Bacterial and polymer surfaces were characterized by means of water contact angles and zeta potentials. Both the sessile drop contact angles and the zeta potentials of the bacterial surfaces were significantly different. No significant differences in the sessile drop contact angles of the polymer surfaces were observed. Using the Wilhelmy plate technique large contact angle hysteresis was observed for the different polymer surfaces. Surfaces of copolymers with MAA had more negative zeta potentials than those of the corresponding homopolymers. Surfaces of copolymers with TMAEMA-CI had positive zeta potentials. The highest numbers of adherent bacteria were found on materials with positive zeta potentials, irrespective of the bacterial strain used. Bacterial adhesion on to copolymers with MAA was less than on to the corresponding homopolymers. Bacterial equilibrium adhesion values correlate with the zeta potentials of the polymer surfaces (r > 0.85). On substrates with less negative zeta potentials high numbers of adhered bacteria were observed. Additionally, the equilibrium bacterial adhesion values could be related with receding contact angles of polymer surfaces with negative zeta potentials (r > 0.86). High equilibrium adhesion values were obtained for polymers with high contact angles. No correlation between the zeta potentials and contact angles of the bacteria with the adhesion values was found.  相似文献   

17.
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities α (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb?O?) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.  相似文献   

18.
Li F  Zhang X  Jin YP  Mulder A  Reed EF 《Human immunology》2011,72(12):1150-1159
Chronic rejection manifests as transplant vasculopathy, which is characterized by intimal thickening of the vessels of the allograft. Intimal thickening is thought to result from the migration and proliferation of vascular smooth muscle cells (SMC) in the vessel media, followed by deposition of extracellular matrix proteins. The development of post-transplantation anti-human leukocyte antigen (HLA) antibodies (Ab) is strongly correlated with the development of transplant vasculopathy and graft loss. Here we demonstrate that cross-linking of HLA class I molecules on the surface of human SMC with anti-HLA class I Ab induced cell proliferation and migration. Class I ligation also increased phosphorylation of focal adhesion kinase (FAK), Akt, and ERK1/2 in SMC. Knockdown of FAK by siRNA attenuated class I-induced phosphorylation of Akt and ERK1/2, as well as cell proliferation and migration. These results indicate that ligation of HLA class I molecules induces SMC migration and proliferation in a FAK-dependent manner, which may be important in promoting transplant vasculopathy.  相似文献   

19.
Pathologic neointima formation requires directional smooth muscle cell (SMC) migration from media to intima. The very direction of SMC migration thus becomes a potential therapeutic target. Here, we hypothesize that proliferating SMC after injury can be redirected using engineered chemotactic gradients of elastin degradation to limit late pathologic neointima formation. Buffered bioerodible polymeric microspheres (MS) were constructed to provide 4-week sustained release of elastase, heat-killed elastase, or polymer only. In vitro elastase function and timecourse of release at 37 degrees C, physiologic pH, and shear was determined. Curves revealed an initial bolus followed by sustained linear release for elastase MS, while controls exhibited baseline hydrolysis of substrate. We then employ controlled perivascular release of elastase after angioplasty to engineer modified in vivo gradients of elastin degradation in rabbit femoral arteries. NZW rabbits (n = 8 each) underwent balloon angioplasty of the common femoral artery followed by perivascular distribution of MS. Significant early perivascular elastin degradation resulted. Concurrently, proliferating SMC were guided peripherally (further from lumen) with treatment without significant changes in total proliferation or inflammation. At 28 days, treatment significantly reduces neointima by 42% relative to controls. These results confirm that directionally guiding SMC responses after injury achieves favorable arterial remodeling and limits development of pathologic neointima. Thus, a potential class of therapeutics and the paradigm of in vivo vascular engineering emerge from this work.  相似文献   

20.
A surface modification technique based on poly(dopamine) deposition developed from oxidative polymerization of dopamine is known to promote cell adhesion to several cell-resistant substrates. In this study this technique was applied to articular cartilage tissue engineering. The adhesion and proliferation of rabbit chondrocytes were evaluated on poly(dopamine)-coated polymer films, such as polycaprolactone, poly(L-lactide), poly(lactic-co-glycolic acid) and polyurethane, biodegradable polymers that are commonly used in tissue engineering. Cell adhesion was significantly increased by merely 15 s of dopamine incubation, and 4 min incubation was enough to reach maximal cell adhesion, a 1.35-2.69-fold increase compared with that on the untreated substrates. Cells also grew much faster on the poly(dopamine)-coated substrates than on untreated substrates. The increase in cell affinity for poly(dopamine)-coated substrates was demonstrated via enhancement of the immobilization of serum adhesive proteins such as fibronectin. When the poly(dopamine)-coating technique was applied to three-dimensional (3-D) polyurethane scaffolds, the proliferation of chondrocytes and the secretion of glycosaminoglycans were increased compared with untreated scaffolds. Our results show that the deposition of a poly(dopamine) layer on 3-D porous scaffolds is a simple and promising strategy for articular cartilage tissue engineering, and may be applied to other types of tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号