首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) causes apoptotic deletion of CD4(+) CD8(+) thymocytes, a phenomenon that has been linked to immune dysfunction and poor survival during sepsis. Given the abundance of thromboxane-prostanoid (TP) receptors in CD4(+) CD8(+) thymocytes and in vitro evidence that thromboxane A(2) (TXA(2)) causes apoptosis of these cells, we tested whether enhanced generation of TXA(2) plays a role in LPS-induced thymocyte apoptosis. Mice injected with 50 micro LPS intraperitoneally displayed a marked increase in generation of TXA(2) and prostaglandin E(2) in the thymus as well as apoptotic deletion of CD4(+) CD8(+) thymocytes. Administration of indomethacin or rofecoxib inhibited prostanoid synthesis but did not affect thymocyte death. In contrast, thymocyte apoptosis in response to LPS was significantly attenuated in TP-deficient mice. These studies indicate that TXA(2) mediates a portion of apoptotic thymocyte death caused by LPS. The absence of an effect of global inhibition of prostanoid synthesis suggests a complex role for prostanoids in this model.  相似文献   

2.
We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells.  相似文献   

3.
The production of T cell receptor αβ+ (TCRαβ+) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination. Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage. This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4+CD8+ double-positive (DP) thymocytes. Interestingly, these cells are actively rearranging their TCR-α chain genes. To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation. p53-dependent radio-sensitivity was already found to be high in immature CD4CD8 (double-negative, DN) cKit+CD25+ thymocytes, where TCR-β gene rearrangement is initiated. However, TCR-αβCD8+ immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent. Within the DP population, TCR-αβ+ thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ progenitors. Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis.  相似文献   

4.
Apoptosis continues to be controversial in human immunodeficiency virus (HIV)-induced pathogenesis. To investigate whether apoptosis occurs with HIV exposure with or without subsequent infection, levels of apoptosis were measured in cord blood lymphocytes (CBL) from seven newborns delivered to HIV-infected mothers and seven normal, unexposed newborns. Live cells were costained with antibodies to cell surface markers and the DNA dye 7-amino actinomycin D to immunophenotype apoptotic CBL subsets. Apoptosis was measured in fresh and cultured CBL in the presence and absence of CD3 T-cell receptor stimulation. Compared to the CD4+ CBL from HIV-unexposed newborns, CD4+ CBL from six HIV-exposed, noninfected newborns demonstrated significantly greater apoptosis after overnight culture even in the absence of CD3 stimulation. Compared to HIV-unexposed controls, CD8+ CBL from the six HIV-exposed newborns also demonstrated increased levels of apoptosis after overnight culture without stimulation. The one HIV-infected newborn in this study showed the highest levels of CD4+ and CD8+ apoptotic CBL. The data suggest that levels of apoptosis are increased in infants in association with HIV infection. Furthermore, CD4+ and CD8+ cord blood lymphocytes from HIV-exposed infants behaved differently than T lymphocytes from either normal, unexposed infants or an HIV-infected infant. These results suggest that exposure to HIV or HIV-induced factors increases the levels of apoptosis in CBL.  相似文献   

5.
Although most thymocytes express high levels of Fas antigen (CD95), the role of Fas in apoptosis signaling during thymocyte maturation has not been defined. Fas apoptosis occurs primarily in the CD4+CD8+ subpopulations of thymocytes. Fas expression and apoptosis function were investigated in the CD48, CD4+8+, and CD4+ and CD8 single positive thymocyte subpopulations by in vivo injection of anti-Fas and in vitro incubation of Fas with thymic organ cultures. Fas was first expressed on CD48 thymocytes coincident with expression of IL-2R and CD44. In Fas mutant lpr/lpr mice, defective Fas expression correlated with overproduction of late-stage CD48-thymocytes. Fas was highly expressed on CD3dull and CD3bright thymocytes. CD4+8+CD3dull thymocytes were sensitive to Fas apoptosis, whereas more mature CD4+8+CD3bright thymocytes were resistant to Fas apoptosis. Anti-Fas incubation with established thymic organ culture for 24 hr resulted in apoptosis of approximately 25% of thymocytes. Continued incubation of thymic organ culture with anti-Fas resulted in an apoptosis rate of 25% of CD4+CD8+ thymocytes per day for the first 3 days of culture. Continued culture for further time points up to 6 days did not result in further apoptosis of the CD4+CD8+ thymocytes. These results suggest that CD4CD8CD44+ IL-2R+ thymocytes express Fas and there is overpopulation of the subsequent developmental stage of thymocytes in Fas mutant lpr mice. Also, early-stage CD4+8+ thymocytes are susceptible to Fas apoptosis, whereas Fas apoptosis resistance is required after 3 days of thymic organ culture. We conclude that these two populations of thymocytes are susceptible to Fas ligand-mediated apoptosis during T cell development in the thymus.  相似文献   

6.
Heat-labile enterotoxin subunit B (LTB) is a noncatalytic protein derived from Escherichia coli that binds to ganglioside GM1, a glycosphingolipid on the surface of mammalian cells. In this study, the effects of recombinant LTB (rLTB) on murine lymphocytes were examined in vitro. T and B cells readily bound fluorescein isothiocyanate-labeled rLTB. CD8+ T cells bound twice as much as CD4+ T cells and B cells. Exposure of T-cell subsets and B cells to rLTB abrogated mitogen-driven proliferation. CD8+ T cells were more susceptible to rLTB than either CD4+ T cells or B cells. There were differences in the sensitivity of lymphocytes from various strains of mice to rLTB. This was attributed to qualitative and quantitative differences in the CD4+ T cells. rLTB induced apoptosis in both T-cell subsets, but the level was significantly higher in CD8+ T cells. Apoptosis peaked at around 8 h after exposure to rLTB and incubation at 37°C. Binding to ganglioside GM1 was essential for suppression, since rLTB/G33D, a mutant which does not bind GM1, failed to inhibit proliferation or induce apoptosis. Naive T cells, which were acutely sensitive to rLTB, became more resistant after activation. Conversely, activated T cells regained their sensitivity to rLTB when they reverted back to a resting state. A 1-h pulse with rLTB was sufficient to inhibit T-cell proliferation and cytotoxic-T-lymphocyte generation in primary mixed lymphocyte reaction cultures. CD8+ T cells were preferentially depleted in these cultures. rLTB also induced functional modifications in T cells as indicated by inhibition of gamma interferon secretion after polyclonal activation. Thus, rLTB may have immunomodulatory properties independent of its ability to induce apoptosis.  相似文献   

7.
The effects of monoclonal antibodies (mAbs) to cell-surface molecules, divalent cations, and various cell-signaling and metabolic inhibitors on the binding of thymocytes to rat thymic dendritic cells (TDC) were studied using a rosette assay. It was found that TDC/thymocyte adhesion was stronger and faster at 37°C than at 4°C. Flow cytometric analysis demonstrated that bound thymocytes were predominantly CD4+CD8+ and CD4+CD8-, but in comparison to the phenotype of whole thymocytes, they were enriched in the mature TCRαβhi subset. The binding of thymocytes to TDC at 37°C was almost completely dependent on Ca2+ and Mg2+ and partly on an intact cytoskeleton and calmodulin-dependent protein kinase. The adhesion was independent of new protein synthesis and the activities of protein kinases A and C, tyrosine kinases, as well as phosphotyrosine protein phosphatases. The TDC/thymocyte adhesion at 37°C was partly blocked by anti-LFA-1 (WT.1), anti-CD18 (WT.3), and anti-ICAM-1 (1A29) mAb. MAbs to class II MHC (OX-3 and OX-6), CD4 (W3/25), CD8 (OX-8), and αβTCR (R73) stimulated the adhesion via an LFA-1-dependent pathway, whereas an anti-CD45 mAb (G3C5) stimulated the rosette formation independently of LFA-1. MAbs to CD2 (OX-34), CD11b (ED7), CD11b/c (OX-42), and class I MHC (OX-18) were without significant effects on the adhesion process.  相似文献   

8.
Summary Marek's disease virus (MDV)-infected chickens show thymic atrophy during the acute phase of infection. We examined whether the thymic atrophy by MDV-infection was mediated by apoptosis. Apoptosis-specific DNA ladderings were clearly observed in thymocytes one week after MDV-infection. Histological and flow cytometry studies revealed that immature CD4+CD8+ thymocytes underwent apototic cell death. In addition, the expression level of CD8 molecules on both CD4CD8+ and CD4+CD8+ thymocyte populations was down-regulated in the infected chickens. These thymic changes might be involved in the pathogenesis of Marek's disease.  相似文献   

9.
Recently, apoptosis has been considered to be an important regulator for allograft survival. The serine/threonine kinase Pim2 has been implicated in many apoptotic pathways. In a previous study, we found that pim2 was highly expressed in CD4+ T cells in an allograft model. Here, we further investigated the effects of Pim2 on allograft survival and the underlying mechanisms associated with apoptosis. The results showed that pim2 was overexpressed in grafts and spleens, particularly in spleen CD4+ T cells when acute allorejection occurred, and correlated positively with the extent of rejection. In T cells from the spleens of naive BALB/c mice treated with 5 µM 4a (a specific inhibitor of Pim2) for 24 h, the apoptosis rate increased and the phosphorylation of BAD was decreased. Furthermore, adoptive transfer of CD4+ T cells treated with 4a in vitro to allografted severe combined immunodeficiency (SCID) mice effectively prolonged allograft survival from 19.5±1.7 days to 31±2.3 days. Moreover, the results demonstrated that the CD4+CD25 effector T-cell subset was the predominate expresser of the pim2 gene as compared with the CD4+CD25+ regulatory T (Treg) cell subset. Alloantigen-induced CD4+CD25+ T cells displayed less Foxp3 expression and a low suppression of apoptosis compared with effector CD4+CD25 T cells treated with 4a. Collectively, these data revealed that Pim2 facilitated allograft rejection primarily by modulating the apoptosis of effector T cells and the function of Treg cells. These data suggested that Pim2 may be an important target for in vivo anti-rejection therapies and for the ex vivo expansion of CD4+CD25+ T cells.  相似文献   

10.
Mouse mammary tumor virus MMTV(C4) encodes a Vβ2-specific superantigen. In Vβ2 transgenic (TG2) mice more than 98 % of peripheral T cells express Vβ2. Infection of Tg2 mice with MMTV(C4) at birth through their mothers' milk or at 6–8 weeks of age by intravenous injection resulted in massive deletion of peripheral CD4+ T cells and suppressed thymopoiesis. The number of peripheral CD8+ T cells was not affected in neonatally infected mice. In older mice injected with MMTV(C4), splenic CD8+ T cells were significantly elevated. Suppressed thymopoiesis was observed in both neonatally infected and older mice injected with MMTV(C4). Thymocytes which expressed high level CD3 or Vβ2 were deleted. To determine if T cells or thymocytes were deleted through apoptosis, DNA fragmentation was examined by flow cytometry and diphenylamine (DPA) binding assay. Approximately 31 % of CD4+ T cells from MMTV(C4)-infected Tg2 mice as compared to 6% from normal Tg2 mice contained fragmented nuclear DNA by flow-cytometric analysis. The DPA binding assay showed significantly increased total soluble DNA in lymph node cells and thymocytes from MMTV(C4)-infected mice. The kinetics of T cell and thymocyte apoptosis correspond to their deletion, supporting apoptosis as the mechanism of T cell and thymocyte deletion. CD4+ T cell and thymocyte deletion by MMTV(C4) in Tg2 mice provides a sensitive system for the analysis of retrovirus superantigen-induced apoptosis.  相似文献   

11.
Linomide, a quinoline-3-carboxamide, has a pleiotropic immune modulating capacity and inhibits development as well as progression of disease in animal models of autoimmunity. Linomide treatment of mice resulted in a dramatic, dose-dependent decrease of the thymic cell number shortly after the start of administration. Flow cytometric analysis revealed that the major thymocyte subset, the early immature type CD4+CD8+ thymocytes, were reduced in number by 75%, mature CD4+CD8? or CD4?CD8+ thymocytes were less sensitive to treatment. The polyclonal T cell activator Con A (Concanavalin A) was used together with IL-2 to evaluate the potential proliferative responsiveness of ex vivo thymocytes. Thymocytes from mice treated with Linomide exhibited a more vigorous proliferation than control cultures. An effect shown to not only be due to the enrichment of mature thymocytes in the cultures from Linomide treated animals, but also when purified, mature thymocytes (CD4+CD8? and CD4?CD8+) were cultured with Con A and IL-2, these cells responded with a significantly enhanced proliferation. In vivo Linomide treatment did not result in increased plasma concentrations of corticosterone and treatment of adrenalectomized mice resulted in a reduction of thymocytes which was comparable to the effect in intact mice, indicating that glucocorticoids (GC) are not major mediators of Linomide-induced thymocyte deletion. In addition to this, and supporting a glucocorticoid independent mode of action, Linomide treatment of thymocytes in vitro resulted in a significant increase in the number of apoptotic cells, specifically in the CD4+CD8+ subset, implicating apopotosis as one component in the course of thymocyte reduction. In addition to this, in vivo treatment with Linomide resulted in an identical pattern to that seen in vitro in that there was significantly increased apoptosis only in the CD4+CD8+. These data indicate that Linomide modifies thymocyte development using a glucocorticoid independent pathway and results in the increased apoptosis of the CD4+CD8+ subset.  相似文献   

12.
Recently, several works have focused on the modulation of the immune response by arachidonic acid metabolites. Some of these metabolites, such as prostaglandins, have been shown to influence thymocyte “education” in vitro. However, the effect of one of them, prostaglandin E2 (PGE2), in the education of CD4 CD8 double negative immature thymocytes (DN cells) remained unclear. Using a flow cytometry analysis of DN cells cultured for 24 h in the presence of PGE2, we observed, compared with DN thymocytes cultured without PGE2, an increase in the CD4+ CD8 CD3 immature thymocytes and in the CD4+ CD8 and CD8+ CD4 mature single positive thymocytes and a decrease in the DN and CD4high CD8high double positive thymocytes. Other differentiation thymocyte surface markers, such as CD3, CD5, TCRαß, TCRδγ and HSAg, revealed an increasing number of thymocytes bearing these first four markers and a lower expression of the HSAg. Furthermore, we observed an accumulation of CD4low CD8low thymocytes and an increasing proportion of hypodiploid nuclei. These two findings have been shown to be markers of the programmed cell death process. These findings suggest that PGE2 probably acts on thymocyte differentiation through at least two distinct pathways. On the one hand, PGE2 seems to promote differentiation of DN cells into CD4+ CD8 CD3 immature cells and drive CD4+ CD8+ CD3+ thymocyte to a CD4+ CD8 and CD8+ CD4 mature phenotype. On the other hand, PGE2 is probably implicated directly or indirectly in the increase or the acceleration of the programmed cell death process of immature CD4+ CD8+ CD3+ thymocytes, which is linked to the positive and/or negative selection.  相似文献   

13.
CD4+ T-cell help (CD4 help) plays a pivotal role in CD8+ T-cell responses against viral infections. However, the role in primary CD8+ T-cell responses remains controversial. We evaluated the effects of infection route and viral dose on primary CD8+ T-cell responses to vaccinia virus (VACV) in MHC class II−/− mice. CD4 help deficiency diminished the generation of VACV-specific CD8+ T cells after intraperitoneal (i.p.) but not after intranasal (i.n.) infection. A large viral dose could not restore normal expansion of VACV-specific CD8+ T cells in i.p. infected MHC II−/− mice. In contrast, dependence on CD4 help was observed in i.n. infected MHC II−/− mice when a small viral dose was used. These data suggested that primary CD8+ T-cell responses are less dependent on CD4 help in i.n. infection compared to i.p. infection. Activated CD8+ T cells produced more IFN-γ, TNF-α and granzyme B in i.n. infected mice than those in i.p. infected mice, regardless of CD4 help. IL-2 signaling via CD25 was not necessary to drive expansion of VACV-specific CD8+ T cells in i.n. infection, but it was crucial in i.p. infection. VACV-specific CD8+ T cells underwent increased apoptosis in the absence of CD4 help, but proliferated normally and had cytotoxic potential, regardless of infection route. Our results indicate that route of infection and viral dose are two determinants for CD4 help dependence, and intranasal infection induces more potent effector CD8+ T cells than i.p. infection.  相似文献   

14.
In the present study, we used the fetal organ culture (FTOC) technique in order to study a putative effect of epidermal growth factor (EGF) on the thymus ontogeny. Functional EGF receptors and more recently the EGF molecule itself, respectively, on the membrane of epithelial components of thymic stroma and on a few thymocytes in adult thymus, had been reported in the literature. We could observe a dose-dependent decrease in cellularity and a progressive retention of thymocytes in the double-negative (CD4-/CD8-) stage of differentiation when exogenous EGF was added. Epidermal growth factor interfered with both fetal stroma growth and thymocyte development at a precise moment, that is, in the passage from double-negative to the double-positive (CD4+/CD8+) stage. After a 7-day FTOC in the presence of EGF, most cells recovered were Thy-1.2+, c-kit+, TSA1-/int, CD3-, and one of CD44high/CD25int, CD44-/CD25int, or CD44-/CD25-. Some developed into γδTCR+ cells with a mature (CD3+) phenotype, but not into αβTCR+ thymocytes. It seems that EGF addition makes the cultures "nonpermissible" for αβTCR+ thymocyte generation. We report here the presence of a high Mr "EGF-like" molecule on the membrane of fetal thymocytes, which role in the observed effects is under investigation. Further biochemical characterization of this molecule is still required, because its presence was only evidenced on the basis of its antigenicity.  相似文献   

15.
The factor(s) responsible for the reduced B cell number and increased T cell infiltrate in T-cell-rich large-B-cell lymphomas (TCRBCLs) have not been well characterized. We studied 18 TCRBCLs and 12 diffuse large-B-cell lymphomas (DLBCLs) to compare the 1) predominant T cell subpopulation(s), 2) expression of cytotoxic granule proteins (TIA-1 and granzyme B), 3) level of tumor cell apoptosis (Apoptag system, Oncor, Gaithersburg, MD), and 4) expression of Ki-67 (Mib-1) and apoptosis-related proteins (fas (CD95), bcl-2, and p53). T cells in TCRBCLs and DLBCLs were predominantly CD8+ T cells expressing αβ T-cell receptors and TIA-1 (16 of 18 TCRBCLs with >50% TIA-1+ small lymphocytes) but lacking granzyme B (16 of 18 TCRBCLs with <25% granzyme B+ small lymphocytes). Scattered apoptotic tumor cells (confirmed with CD20 co-labeling) were present in 15 of 18 TCRBCLs, with 14 of 15 cases having <10% apoptotic cells. No apoptotic cells were seen in 12 of 12 DLBCLs. In 16 of 16 immunoreactive TCRBCLs, <25% tumor cells were bcl-2+, whereas 6 of 12 DLBCLs had >50% bcl-2+ tumor cells. CD95 (fas) expression was also lower, with 3 of 18 (16.7%) TCRBCLs versus 4 of 12 (33%) DLBCLs having >25% CD95+ tumor cells. TCRBCLs and DLBCLs had similar levels of p53 and Ki-67 (Mib-1) expression. Thus, T cells in TCRBCLs are non-activated cytotoxic T lymphocytes (TIA-1+, granzyme B). Tumor cell apoptosis (perhaps cytotoxic T cell mediated) may partly account for the decreased number of large (neoplastic) B cells in TCRBCLs, but other factors (ie, decreased bcl-2 expression) may also be needed.  相似文献   

16.
One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28 Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28 T cells, but also enhance CD8+CD28T cells'' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28 T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28 T cells, but did increase the proportion of CD8+CD28 T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28 Treg cells, shedding new light on MSCs-mediated immune regulation.  相似文献   

17.
Clonal selection of T cells mediated through the T cell antigen receptor (TCR) mostly occurs at the CD4+CD8+ double positive thymocyte stage. Immature CD4+CD8+ thymocytes expressing self-reactive TCR are induced to die upon clonotypic engagement of TCR by self antigens. CD3 engagement by antibody of the surface TCR-CD3 complex is known to induce apoptosis of CD4+CD8+ thymocytes, a process that is generally thought to represent antigen-induced negative selection in the thymus. The present study shows that the CD3-induced apoptosis of CD4+CD8+ thymocytes can occur even in TCRα? mutant mice which do not express the TCRαβ/CD3 antigen receptor. Anti-CD3 antibody induces death of CD4+CD8+ thymocytes in TCRα? mice either in cell cultures or upon administration in vivo. Interestingly, most surface CD3 chains expressed on CD4+CD8+ thymocytes from TCRα? mice are not associated with clonotypic TCR chains, including TCRβ. Thus, apoptosis of CD4+CD8+ thymocytes appear to be induced through the CD3 complex even in the absence of clonotypic antigen receptor chains. These results shed light on previously unknown functions of the clonotype-independent CD3 complex expressed on CD4+CD8+ thymocytes, and suggest its function as an apoptotic receptor inducing elimination of developing thymocytes.  相似文献   

18.
Human immunodeficiency virus (HIV) infection causes extensive phenotypic alterations in lymphocytes. Cellular markers that are normally absent or expressed at low levels on quiescent cells are upregulated throughout the disease course. The transmembrane form of regeneration and tolerance factor (RTF) is expressed at negligible levels on resting T cells but is quickly upregulated following in vitro stimulation and activation. Recently, we reported that expression of RTF was significantly higher in cells from HIV-seropositive (HIV+) individuals than in cells from HIV-seronegative (HIV) individuals. Because T cells from HIV+ individuals express markers reflecting chronic activation, we hypothesized that these in vivo-activated cells would coexpress RTF. Flow cytometry was used to assess RTF expression on activated (CD38+ and HLA-DR+) CD4+ and CD8+ T cells. HIV+ individuals had higher percentages of RTF+ CD38+ (P < 0.0001) or RTF+ HLA-DR+ (P = 0.0001) CD4+ T cells than HIV individuals. In HIV+ individuals, increased percentages of CD4+ T cells that were RTF+, RTF+ CD38+, and RTF+ HLA-DR+ correlated inversely with the absolute number and percentage of CD4+ T cells and correlated positively with plasma β2-microglobulin concentrations. HIV+ individuals had higher percentages of CD8+ T cells that were RTF+ CD38+ (P = 0.0001) or RTF+ HLA-DR+ (P = 0.0010). In HIV+ individuals, increased percentages of CD8+ T cells that were RTF+ HLA-DR+ correlated inversely with the percentage of CD4+ T cells, and high percentages of CD8+ T cells that were RTF+ CD38+ correlated positively with plasma β2-microglobulin levels. These findings strongly suggest that increased RTF expression is a correlate of HIV-associated immune system activation.  相似文献   

19.
The ontogeny of T cells in T-cell receptor (TCR) transgenic mice, which express a transgenic αβ heterodimer, specific for the male (H-Y) antigen in association with H-2Db, was determined. The transgenic α chain was expressed on about 10% of the fetal thymocytes on day 14 of gestation. About 50% of day-15 fetal thymocytes expressed both α and β transchains and virtually all fetal thymocytes expressed the transgenicαβ heterodimer by day 17. The early expression of the transgenic TCR on CD4-8- thymocytes prevented the development of γδ cells, and led to accelerated growth of thymocytes and an earlier expression of CD4 and CD8 molecules. Up to day 17, no significant differences in T-cell development could be detected between female and male thymuses. By day 18 of gestation, the male transgenic thymus contained more CD4-8- thymocytes than the female transgenic thymus. The preponderance of CD4-8- thymocytes in the male transgenic thymus increased until birth and was a consequence of the deletion of the CD4+8+ thymocytes and their CD4-8+ precursors. By the time of birth, the male transgenic thymus contained half the number of cells as the female transgenic thymus. The deletion of autospecific precursor cells in the male transgenic mouse began only at day 18 of gestation, despite the fact that the ligand could already be detected by day 16.The preferential accumulation of CD4-8+ T cells, which expressed a high density of the transgenic TCR, occurred only after birth and was .obvious in 6-week-old female thymus. These data support the hypothesis that the positive selection of T cells expressing this transgenic heterodimer may involve two steps, i.e., the commitment of CD4+8+ thymocytes to the CD4-8+ lineage following the interaction of the transgenic TCR with restricting major histocompatibility molecules, followed by a slow conversion of CD4+8+ thymocytes into CD4-8+ T cells.In normal mice, the precursors of CD+4+8 and single positive thymocytes have the CD4-8- CD3-J11d+ (or M1/69 +) phenotype. Because of the early expression of the transgenic αβ heterodimer, this population was not detected in adult transgenic mice. All CD4-8- M1/ 69+ cells expressed the transgenic receptor associated with CD3 and could be readily grown in media containing T-cell lectins and interleukin 2.  相似文献   

20.
Signals generated by T cell receptor (TCR) cross-linking (or phorbol 12-myristate-13-acetate + Ca2+ ionophore), glucocorticoids or ionizing radiation all stimulate apoptotic cell death in thymocytes by signals that are initially distinct from each other. However, when these stimuli were administered to thymocyte cultures that were maintained under an atmosphere containing less than 20 ppm oxygen as opposed to one that contained 18.5 % molecular oxygen, cell death was inhibited or abrogated, suggesting that the induction of death by all three different stimuli depend on the presence of molecular oxygen. Studies of the effects of the cysteine analog N-acetyl cysteine (NAC) with normal thymocytes demonstrated that this antioxidant inhibited the induction of death by each of the different stimuli in a manner that paralleled anaerobiosis. Furthermore, studies with thymocytes demonstrated that the induction of nur77, a gene shown to be involved in thymocyte apoptosis signaled through the TCR or its surrogates, is not inhibited by NAC or dependent upon molecular oxygen. The possible implications for negative selection of NAC-mediated inhibition of TCR-signaled thymocyte cell death was examined in thymic organ culture. Treatment of these cultures with NAC provided significant protection against staphylococcal enterotoxin B-mediated deletion of Vβ8-expressing thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号