首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pig endogenous retroviruses and xenotransplantation   总被引:6,自引:0,他引:6  
Xenotransplantation of porcine organs might provide an unlimited source of donor organs to treat endstage organ failure diseases in humans. However, pigs harbour retroviruses with unknown pathogenic potential as an integral part of their genome. While until recently the risk of interspecies transmission of these porcine endogenous retroviruses (PERV) during xenotransplantation has been thought to be negligible, several reports on infection of human cells in vitro and spread of PERV from transplanted porcine islets in murine model systems have somewhat challenged this view. Here, we compile available data on PERV biology and diagnostics, and discuss the significance of the results with regard to the safety of clinical xenotransplantation.  相似文献   

2.
BACKGROUND: The aim of this study was to investigate whether transmission of porcine endogenous retrovirus (PERV) occurs in a model of diabetes reversal by the xenotransplantation of adult porcine islets (APIs) into immunoincompetent diabetic rodents. METHODS: Black-6 nu/nu mice and Lewis rats were immunosuppressed with cyclosporin A (CsA) and FTY 720, and rendered diabetic with streptozotocin. Purified APIs were transplanted into the renal subcapsular space; 5,000 islet equivalents (IEQs) were used in the nude mice (n = 4) and 40,000 IEQs in the rats (n = 4). The nude mice were sacrificed at 75 days after transplantation. In order to confirm chronic xenograft function, the graft-bearing kidney was removed prior to sacrifice. The rats were followed until xenograft rejection, at which time they were sacrificed. Immediately after sacrifice, tissue samples (liver, spleen, and small intestine) were taken for analysis. Quantitative polymerase chain reaction (PCR) was used to assess evidence of PERV transmission, and porcine cell chimerism. RESULTS: All animals became normoglycemic within 48 h of transplantation. The nude mice remained normoglycemic during the 75-day study period, with removal of the graft-bearing kidney resulting in prompt hyperglycemia. The rats remained normoglycemic until xenograft rejection, which occurred at 66 +/- 28 days. Despite the evidence of porcine cell microchimerism in recipients, real-time PCR detected no evidence of PERV transmission in any of the tissue specimens tested. CONCLUSIONS: There was no evidence of PERV transmission following transplantation of pig islets into diabetic nude mice and immunosuppressed rats.  相似文献   

3.
4.
5.
Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas. In this study we are the first to evaluate all three neonatal porcine pancreatic lobes and NPIs isolated from these lobes. We report, a significant difference in endocrine and progenitor cell composition between lobes, and observed pancreatic duct glands (PDG) within the mesenchyme surrounding exocrine ducts in the DL and CL. Following in vitro differentiation, NPIs isolated from each lobe differed significantly in the percent increase of endocrine cells and final cell composition. Compared to other recipients, diabetic immunodeficient mice transplanted with NPIs isolated from the SL demonstrated euglycemic control as early as 4 weeks (p < 0.05) and achieved normoglycemia by 6 weeks post-transplant (p < 0.01). For the first time we report significant differences between the neonatal porcine pancreatic lobes and demonstrate that NPIs from these lobes differ in xenograft function.  相似文献   

6.
7.
8.
9.
10.
器官移植是治疗各类终末期疾病最有效的手段,为了解决器官移植中供体短缺的问题,人们开始探究异种移植的可能。猪是异种器官移植常见的供体来源之一,猪器官作为连接两个物种间的桥梁,其携带的病毒有可能在物种间传播并存在引起人畜共患病的风险。猪内源性逆转录病毒(PERV)整合在基因组中,是一种跨物种传播的逆转录病毒。本文介绍了PERV传播特性的影响因素、PERV及其重组病毒的传播风险以及异种移植试验中PERV的检测与传播风险评估,以期为缓解器官移植供体严重短缺的现状,推动异种移植技术的发展提供参考。  相似文献   

11.
Di Nicuolo G, D’Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, Mancini A, Cozzolino S, Di Florio E, Bracco A, Calise F, Chamuleau RAFM. Long‐term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell–based Academic Medical Center bioartificial liver. Xenotransplantation 2010; 17: 431–439. © 2010 John Wiley & Sons A/S. Abstract: Background: Clinical use of porcine cell–based bioartificial liver (BAL) support in acute liver failure as bridging therapy for liver transplantation exposes the patient to the risk of transmission of porcine endogenous retroviruses (PERVs) to human. This risk may be enhanced when patients receive liver transplant and are subsequently immunosuppressed. As further follow‐up of previously reported patients (Di Nicuolo et al. 2005), an assessment of PERV infection was made in the same patient population pharmacologically immunosuppressed for several years after BAL treatment and in healthcare workers (HCWs) involved in the clinical trial at that time. Methods: Plasma and peripheral blood mononuclear cells (PBMCs) from eight patients treated with the Academic Medical Center‐BAL (AMC‐BAL), who survived to transplant, and 13 HCWs, who were involved in the trial, were assessed to detect PERV infection. A novel quantitative real‐time polymerase chain reaction assay has been used. Results: Eight patients who received a liver transplant after AMC‐BAL treatment are still alive under long‐term pharmacological immunosuppression. The current clinical follow‐up ranges from 5.6 to 8.7 yr after BAL treatment. A new q‐real‐time PCR assay has been developed and validated to detect PERV infection. The limit of quantification of PERV DNA was ≥5 copies per 1 × 105 PBMCs. The linear dynamic range was from 5 × 100 to 5 × 106 copies. In both patients and HCWs, neither PERV DNA in PBMCs nor PERV RNA in plasma and PBMC samples have been found. Conclusion: Up to 8.7 yr after exposure to treatment with porcine liver cell–based BAL, no PERV infection has been found in long‐term immunosuppressed patients and in HCWs by a new highly sensitive and specific q‐real‐time PCR assay.  相似文献   

12.
Abstract: Background: Porcine endogenous retroviruses (PERVs) released from pig tissue can infect selected human cells in vitro and therefore represent a safety risk for xenotransplantation using pig cells, tissues, or organs. Although PERVs infect cells of numerous species in vitro, attempts to establish reliable animal models failed until now. Absence of PERV transmission has been shown in first experimental and clinical xenotransplantations; however, these trials suffered from the absence of long‐term exposure (transplant survival) and profound immunosuppression. Methods: We conducted infectivity studies in rhesus monkeys, pig‐tailed monkeys, and baboons under chronic immunosuppression with cyclosporine A, methylprednisolone, and the rapamycin derivative. These species were selected because they are close to the human species and PERVs can be transmitted in vitro to cells of these species. In addition, the animals received twice, a C1 esterase inhibitor to block complement activation before inoculation of PERV. In order to overcome the complications of microchimerism, animals were inoculated with high titers of cell‐free PERV. In addition, to enable transmission via cell–cell contact, some animals also received virus‐producing cells. For inoculation the primate cell‐adapted strain PERV/5° was used which is characterized by a high infectious titer. Produced on human cells, this virus does not express alpha 1,3 Gal epitopes, does not contain porcine antigens on the viral surface and is therefore less immunogenic in non‐human primates compared with pig cell‐derived virus. Finally, we present evidence that PERV/5° productively infects cells from baboons and rhesus monkeys. Results: In a follow‐up period of 11 months, no antibody production against PERV and no integration of proviral DNA in blood cells was observed. Furthermore, no PERV sequences were detected in the DNA of different organs taken after necropsy. Conclusion: These results indicate that in a primate model, in the presence of chronic immunosuppression, neither the inoculation of cell‐free nor cell‐associated PERV using a virus already adapted to primate cells results in an infection; this is despite the fact that peripheral blood mononuclear cells of the same animals are infectible in vitro.  相似文献   

13.
14.
Abstract: Background: Xenotransplantation using porcine cells, tissues or organs may be associated with the transmission of porcine endogenous retroviruses (PERVs). More than 50 viral copies have been identified in the pig genome and three different subtypes of PERV were released from pig cells, two of them were able to infect human cells in vitro. RNA interference is a promising option to inhibit PERV transmission. Methods: We recently selected an efficient si (small interfering) RNA corresponding to a highly conserved region in the PERV DNA, which is able to inhibit expression of all PERV subtypes in PERV‐infected human cells as well as in primary pig cells. Pig fibroblasts were transfected using a lentiviral vector expressing a corresponding sh (short hairpin) RNA and transgenic pigs were produced by somatic nuclear transfer cloning. Integration of the vector was proven by PCR, expression of shRNA and PERV was studied by in‐solution hybridization analysis and real‐time RT PCR, respectively. Results: All seven born piglets had integrated the transgene. Expression of the shRNA was found in all tissues investigated and PERV expression was significantly inhibited when compared with wild‐type control animals. Conclusion: This strategy may lead to animals compatible with PERV safe xenotransplantation.  相似文献   

15.
Xenotransplantation of porcine organs, tissues, and cells inherits a risk for xenozoonotic infections. Viable tissues and cells intended for transplantation have to be considered as potentially contaminated non‐sterile products. The demands on microbial testing, based on the regulatory requirements, are often challenging due to a restricted shelf life or the complexity of the product itself. In Europe, the regulatory framework for xenogeneic cell therapy is based on the advanced therapy medicinal products (ATMP) regulation (2007), the EMA CHMP Guideline on xenogeneic cell‐based medicinal products (2009), as well as the WHO and Council of Europe recommendations. In the USA, FDA guidance for industry (2003) regulates the use of xenotransplants. To comply with the regulations, validated test methods need to be established that reveal the microbial status of a transplant within its given shelf life, complemented by strictly defined action alert limits and supported by breeding in specific pathogen‐free (SPF) facilities. In this review, we focus on assays for the detection of the porcine endogenous retroviruses PERV‐A/‐B/‐C, which exhibit highly polymorphic proviral loci in pig genomes. PERVs are transmitted vertically and cannot be completely eliminated by breeding or gene knock out technology. PERVs entail a public health concern that will persist even if no evidence of PERV infection of xenotransplant recipients in vivo has been revealed yet. Nevertheless, infectious risks must be minimized by full assessment of pigs as donors by combining different molecular screening assays for sensitive and specific detection as well as a functional analysis of the infectivity of PERV including an adequate monitoring of recipients.  相似文献   

16.
17.
18.
Abstract: The use of organs from transgenic pigs for xenotransplantation may be associated with the risk of transmission of microorganisms, especially when the transgenic pigs express human proteins influencing complement activation. The porcine endogenous retroviruses (PERVs) are of particular concern as they can infect human cells in vitro. However, it is unknown whether PERVs can infect transplant recipients in vivo and, if so, whether they are pathogenic. It is therefore essential for experimental and clinical xenotransplantation procedures that specific and sensitive screening methods for PERVs are established. We developed Western blot and enzyme-linked immunosorbant assays (ELISA) based on purified PERVs produced by pig and human cells or recombinant viral protein and synthetic peptides corresponding to PERVs' transmembrane envelope protein, respectively. PERV-specific anti-sera generated against purified virus particles, purified viral proteins and synthetic peptides served as positive controls. Both assays were used for screening the sera of healthy blood donors, pregnant women, patients treated with pig tissues, and butchers with extensive contact to living porcine material to detect antibodies against PERV. None of the individuals showed an antibody pattern characteristic for retroviral infections. Some individuals had antibodies reactive against the major capsid protein p27, against smaller viral proteins of the group specific antigen (Gag) in Western blot assays, or against peptides in the ELISA, probably due to cross-reactivity. Here, we present specific and highly sensitive screening methods applicable for future xenotransplantation procedures, but using these methods we found no evidence of PERV-infection among humans potentially at risk.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号