首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunohistochemical labeling of Fos protein was used to visualize neurons activated by rewarding stimulation of the lateral hypothalamic level of the medial forebrain bundle (MFB). Following training and stabilization of performance, seven rats were allowed to self-stimulate for l h prior to anesthesia and perfusion. Brains were then processed for immunohistochemistry. Two control subjects were trained and tested in an identical manner except that the stimulator was disconnected during the final l h test. Among the structures showing a greater density of labeled neurons on the stimulated side of the brains of the experimental subjects were the septum, lateral preoptic area (LPO), medial preoptic area, bed nucleus of the stria terminalis, substantia innominata (SI), and the lateral hypothalamus (LH). Several of these structures, the LPO, SI, and LH, have been implicated in MFB self-stimulation by the results of psychophysical, electrophysiological, and lesion studies.  相似文献   

2.
The ascending projections of cholinergic neurons in the laterodorsal tegmental nucleus (TLD) were investigated in the rat by using Phaseolus vulgaris leucoagglutinin (PHA-L) and wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) anterograde tracing techniques. Two ascending pathways were identified after iontophoretic injections of PHA-L into the TLD. A long projection system courses through the dorsomedial tegmentum, caudal diencephalon, medial forebrain bundle, and diagonal band. Different branches of this system innervate the midbrain (superior colliculus, interstitial magnocellular nucleus of the posterior commissure, and anterior pretectal nucleus), the diencephalon (lateral habenular nucleus, parafascicular, anteroventral, anterodorsal, mediodorsal, and intralaminar thalamic nuclei), and the telencephalon (lateral septum and medial prefrontal cortex). The second system is shorter and more diffuse and innervates the median raphe, interpeduncular, and lateral mammillary nuclei. Retrograde tracing with WGA-HRP, combined with choline acetyltransferase immunohistochemistry, revealed that most of the TLD projections to the tectum, pretectum, thalamus, lateral septum, and medial prefrontal cortex are cholinergic. Afferents to the TLD were studied by anterograde and retrograde tracing techniques. Injection of tracers into the TLD retrogradely labelled neurons bilaterally in the midbrain reticular formation, the periaqueductal gray, the medial preoptic nucleus, the anterior hypothalamic nucleus, and the perifornical and lateral hypothalamic areas. Retrogradely labelled cells were also located bilaterally in the premammillary nucleus, paraventricular hypothalamic nucleus, zona incerta, and lateral habenular nucleus. In the telencephalon, the nucleus of the diagonal band and the medial prefrontal cortex contained retrogradely labelled neurons ipsilateral to the TLD injection site. The projections of the medial prefrontal cortex, the bed nucleus of the stria terminalis, and the lateral habenular nucleus to the TLD were confirmed in anterograde tracing studies. These findings indicate that the TLD gives rise to several ascending cholinergic projections that innervate diverse regions of the forebrain. Afferents to the TLD arise in hypothalamic and limbic forebrain regions, some of which appear to have reciprocal connections with the TLD. The latter include the lateral habenular nucleus and medial prefrontal cortex.  相似文献   

3.
Direct actions of nicotine in the CNS appear to be essential for its reinforcing properties. However, activation of nicotinic acetylcholine receptors (nAChRs) on afferent sensory nerve fibers is an important component of addiction to, and withdrawal from, cigarette smoking. The aim of the present study was to identify the neuroanatomical substrates activated by the peripheral actions of nicotine and to determine whether these sites overlap brain structures stimulated by direct actions of nicotine. Mouse brains were examined by immunohistochemistry for c‐Fos protein after intraperitoneal injection of either nicotine hydrogen tartrate salt (NIC; 30 and 40 μg/kg) or nicotine pyrrolidine methiodide (NIC‐PM; 20 and 30 μg/kg). NIC‐PM induced c‐Fos immunoreactivity (IR) at multiple brain sites. In the brainstem, c‐Fos IR was detected in the locus coeruleus, laterodorsal tegmental nucleus, and pedunculotegmental nucleus. In the midbrain, c‐Fos IR was observed in areas overlapping the ventral tegmental area (VTA), which includes the paranigral nucleus, parainterfascicular nucleus, parabrachial pigmental area, and rostral VTA. Other structures of the nicotine brain‐reward circuitry activated by NIC‐PM included the hypothalamus, paraventricular thalamic nucleus, lateral habenular nucleus, hippocampus, amygdala, accumbens nucleus, piriform cortex, angular insular cortex, anterior olfactory nucleus, lateral septal nucleus, bed nucleus of stria terminalis, cingulate and medial prefrontal cortex, olfactory tubercle, and medial and lateral orbital cortex. NIC, acting through central and peripheral nAChRs, produced c‐Fos IR in areas that overlapped NIC‐PM‐induced c‐Fos‐expressing sites. These neuroanatomical data are the first to demonstrate that the CNS structures that are the direct targets of nicotine are also anatomical substrates for the peripheral sensory impact of nicotine. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Behavioral studies suggest that mesencephalic dopamine neurons mediate the rewarding effects of electrical stimulation of the medial forebrain bundle. Yet there is little direct evidence that rewarding electrical stimulation actually activates dopamine-containing neurons. The purpose of the present study was to determine, using in vivo electrochemistry, if electrical stimulation applied to lateral hypothalamic or ventral tegmental reward sites would elicit changes in extracellular levels of dopamine. In vivo high speed chronoamperometric recordings were performed in anesthetized rats that had been previously trained to respond for rewarding electrical stimulation of the medial forebrain bundle or ventral tegmental area. We found that a single 500 msec train of pulses elicited a small transient electrochemical signal, the magnitude of which was dependent on the pulse duration and frequency. This signal was potentiated by inhibition of dopamine reuptake. Prolonged electrical activation with a self-stimulation-like regimen resulted in the gradual accumulation of an electroactive compound, tentatively identified as dihydroxyphenylacetic acid (DOPAC). Taken together, the data reported here support the idea that rewarding electrical stimulation causes the release of dopamine.  相似文献   

5.
In an attempt to identify neurons likely to play a role in self-stimulation of the medial forebrain bundle (MFB), action potentials of single neurons in the septum and basal forebrain of anesthetized rats were recorded by means of extracellular electrodes. Refractory period estimates were obtained from cells antidromically activated by stimulation of the lateral hypothalamus or ventral tegmental area, and estimates of interelectrode conduction time were obtained from cells that were driven by stimulation of both sites. The results show that some descending MFB axons arising in the medial septum, diagonal band of Broca and neighboring forebrain structures have characteristics comparable to properties of MFB reward neurons inferred from behavioral experiments.  相似文献   

6.
Activation of a variety of anatomically distinct sites in the central nervous system can produce rewarding states. Four central reward phenomena are amphetamine injections into nucleus accumbens, morphine injections into the ventral tegmental area, electrical stimulation of the ventral tegmental area, and electrical stimulation of the lateral hypothalamic medial forebrain bundle. Current evidence suggests that these four rewarding events trigger activity in elements of a common reward circuit and that the elements are connected in series. The four partially identified elements in this circuit are
1. (1) descending, fast-recovering, short refractory period fibers of the medial forebrain bundle,
2. (2) separate, opioid peptide-containing afferents to the ventral tegmental area,
3. (3) the dopaminergic cells projecting from the ventral tegmental area to nucleus accumbens, and
4. (4) the dopaminoceptive cells of nucleus accumbens.
Keywords: Brain stimulation reward; Morphine; Amphetamine; Lateral hypothalamus; Nucleus accumbens; Ventral tegmental area  相似文献   

7.
Psychophysically derived estimates of recovery from refractoriness were obtained at self-stimulation sites in the lateral hypothalamus and ventral tegmental area. The refractory periods of single units driven by the same stimulation electrodes and stimulation fields were then measured electrophysiologically. Antidromically driven units with refractory periods longer than those of the neurons responsible for the rewarding effect were concentrated in the septal complex. Units with refractory periods that overlapped the estimates for the reward-related neurons were found in this region as well but were also encountered in neighboring structures lateral, ventral, and/or caudal to the septal nuclei. It is argued that this latter class of units should be considered as possible constituents of the directly stimulated substrate for the rewarding effect because they are driven by rewarding stimulation, have refractory periods similar to those of the reward-related neurons and arise in or near regions in which lesions have been effective in decreasing the rewarding effect of stimulating the medial forebrain bundle.  相似文献   

8.
Using [14C]-2-deoxyglucose autoradiography, we determined which forebrain and diencephalic areas showed metabolic alterations in response to unilateral electrical stimulation of the posterior medial forebrain bundle at parameters chosen to produce a just-submaximal rewarding effect. At these parameters, only a few areas were activated. There was no detectable activation anterior or dorsal to the genu of the corpus callosum. Just anterior to the anterior commissure, there was strong activation of the vertical limb of the diagonal band of Broca, with a focus in the nucleus of the diagonal band. Just posterior to the anterior commissure, there was strong activation of compartment "c" of the medial forebrain bundle (MFB), with weaker activation of the bed nucleus of the stria terminalis and the medial preoptic area. At midhypothalamic levels, the dorsolateral, dorsomedial, and ventral MFB all showed activation. There was bilateral suppression of activity in the lateral habenula. Activation appeared to end in the anterior ventral tegmental area of Tsai. Reward-blocking doses of the neuroleptic pimozide activated the caudate and the lateral habenula but did not alter any of the unilateral effects of stimulation. Using longer pulse durations and/or shifting the site of stimulation to the substantia nigra activated many of the systems not activated in the first experiment, including all of the major dopaminergic projection systems, proving the capacity of the technique to reveal activation of these systems. The results permit one to define a discrete projection system that merits electrophysiological investigation as a likely substrate for the rewarding effect of MFB stimulation. They also suggest that dopaminergic projection systems may not form part of the reward pathway itself.  相似文献   

9.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain cental gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

10.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain central gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

11.
Cytochrome oxidase histochemistry was used to evaluate neuronal changes in oxidative metabolism in response to rewarding brain stimulation of the medial forebrain bundle. Rats with single lateral hypothalamic electrodes self-stimulated daily for ten days for trains of either 0.1 or 2.0 ms pulses that corresponded to about 75% of maximum responding. Quantitative comparison of stimulated-to-unstimulated sides revealed differences in relative optical density in few structures, notably in the lateral septal nucleus and the nucleus accumbens, when the brief pulse duration was used. In contrast, the longer pulse duration gave rise to metabolic increases in several dopaminergic projections, including the frontal cortex, olfactory tubercle, and lateral habenula, and also enhanced activity in the lateral septal nucleus. These data suggest that mesocorticolimbic structures may be implicated in medial forebrain bundle self-stimulation.  相似文献   

12.
Horseradish peroxidase, 13% Sigma Type VI, was administered iontophoretically to the lateral preoptic area (LPA) of male hooded rats. Animals were perfused intracardially on the following day and brains were removed and sliced in the coronal plane into 50 microns sections. Alternate sections were processed with DAB and BDH for the brown and blue reaction products and later examined by bright and dark field microscopy for the presence and location of retrogradely labeled neurons. Results indicate that there are a significant number of limbic efferent connections to the LPA. Afferents to the LPA originate in the prefrontal corex, nucleus accumbens, diagonal band and olfactory structures, lateral and medial septum, stria hypothalamic tract and stria terminalis, the magnocellular and medial preoptic nuclei, along the extent of the medial forebrain bundle in the LPA and LH, anterior and basolateral amygdala, ventromedial caudate-putamen, stria medullaris and lateral habenula, the stellatocellular-periventricular, ventromedial, arcuate and anterior hypothalamic nuclei, the perifornical area, zona incerta, ventral medial thalamic area, ventral tegmental area of Tsai, interpeduncular nucleus, reticular zone of the substantia nigra, mesencephalic periaqueductal gray and reticular formation, all aspects of the raphe nuclei and the locus coeruleus. Results are discussed in terms of known anatomical and neurophysiological data and the similar limbic inputs observed for lateral hypothalamic neurons which are found along the extent of the medial forebrain bundle.  相似文献   

13.
The contribution of dopaminergic neurons to self-stimulation of the ventral tegmental area, nucleus accumbens and prefrontal cortex was investigated. The ventral tegmental area is the site of non-striatal dopaminergic neurons and their axons project to the nucleus accumbens and prefrontal cortex. Injections of spiroperidol, a dopamine antagonist, into the nucleus accumbens significantly reduced self-stimulation of the ipsilateral ventral tegmental area but did not influence self-stimulation of the contralateral ventral tegmental area. Injections of spiroperidol into the prefrontal cortex did not reduce self-stimulation of the ipsilateral or contralateral ventral tegmental area. Electrical stimulation of sites in the nucleus accumbens positive for self-stimulation antidromically activated neurons of the ventral tegmental area, and a reduction of discharge of these neurons following administration of apomorphine suggested that they were dopaminergic neurons. These observations provide additional evidence implicating dopaminergic neurons in brain-stimulation reward and suggest that dopaminergic neurons contribute to self-stimulation of the nucleus accumbens but not the prefrontal cortex.  相似文献   

14.
Afferents to the ventral tegmental nucleus of Gudden (VT) were investigated in mice, rats, and cats. Unilateral and bilateral injections or iontophoretical applications of horseradish peroxidase (HRP) were made into the region of the VT. The entire cerebrum was then screened for labeled neurons. Following injections situated principally within the VT, in all three species many retrogradely labeled neurons were observed in the mamillary bodies and the lateral habenular nuclei. Fewer labeled cells were observed in the prefrontal cortex, the basal forebrain, various hypothalamic nuclei, the interpeduncular nucleus, nucleus of the posterior commissure, nucleus of Darkschewitsch and interstitial nucleus of Cajal, vestibular nucleus, and nucleus praepositus hypoglossi. Scant but consistent labeling occurred in the cingular, retrosplenial, and insular cortices, within the medial forebrain bundle, fields of Forel, zona incerta, ventral tegmental area of Tsai, substantia nigra, pretectal area, periaqueductal gray, dorsal tegmental nucleus, locus ceruleus, and raphe complex. Our results show a high similarity in the distribution of afferent connections converging on the VT of mice, rats, and cats. They indicate furthermore that the VT is reached by a variety of cortical and subcortical afferents, which belong either to the limbic system or to brain stem regions related to motor, sensory, and autonomic functions. It is suggested that the VT subserves as a midbrain core structure of the limbic system, which is responsible for the transfer of motor, sensory, and autonomic informations arising within the brain stem to limbic forebrain structures.  相似文献   

15.
The contribution of the mesolimbic dopamine pathway to feeding behavior was investigated in rats in which feeding responses were elicited by electrical stimulation of the medial forebrain bundle at the level of the lateral hypothalamus. Injections of spiroperidol, a dopamine antagonist, into the nucleus accumbens ipsilateral to the stimulating electrode significantly attenuated the elicited feeding responses whereas injecting spiroperidol into the contralateral nucleus accumbens had no effect. The spontaneous discharge rates of neurons of the ventral tegmental area, identified by their electrophysiological characteristics as dopaminergic, were both increased and decreased in response to single pulse stimulation of sites in the medial forebrain bundle from which feeding responses had been elicited. These observations suggest that mesolimbic dopaminergic neurons may have a role in feeding behavior and indicate the need for chronic electrophysiological recording experiments to see whether or not the activity of these neurons is correlated with the initiation of elicited and spontaneous feeding responses.  相似文献   

16.
The distribution of the afferents to the rat's prefrontal cortex originating in the thalamic mediodorsal nucleus and the amygdala was investigated with two fluorescent tracers. Special emphasis was laid on detecting the loci of neurons which project via axonal collaterals into both lateral and medial portions of the prefrontal cortex. It was found that a high number of neurons of the anterior portion of the basolateral amygdaloid nucleus terminate via collaterals in both the medial and lateral subfields of the prefrontal cortex. On the other hand, only a small number of mediodorsal thalamic cells were found to project to both sides of the prefrontal hemisphere via bifurcating axonal collaterals. These cells were situated exclusively in the lateral part of the medial segment of the mediodorsal nucleus. The majority of both thalamic and amygdaloid neurons with bifurcating axons originate from subregions whose cells innervate primarily the medial prefrontal cortex. In brain-stem, neurons of the nucleus raphé dorsalis also project via collaterals to the medial and lateral prefrontal regions. Furthermore, neurons of the dorsal and ventral premamillary nuclei, the lateral mamillary nucleus, the ventral tegmental area of Tsai, and the ventral tegmental nucleus of Gudden were found to project to the medial prefrontal cortex. Our results indicate a differential collateral organization of thalamic and amygdaloid afferents to prefrontal cortical fields. The anterior basolateral amygdala (which innervates via collaterals both the medial and lateral prefrontal subfields) may add a common input to either subfield, such as information on the significance of incoming stimuli to the animal's behavior, while the mediodorsal nucleus (whose segments are principally connected to only one prefrontal subfield) may add segment-specific information, for example, of a spatial-cognitive nature for the lateral segment and of an emotional nature for the central and medial segments. The existence of a basolateral limbic circuit, composed of the amygdala, the thalamic mediodorsal nucleus, and the prefrontal cortex, is confirmed and knowledge on its interconnectivity is extended. From an anatomical point of view these data provide arguments for both unitary and diverging functions of the prefrontal cortex.  相似文献   

17.
The ventral tegmental area (VTA), primary source of the mesocorticolimbic dopaminergic system, is regarded as a critical site for initiation of behavioural sensitization to psychostimulants. The present study was undertaken to identify the neural pathways converging on the VTA that are potentially implicated in this process. Rats were sensitized by a single exposure to amphetamine (5 mg/kg, s.c.). The distribution of VTA-projecting neurons activated by amphetamine was examined by combining retrograde transport of the cholera toxin beta subunit (CTb), injected into the VTA, with immunodetection of Fos. The quantitative analysis of CTb-Fos double labelling demonstrates that amphetamine induced a rapid activation of Fos in a large number of brain areas projecting to the VTA. More than half of the CTb-Fos double-labelled neurons were located in the prefrontal cortex, lateral preoptic area-lateral hypothalamus, pontomesencephalic tegmentum, dorsal raphe nucleus, ventral pallidum and nucleus accumbens. In addition, scattered CTb-Fos double-labelled cells were observed in many other VTA afferent structures, such as claustrum, lateral septum, diagonal band-magnocellular preoptic nucleus, deep mesencephalic nucleus, oral part of pontine reticular nucleus and dorsomedial tegmental area. This suggests that systemic amphetamine activates a wide population of neurons projecting to the VTA that may be important for the modulation of neurobehavioural plasticity produced by this psychostimulant.  相似文献   

18.
The distribution of choline acetyltransferase-immunoreactive (ChAT-IR) neurons was studied in the brain of the common marmoset by using immunohistochemistry. ChAT-IR neurons were found in the medial septal nucleus, vertical and horizontal limb nuclei of the diagonal band, the nucleus basalis of Meynert, pedunculopontine nucleus and laterodorsal tegmental nucleus, and also in the striatum, habenula, and brainstem cranial nerve motor nuclei. The organization of ChAT-IR neurons in the basal forebrain, midbrain, and pons is consistent with the Ch1-Ch6 nomenclature introduced by Mesulam et al. ('83). The combination of the retrograde transport of HRP-WGA with ChAT immunohistochemistry revealed the distribution of neurons in the Ch4 cell group projecting to the dorsolateral prefrontal cortex. The activity of ChAT was highest in limbic cortical structures, such as the hippocampus, and lowest in association areas of the neocortex. Lesions at various loci in the basal forebrain resulted in differential patterns of ChAT loss in the cortex, which suggests some degree of topographical organization of Ch4 projections to the cortical mantle.  相似文献   

19.
The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that responds strongly to exposure to various stressors. Many of the projection targets of PVT neurons, including the medial prefrontal cortex, nucleus accumbens, and central/basolateral nuclei of the amygdala, are also activated by stress. We sought to determine if PVT neurons that respond to stress are those that project to one or more of these forebrain sites. Retrograde tract tracing combined with immunohistochemical detection of Fos protein-like immunoreactivity was used to assess the activation of target-specific populations of PVT projection neurons by mild footshock stress in the rat. Stress markedly increased Fos protein-like immunoreactivity in PVT neurons, but without regard to the projection target of the thalamic neurons. Thus, the percentage of PVT cells that were retrogradely labeled from either the prefrontal cortex, nucleus accumbens, or amygdala, and that expressed Fos-like immunoreactivity did not differ substantially across the three forebrain sites. These data suggest that the PVT may have a role as a generalized relay for information relating to stress, and may serve an important role in the stress-induced activation of limbic forebrain areas.  相似文献   

20.
Serotonin neurons of the midbrain raphe: ascending projections.   总被引:10,自引:0,他引:10  
The ascending projections of serotonin neurons of the midbrain raphe were analyzed in the rat using the autoradiographic tracing method. Axons of raphe serotonin neurons ascend in the ventral tegmental area and enter the medial forebrain bundle. A number of fibers leave the major group to ascend along the fasciculus retroflexus. Some fibers enter the habenula but the majority turn rostrally in the internal medullary lamina of the thalamus to innervate dorsal thalamus. Two additional large projections leave the medial forebrain bundle in the hypothalamus; the ansa peduncularis-ventral amygdaloid bundle system turns laterally through the internal capsule into the striatal complex, amygdala and the external capsule to reach lateral and posterior cortex, and another system of fibers turns medially to innervate medial hypothalamus and median eminence and form a contrelateral projection via the supraoptic commissures. Rostrally the major group in the medial forebrain bundle divides into several components: fibers entering the stria medullaris to terminate in thalamus; fibers entering the stria terminalis to terminate in the amygdala; fibers traversing the fornix to the hippocampus; fibers running through septum to enter the cingulum and terminate in dorsal and medial cortex and in hippocampus; fibers entering the external capsule to innervate rostral and lateral cortex; and fibers continuing forward in the medial olfactory stria to terminate in the anterior olfactory nucleus and olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号