首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Animal mitochondrial DNA (mtDNA) maintains a displacement loop (D loop) at the heavy strand origin of replication. These D loops represent sharply limited synthesis of heavy strands and provide a unique opportunity to examine the termination of DNA synthesis. Direct sizing at the nucleotide level indicates that the 3' ends of D-loop strands of human and mouse mtDNA are discrete and map within three to five nucleotides on the complementary template strand. In the case of human mtDNA, there is a single trinucleotide stop point 51-53 nucleotides downstream from a 15-nucleotide template sequence (3'T-A-A-C-C-C-A-A-A-A-A-T-A-C-A 5') which is repeated four times in the mouse mtDNA D-loop region 3'(T-A-A-Py-Py-A-A-A-T-T-A-C-A 5'). The stop points of the five major mouse D-loop strands are 24-63 nucleotides downstream from the four repeated template sequences. These results suggest that the arrest of D-loop strand elongation is an event determined by template sequence.  相似文献   

3.
Synthesis of a complementary strand to match the single-stranded, circular, viral (+) DNA strand of phage phi X174 creates a parental duplex circle (replicative form, RF). This synthesis is initiated by the assembly and action of a priming system, called the primosome [Arai, K. & Kornberg, A (1981) Proc. Natl. Acad. Sci. USA 78, 69-73; Arai, K., Low, R. L. & Kornberg, A. (1981) Proc. Natl. Acad. Sci. USA 78, 707-711]. Of the seven proteins that participate in the assembly and function of the primosome, most all of the components remain even after the DNA duplex is completed and covalently sealed. Remarkably, the primosome in the isolated RF obviates the need for supercoiling of RF by DNA gyrase, an action previously considered essential for the site-specific cleavage by gene A protein that starts viral strand synthesis in the second stage of phi X174 DNA replication. Finally, priming of the synthesis of complementary strands on the nascent viral strands to produce many copies of progeny RF utilizes the same primosome, requiring the addition only of prepriming protein i. thus a single primosome, which becomes associated with the incoming viral DNA in the initial stage of replication, may function repeatedly in the initiation of complementary strands at the subsequent stage of RF multiplication. These patterns of phi X174 DNA replication suggest that a conserved primosome also functions in the progress of the replicating fork of the Escherichia coli chromosome, particularly in initiating the synthesis of nascent (Okazaki) fragments.  相似文献   

4.
T4 nascent short chains labeled at their growing ends with H(3)-thymidine and uniformly with C(14)-thymidine were prepared, separated into complementary strands, and degraded by E. coli exonuclease I in the 3' to 5' direction or by B. subtilis nuclease in the 5' to 3' direction. The kinetics of release of H(3) and C(14) labels by both enzymes was consistent with the conclusion that the H(3) label is at the 3' end of the nascent short chains of both strands and that the short chains are products of discontinuous synthesis in the 5' to 3' direction along the two template strands.  相似文献   

5.
6.
Bacteriophage G4 has physically separated origins of synthesis of its viral and complementary DNA strands. Chain termination and "plus and minus" DNA sequencing methods have been used to obtain the nucleotide sequence of these two origins. The unique origin at which the complementary DNA strand is initiated has located in the untranslated region between genes F and G. This sequence, which has considerable secondary structure, contains a stretch which is complementary to the RNA primer that is observed during synthesis in vitro of the G4 complementary DNA strand [Bouché, J.P., Rowen, L. & Kornberg, A. (1978) J. Biol. Chem., in press]. This G4 origin shows extensive sequence homology with the bacteriophage lambda origin of DNA replication [Denniston-Thompson, K., Moore, D. D., Kruger, D. E., Furth, M. E. & Blattner, F. R. (1977) Science 198, 1051-1056]. The sequence around the site in gene A at which G4 viral DNA strand synthesis is initiated by the nicking action of the cistron A protein is very similar to that of bacteriophage phiX174. An (A + T)-rich stretch flanked by (G + C)-rich sequences may be involved in the interaction between the DNA and protein.  相似文献   

7.
Soluble enzyme fractions from uninfected Escherichia coli convert M13 and varphiX174 viral single strands to their double-stranded replicative forms. Rifampicin, an inhibitor of RNA polymerase, blocks conversion of M13 single strands to the replicative forms in vivo and in vitro. However, rifampicin does not block synthesis of the replicative forms of varphiX174 either in vivo or in soluble extracts. The replicative form of M13 synthesized in vitro consists of a full-length, linear, complementary strand annealed to a viral strand. The conversion of single strands of M13 to the replicative form proceeds in two separate stages. The first stage requires enzymes, ribonucleoside triphosphates, and single-stranded DNA; the reaction is inhibited by rifampicin. The macromolecular product separated at this stage supports DNA synthesis with deoxyribonucleoside triphosphates and a fresh addition of enzymes; ribonucleoside triphosphates are not required in this second stage nor does rifampicin inhibit the reaction. We presume that in the first stage there is synthesis of a short RNA chain, which then primes the synthesis of a replicative form by a DNA polymerase.  相似文献   

8.
Bacteriophage phiX174 DNA has been labeled with short pulses of [3H]thymidine during synthesis of replicative form molecules in infected Escherichia coli HF4704 cells. The replicating phiX174 DNA was isolated and analyzed by sedimentation in an alkaline sucrose gradient. During a brief pulse (5 sec at 30 degrees), the radioactivity incorporated into the complementary strand was found in chains much shorter than one genome length. Of the radioactivity incorporated into the viral strand, two-thirds was in the short pieces and the rest was in chains of one genome length or longer. RNA attachment to the 5' end of both strand components of the nascent short pieces was shown by the appearance of spleen exonuclease-digestable nascent molecules after alkali treatment. These observations suggest that the viral as well as the complementary strand is synthesized by the discontinuous mechanism with RNA primers during replication of duplex phiX174 DNA.  相似文献   

9.
Stable three-stranded DNA made by RecA protein.   总被引:15,自引:8,他引:15       下载免费PDF全文
When RecA protein, in the form of a nucleoprotein filament containing circular single-stranded DNA (plus strand only), reacts with homologous linear duplex DNA, a directional transfer ensues of a strand from the duplex DNA to the nucleoprotein filament, resulting in the displacement of the linear plus strand in the 5' to 3' direction. The initial homologous synapsis, however, can occur at either end of the duplex DNA, or anywhere in between, and when homology is restricted to different regions of the duplex DNA, the joint molecules that form in each region show striking differences in stability upon deproteinization: distal joints greater than proximal joints much greater than medial joints. In the deproteinized distal joints, which are thermostable, 2000 nucleotide residues of the circular plus strand are resistant to P1 nuclease; both strands of the original duplex DNA remain resistant to P1 nuclease, and the potentially displaceable linear plus strand, which has a 3' homologous end, remains resistant to Escherichia coli exonuclease I. These observations suggest that RecA protein promotes homologous pairing and strand exchange via long three-stranded DNA intermediates and, moreover, that, once formed, such triplex structures in natural DNA are stable even when RecA protein has been removed.  相似文献   

10.
When recA protein pairs circular single strands with linear duplex DNA, the circular strand displaces its homolog from only one end of the duplex molecule and rapidly creates heteroduplex joints that are thousands of base pairs long [DasGupta, C., Shibata, T., Cunningham, R. P. & Radding, C. M. (1980) Cell 22, 437-446]. To examine this apparently polar reaction, we prepared chimeric duplex fragments of DNA that had M13 nucleotide sequences at one end and G4 sequences at the other. Circular single strands homologous to M13 DNA paired with a chimeric fragment when M13 sequences were located at the 3' end of the complementary strand but did not pair when the M13 sequences were located at the 5' end. Likewise circular single-stranded G4 DNA paired with chimeric fragments only when G4 sequences were located at the 3' end of the complementary strand. To confirm these observations, we prepared fd DNA labeled only at the 5' or 3' end of the plus strand, and we examined the susceptibility of these labeled ends to digestion by exonucleases when joint molecules were formed. Eighty percent of the 5' label in joint molecules became sensitive to exonuclease VII. Displacement of that 5' end by recA protein was concerted because it did not occur in the absence of single-stranded DNA or in the presence of heterologous single strands. By contrast, only a small fraction of the 3' label became sensitive to exonuclease VII or exonuclease I. These observations show that recA protein forms heteroduplex joints in a concerted and polarized way.  相似文献   

11.
12.
13.
Multiplication of the duplex, circular, phage phiX174DNA (replicative form, RF) in stage II of the replicative life cycle has been observed with a crude enzyme preparation [Eisenberg et al. (1976) Proc, Natl. Acad, Sci. USA 73, 1594-1597]. This stage has now been partially reconstituted with purified proteins and subdivided into two stages: II(+) and II(-). In stage II(+), viral (+) strand synthesis is carried out by four proteins: the phage-induced, cistron A-dependent protein, rep-dependent protein, DNA unwinding protein, and DNA polymerase III holenzyme. In stage II(-), complementary (-) strand synthesis utilizes the product of stage II(+) as template and the multiprotein system previously identified in the stage I synthesis of a complementary strand on the viral DNA template to produce RF. The multiprotein system includes DNA unwinding protein, proteins i and n, dnaB protein, dnaC protein, dnaG protein, and DNA polymerase III holoenzyme. A discussion of these two separate mechanism for synthesis of (+) and (-) strands suggests that they may account for essentially all the replicative stages in the life cycle of phiX174.  相似文献   

14.
An enzymatic activity that catalyzes ATP-dependent homologous pairing and strand exchange of duplex linear DNA and single-stranded circular DNA has been purified several thousand-fold from a human leukemic T-lymphoblast cell line. The activity was identified after chromatography of nuclear proteins on a Z-DNA column matrix. The reaction was shown to transfer the complementary single strand from a donor duplex linear substrate to a viral circular single-stranded acceptor beginning at the 5' end and proceeding in the 3' direction (5'----3'). Products of the strand-transfer reaction were characterized by electron microscopy. A 74-kDa protein was identified as the major ATP-binding peptide in active strand transferase fractions. The protein preparation described in this report binds more strongly to Z-DNA than to B-DNA.  相似文献   

15.
An isothermal in vitro DNA amplification method was developed based upon the following sequence of reaction events. Restriction enzyme cleavage and subsequent heat denaturation of a DNA sample generates two single-stranded target DNA fragments (T1 and T2). Present in excess are two DNA amplification primers (P1 and P2). The 3' end of P1 binds to the 3' end of T1, forming a duplex with 5' overhangs. Likewise, P2 binds to T2. The 5' overhangs of P1 and P2 contain a recognition sequence (5'-GTTGAC-3') for the restriction enzyme HincII. An exonuclease-deficient form of the large fragment of Escherichia coli DNA polymerase I (exo- Klenow polymerase) [Derbyshire, V., Freemont, P. S., Sanderson, M. R., Beese, L., Friedman, J. M., Joyce, C. M. & Steitz, T. A. (1988) Science 240, 199-201] extends the 3' ends of the duplexes using dGTP, dCTP, TTP, and deoxyadenosine 5'-[alpha-thio]triphosphate, which produces hemiphosphorothioate recognition sites on P1.T1 and P2.T2. HincII nicks the unprotected primer strands of the hemiphosphorothioate recognition sites, leaving intact the modified complementary strands. The exo- Klenow polymerase extends the 3' end at the nick on P1.T1 and displaces the downstream strand that is functionally equivalent to T2. Likewise, extension at the nick on P2.T2 results in displacement of a downstream strand functionally equivalent to T1. Nicking and polymerization/displacement steps cycle continuously on P1.T1 and P2.T2 because extension at a nick regenerates a nickable HincII recognition site. Target amplification is exponential because strands displaced from P1.T1 serve as targets for P2 and strands displaced from P2.T2 serve as targets for P1. A 10(6)-fold amplification of a genomic sequence from Mycobacterium tuberculosis or Mycobacterium bovis was achieved in 4 h at 37 degrees C.  相似文献   

16.
Newly synthesized DNA, in E. coli lysogenic for the phage lambda, was labeled by short pulses of [(3)H]-thymidine, isolated, and separated on the basis of size by alkaline sucrose density gradient centrifugation. The molecular polarity of this DNA was determined by hybridization with each of the separated strands of lambda DNA. The results show that, in the 3' to 5' direction, replication proceeds by synthesis of short chains that are subsequently joined to long DNA. This is true for both a polA(+) and a polA(-) strain. (The polA locus codes for DNA polymerase I.) In the 5' to 3' direction, replication proceeds continuously, by addition of nucleotides to long DNA, for the polA(+) strain. In the polA(-) strain, however, replication in the 5' to 3' direction is also discontinuous, but the discontinuities are 1-40 times less frequent than in the other direction.  相似文献   

17.
Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5'-3' and the other with 3'-5' polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.  相似文献   

18.
Intermediates involved in the replication of double-stranded varphiX174 RF DNA have been identified and partially characterized. Analysis of pulselabeled RF DNA suggests that the synthesis of progeny RF molecules involves, in part, the addition of nucleotides to linear complementary strands on a circular parental strand as template, so as to produce intermediate DNA strands of greater than viral length. Electron microscopy reveals DNA rings with "tails" and "double rings," which could be the intermediate structures. A model is postulated for the replication process.  相似文献   

19.
20.
The gene 4 protein of bacteriophage T7 recognizes specific sequences on single-stranded DNA and then catalyzes the synthesis of tetraribonucleotide primers complementary to the template. With phi X174 DNA as a template, the gene 4 protein enables T7 DNA polymerase (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC 2.7.7.7) to initiate DNA synthesis at 13 major sites. DNA sequence analysis of the 5' termini of the newly synthesized DNA shows the predominant recognition sequences for the gene 4 protein to be 3'-C-T-G-G-G-5' or 3'-C-T-G-G-T-5'; the products of synthesis at these sites are RNA primers having the sequences pppA-C-C-C or pppA-C-C-A. The gene 4 protein can also synthesize primers at the sequences 3'-C-T-G-G-AC-5' and 3'-C-T-G-T-N-5', although these sites are used less than 10% as frequently as the predominant sites. Comparison of the utilization of primer sites suggests that the gene 4 protein binds randomly to single-stranded DNA and then translocates along the DNA in a unidirectional 5'-to-3' direction with regard to the DNA strand in search of recognition sequences. Models are presented for the role of the gene 4 protein in the initiation of lagging-strand synthesis and in the initiation of DNA replication at the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号