首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multidrug resistance (MDR) is one of the main obstacles in tumor chemotherapy. A promising approach to solving this problem is to utilize a nontoxic and potent modulator able to reverse MDR, which in combination with anticancer drugs increases the anticancer effect. Experiments were carried out to examine the potential of tetrandrine (Tet) as a MDR-reversing agent. Survival of cells incubated with Tet at 2.5 mol/l for 72 h was over 90%. Tet at 2.5 mol/l almost completely reversed resistance to vincristine (VCR) in KBv200 cells. Tet at a concentration as low as 0.625 mol/l produced a 7.6-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive KB cells in vitro. In the KBv200 cell xenograft model in nude mice, neither Tet nor VCR inhibited tumor growth. However, VCR and Tet combined inhibited tumor growth by 45.7%, 61.2% and 55.7% in three independent experimental settings. In the KB cell xenograft model in nude mice, Tet did not inhibit tumor growth, but VCR and the combination of VCR and Tet inhibited tumor growth by 40.6% and 41.6%, respectively. Mechanism studies showed that Tet inhibited [3H]azidopine photoaffinity labeling of P-gp and increased accumulation of VCR in MDR KBv200 cells in a concentration-dependent manner. The results suggest that Tet is a potent MDR-reversing agent in vitro and in vivo. Its mechanism of action is via directly binding to P-gp and increasing intracellular VCR accumulation.Abbreviations DMSO Dimethyl sulfoxide - FBS Fetal bovine serum - MDR Multidrug resistance - MTT 3-(4,5-Dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide - PBS Phosphate-buffered saline - P-gp P-glycoprotein - SDS Sodium dodecyl sulfate - Tet Tetrandrine - VCR Vincristine  相似文献   

2.
Purpose   Fructus Schizandrae (FS) is commonly used as a tonic in traditional Chinese medicine. Recently, FS was found to significantly improve liver dysfunction in chronic hepatitis patients. The present study was to assess the reversal effect of five schizandrins and crude extract from FS (named LCC) on multidrug resistance (MDR) of cancer cells, both in vitro and in vivo. Chemically, the five schizandins are derivatives of dibenzo-(a, c)-cyclooctene lignan with distinct structures differing from any known MDR reversal agents. Methods  A panel of sensitive and resistant cancer cell lines were treated with various concentrations of LCC and schizandrins. Drug sensitivity, accumulation of Doxorubicin (Dox), expression of P-glycoprotein and protein kinase C (PKC), and apoptosis were determined in vitro. The in vivo effect was tested in nude mice grafted with sensitive and resistant human epidermal cancer cell line to vincristine (VCR) (KB, KBv200). Results  The tested five compounds at 25 μM showed various levels of MDR reversal activity, of which, schizandrin A (Sin A) was the most potent one. Sin A reversed VCR resistance in KBv200 cells, MCF-7/Dox cells and Bel7402 cells by 309-, 38-, and 84-folds, respectively. Also, Sin A reversed the resistance of Dox in the above cancer cell lines. LCC at 25 μg/ml reversed VCR resistance by 619-folds in KBv200, 181-folds in MCF-7/Dox cell line, and 1,563-folds in innate resistance of human hepatic cellular carcinoma Bel7402 cells to VCR. Furthermore, LCC and its active component Sin A potently reversed the cross-resistance to paclitaxel in those cell lines. Both Sin A and LCC markedly increased intracellular Dox accumulation and enhanced apoptosis, down-regulated Pgp protein and mRNA and total PKC expression in MDR cells. Coadministration of LCC (p.o.) significantly potentiated the inhibitory effect of VCR (i.p.) on tumor growth in nude mice bearing KBv200 xenograft. Conclusions  The LCC and its active component Sin A have remarkable reversal effect on MDR in cancer cells by inhibition of both the function and expression of Pgp and total PKC. Min Huang and Jing Jin have contributed equally to this work.  相似文献   

3.
FG020327逆转肿瘤多药耐药性的作用及其机制   总被引:2,自引:0,他引:2  
Chen LM  Li YF  Zhang X  Yan SL  Liang YJ  Fu LW 《癌症》2005,24(2):189-193
背景与目的肿瘤细胞过量表达P鄄糖蛋白穴P-glycoprotein.P-gp雪导致多药耐药穴multidrug resistance,MDR雪是目前肿瘤化疗的一大障碍,使用多药耐药逆转剂与抗癌药物联合化疗是克服临床多药耐药的重要方法。本研究对一种新的多芳基取代咪唑化合物FG020327的体外逆转活性及其逆转机制进行了探讨。方法以MTT法检测FG020327对多药耐药肿瘤细胞MCF-7/ADR及KBv200的耐药逆转活性;以荧光分光光度计法检测FG020327对MCF-7/ADR细胞内抗癌药物阿霉素累积的影响;以罗丹明蓄积实验检测该化合物对P-gp功能的影响。结果FG020327在体外具有较强的逆转活性,在5μmol/L浓度下使多药耐药细胞KBv200对长春新碱的敏感性增加44.9倍,逆转活性是公认的强逆转剂维拉帕米的3倍熏但它对敏感株对抗癌药物的敏感性基本无影响。2.5、5和10μmol/L的FG020327使MCF-7/ADR细胞中阿霉素的累积分别增加2.3、2.7和3.7倍,但是在敏感株MCF鄄7细胞却观察不到阿霉素累积的增加。FG020327浓度依赖性增加KBv200细胞内的罗丹明蓄积,但对敏感株KB细胞内的罗丹明蓄积无影响。结论FG020327具有较强的体外逆转MDR的活性,它可能通过抑制P鄄gp功能及增加MDR细胞内抗癌药物的累积逆转MDR。  相似文献   

4.
Multidrug resistance (MDR) is one of the main obstacles limiting the efficacy of chemotherapy treatment of tumours. One of the main causes of MDR is linked to the overexpression of P-glycoprotein (P-gp). This study aimed to characterise tetrandrine (Tet), a potent inhibitor of P-gp mediated MDR. Cytotoxicity was determined by the tetrazolium (MTT) assay. A MCF-7/adr cell xenograft model was established to investigate the effect of Tet on reversing MDR in vivo. Mechanistic experiments were conducted to examine the uptake, efflux and accumulation of doxorubicin (Dox) and Fura-2, and to assess lipid membrane fluidity. Tet potentiated the cytotoxicity of Dox; a 20.4-fold reversal of resistance was achieved in the presence of 2.5 micromol/l of Tet. Accumulation and efflux studies with the P-gp substrates, Dox and Fura-2, demonstrated that Tet inhibited the P-gp-mediated drug efflux. In addition, Tet lowered cell membrane fluidity in a concentration-dependent manner. In mice bearing the MDR MCF-7/adr cell xenografts, coadministration of Tet potentiated the antitumour activity of doxorubicin without a significant increase in toxicity. Tet was an extremely potent MDR modulator both in vitro and in vivo, without apparently enhancing the toxicity of the co-administered drugs. Hence, Tet holds great promise as a MDR modulator for the treatment of P-gp-mediated MDR cancers.  相似文献   

5.
EGCG对人耐药口腔表皮样癌细胞株耐药逆转的实验   总被引:1,自引:0,他引:1       下载免费PDF全文
 目的 研究EGCG对人多药耐药口腔癌细胞KBV200的细胞毒增敏作用及裸鼠移植瘤的抑瘤作用。方法 MTT法检测药物对细胞的毒性作用,流式细胞术分别检测细胞P糖蛋白的表达,HPLC检测细胞内VCR浓度,采用KB和KBV200细胞分别种植同一裸鼠左、右腋下,观察用药后体重、抑瘤率的改变。RT-PCR检测瘤组织mdr1的表达。结果 EGCG在100mg·L-1以下剂量对两株肿瘤细胞的抑制率均小于10%,EGCG与VCR联合应用可明显提高VCR的细胞毒作用;EGCG联合VCR作用后KBV200细胞内VCR浓度升高,P糖蛋白的表达下降;EGCG可增加VCR对KBV200的抑瘤作用,可降低瘤组织MDR1的表达量。结论 EGCG可增强VCR对多药耐药肿瘤细胞KBV200的细胞毒作用,机制可能与降低MDRI-mRNA、P-gp表达,提高细胞内药物浓度有关。  相似文献   

6.
Overexpression of P-glycoprotein (P-gp) encoded by MDR1 gene in cancer cells results in multidrug resistance (MDR) to structurally and mechanistically different chemotherapeutic drugs, which is a major cause for cancer chemotherapy failures to cancer patients. Recently, there were several reports showing that expression of siRNAs targeting MDR1 gene is able to reverse the P-gp mediated MDR, however, the in vivo reversal effects for MDR have still not been identified. We developed a novel MDR reversal system using RNA interference technique in human epidermoid carcinoma KBv200 cells. The stably expressing MDR1 shRNA cells (KBv200/MDR1sh) were established with transfection of vector pEGFPC2-H1-MDR1shDNA containing MDR1-V siRNA expression cassette, and we found that more than 90% of MDR1 mRNA and P-gp were reduced. KBv200/MDR1sh cells simultaneously showed stably expressing EGFP and kept low MDR1 expression beyond ten passages. Compared KBv200/MDR1sh cells with KBv200 cells, resistance to vincristine and doxorubicin decreased from 62.4-fold to 10.5-fold and from 74.5-fold to 9.5-fold respectively, and intracellular doxorubicin accumulation enhanced from 0.30 +/- 0.08 nmoles/10(6) cells to 0.86 +/- 0.16 nmoles/10(6) cells, and the fluorescence intensity of intracellular Rhodamine 123 accumulation increased from 3.58 +/- 1.63/10(6) cells to 13.96 +/- 3.07/10(6) cells. In the nude mice xenografts, vincristine (0.2 mg/kg of body weight) inhibited the growth of KBv200/MDR1sh solid tumors by 42.0%, but the same dose of vincristine didn't inhibit the growth of KBv200 solid tumors significantly. These results suggest that administration of RNAi targeted MDR1 gene can effectively reverse MDR both in vitro and in vivo models.  相似文献   

7.
Wang JQ  Chen BA  Cheng J  Xu WL  Sun XC 《癌症》2008,27(5):491-495
背景与目的:5-溴汉防己甲素(5-bromotetrandrine,BrTet)是汉防己甲素(tetrandrine,Tet)的溴化产物,具有逆转P-糖蛋白(P-glyeoprotein,P-gp)介导的肿瘤多药耐药(muhidrug resistance,MDR)的作用。本研究旨在比较BrTet与Tet对人白血病细胞K562/A02多药耐药的逆转作用。方法:采用四甲基偶氮唑蓝法(MTT)法检测不同浓度BrTet对K562细胞和K562/A02细胞的增殖抑制效应;检测阿霉素(adfiamycin,ADM)对K562细胞和K562/A02细胞增殖的抑制作用,以及加用BrTet、Tet时上述抑制作用的变化,并计算半数抑制浓度(IC50)及逆转倍数。Westernblot法检测各组细胞P-gp的表达,流式细胞仪检测各组细胞内ADM的蓄积。结果:K562/A02细胞对ADM的耐药倍数为49.51倍。2.0μmol/L及更低浓度的BrTet和1.5μmol/L及更低浓度的Tet对K562细胞和K562/A02细胞抑制率均小于10%,无明显细胞毒性作用。加入1.0μmol/L的Tet后,K562/A02细胞对ADM的耐药倍数为12.17倍。加入0.25、0.5和1.0μmol/L的BrTet后,K562/A02细胞对ADM的耐药倍数分别为17.88、9.97和4.24倍。1.0"mol/L的BrTet和Tet分别使K562/A02细胞内ADM浓度提高了69.0%和51.6%,使P-gp表达分别下调了51.1%和43.73%,其差异具有统计学意义(P<0.05)。结论:BrTet及Tet均可逆转K562/A02细胞耐药,且前者较后者逆转作用更强,逆转机制与抑制P-gp的表达、增加细胞内抗肿瘤药物浓度有关。  相似文献   

8.
Shi Z  Liang YJ  Chen ZS  Wang XH  Ding Y  Chen LM  Fu LW 《Oncology reports》2007,17(4):969-976
Cancer cells developing multidrug resistance (MDR) is one of the most serious clinical problems responsible for the failure of cancer chemotherapy. P-glycoprotein (P-gp) overexpression and inhibitor of apoptosis proteins (IAPs) overexpression in cancer cells are the two common mechanisms of MDR. However, the relationship between IAPs and P-gp in MDR cancer cells is unknown. We investigated the expression levels of two IAPs, Survivin and XIAP, and their interaction with P-gp in MDR cancer cells. We have found that the human epidermoid carcinoma cells KBv200 and breast cancer cells MCF-7/Adr overexpress not only P-gp but also XIAP and Survivin, and showed high resistance to chemotherapeutic drugs doxorubicin, docetaxel and vincristine, in contrast to their parental cells KB and MCF-7. Furthermore, upregulation of Survivin or XIAP through transfection with the plasmid pECFPN1-Survivin or pcDNA3-6myc-XIAP in these four cell sublines did not affect the P-gp expression. Downregulation of Survivin or XIAP through transfection with the Survivin or XIAP siRNA did not have an effect on the P-gp expression in these resistant cells. Additionally, our immunoprecipitation results showed that Survivin or XIAP did not directly bind to P-gp. In summary, our study suggested that the overexpression of Survivin and XIAP in MDR cancer cells does not directly interact with P-gp.  相似文献   

9.

Purpose

H1 is a novel derivative of tetrandrine (Tet). Here we investigate the ability of H1 to reverse P-glycoprotein (Pgp)-mediated multidrug resistance (MDR) and its mechanisms.

Methods

KBv200, MCF-7/adr and their parental sensitive cell lines KB, MCF-7 were used for reversal study. The intracellular accumulation and efflux studies with Pgp substrates of doxorubicin and rhodamine 123 were determined by flow cytometry. The expression of Pgp was investigated by Western blot and RT-PCR analysis. ATPase activity of Pgp was performed by Pgp-Glo? assay systems. The ubiquitination level of Pgp was determined by immunoprecipitation analysis. The effect of ERK1/2 on Pgp expression in KBv200 cells were investigated by RNA interference.

Results

H1 significantly potentiated the sensitivity of Pgp substrates in KBv200 and MCF-7/adr cells, but not in parental cells KB and MCF-7. H1 inhibited Pgp expression in KBv200 cells in a dose-dependent manner, but had no effect on MDR1 expression. Further studies showed that H1 prompted the degradation of Pgp and decreased Pgp protein half-life by enhancing the ubiquitination of Pgp, which may be related to downregulated MEK-ERK signal pathway. We also found H1 inhibited ATPase activity of Pgp in a dose-dependent manner.

Conclusions

H1 is an effectively and potential agent in reversing Pgp-mediated MDR by inhibiting the transport function and expression of Pgp.  相似文献   

10.
Huang M  Liu G 《Cancer letters》1999,135(1):97-105
The innate drug resistance of human hepatocellular carcinoma (HCC) Bel7402 cell line was studied in vitro. MTT assay showed that Bel7402 cells were innately resistant to doxorubicin (Dox), and even more resistant to vincristine (VCR). This resistance could be effectively reversed by verapamil (Ver), one of the classical multidrug resistance (MDR) modulating agents. However, the differences in 5-fluorouracil (5-FU) toxicity between these two cell lines is much less and the resistance of Bel7402 cells could only be slightly reversed by Ver, which may be experimental noise. Immunocytochemical staining using anti-p-glycoprotein monoclonal antibody JSB-1 indicated that the expression of the P-glycoprotein (P-gp) in the innate Bel7402 cells was elevated compared with the sensitive KB cells. The accumulation of Dox in innate resistant Bel7402 cells was 50.7% lower than that in sensitive KB cells by using spectrofluometric analyses, and the accumulation of Dox increased 1.6 fold in Bel7402 cells in the presence of Ver. The susceptibility of Dox-induced apoptosis was also increased in the presence of Ver by using flow cytometric assay and DNA fragmentation quantitative assay as well as by Hoechst 33258 staining. It appears that the innate Bel7402 cells might be useful in screening new antitumour drugs or new chemosensitisers which could overcome the innate or acquired resistant mechanism, and the toxicity and reversal effects with 5-FU are different from those known to be P-gp substrates such as VCR, Dox, and taxol.  相似文献   

11.
Y Gao  D Xiong  M Yang  H Liu  H Peng  X Shao  Y Xu  C Xu  D Fan  L Qin  C Yang  Z Zhu 《Leukemia》2004,18(3):513-520
Overexpressing of P-glycoprotein (Pgp) has been shown to be responsible for cancer resistance to multiple chemotherapeutic agents. Immunotherapy with biological agents, such as bispecific antibodies (BsAbs), may represent a promising approach to overcome the emergence of drug resistance. Here we constructed a recombinant BsAb, a diabody, with specificities to both CD3 on human T-lymphocyte and Pgp on cancer cells. The diabody was produced in Escherichia coli in a soluble functional form and purified by an affinity chromatography with a yield of >4 mg/l culture medium in shaker flask. The diabody binds to both CD3 on T-lymphocytes and Pgp on multidrug-resistant (MDR) tumor cells with affinities that are comparable to its respective parental single chain Fv molecules. In the presence of activated human peripheral blood lymphocytes (PBLs), the diabody mediates effectively the lysis of the Pgp-overexpressing human leukemia K562/A02 and epidermoid carcinoma KBv(200) cells, but is much less potent in mediating the lysis of the parent K562 and KB cells. Further, the diabody localized selectively within the K562/A02 xenografts in mice. When combined with activated PBL, the diabody significantly inhibited the growth of K562/A02 and KBv(200), but had no effect on K562 and KB xenografts. In contrast, treatment with doxorubicin, a standard chemotherapeutic agent, only inhibited the growth of K562 and KB, but had no effect on K562/A02 and KBv(200) xenografts. Taken together, our results suggest that the anti-Pgp x anti-CD3 diabody may have a great potential in the treatment of various MDR cancers.  相似文献   

12.
STI571, an Abl-specific tyrosine kinase inhibitor, selectively kills Bcr-Abl-containing cells in vitro and in vivo . However, some chronic myelogenous leukemia (CML) cell lines are resistant to STI571. We evaluated whether STI571 interacts with P-glycopro-tein (P-gp) and multidrug resistance protein 1 (MRP1), and examined the effect of agents that reverse multidrug resistance (MDR) on the resistance to SI571 in MDR cells. STI571 inhibited the [125l]azidoagosterol A-photolabeling of P-gp, but not that of MRP1. K562/MDR cells that overexpress P-gp were 3.67 times more resistant to STI571 than the parental Philadelphia-chromosome-positive (Ph+) CML K562 cells, and this resistance was most effectively reversed by cepharanthine among the tested reversing agents. The concentration of STI571 required to completely inhibit tyrosine phosphorylation in K562/MDR cells was about 3 times higher than that in K562 cells, and cepharanthine abolished the difference. In KB-G2 cells that overexpress P-gp, but not Bcr-Abl, 2.5 μM STI571 partly reversed the resistance to vincristine (VCR), paclitaxel, etoposide (VP-16) and actinomycin D (ACD) but not to Adriamycin (ADM) or colchicine. STI571 increased the accumulation of VCR, but not that of ADM in KB-G2 cells. STI571 did not reverse resistance to any agent in KB/MRP cells that overexpress MRP1. These findings suggest that STI571 is a substrate for P-gp, but is less efficiently transported by P-gp than VCR, and STI571 is not a substrate for MRP1. Among the tested reversing agents that interact with P-gp, cepharanthine was the most effective agent for the reversal of the resistance to STI571 in K562/ MDR cells. Furthermore, STI571 itself was a potent reversing agent for MDR in P-gp-expressing KB-G2 cells.  相似文献   

13.
A newly synthesized 1,4-benzothiazipine derivate, 4-[3-(4-benzylpiperidin-1-yl) propionyl]-7-methoxy-2,3,4,5-tetrahydro-1, 4-benzothiazepine monohydrochloride (JTV-519) was examined for its ability to reverse P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) mediated multidrug resistance (MDR) in K562/MDR and KB/MRP cells, respectively. JTV-519 at 3 microM reversed the resistance of K562/MDR cells to vincristine (VCR), taxol, etoposide (VP16), adriamycin (ADM) and actinomycin D and at 0.5 or 1 microM reversed their resistance to STI571. JTV-519 at 10 microM enhanced the accumulation of ADM in K562/MDR cells to the level in parental K562 cells and inhibited the efflux of ADM from K562/MDR cells. Photoaffinity labeling of P-gp with 3H-azidopine was almost completely inhibited by 500 microM JTV-519. JTV-519 at 3 microM also partially reversed the resistance of KB/MRP cells to VCR and at 500 microM partially inhibited the photoaffinity labeling of MRP1 with (125)I-II-azidophenyl agosterol A (125I-azidoAG-A). These results suggest that JTV-519 reversed the resistance to the anti-cancer agents in P-gp and MRP1 overexpressing multidrug-resistant cells by directly binding to P-gp and MRP1, and competitively inhibiting transport of the anti-cancer agents.  相似文献   

14.
Wang XH  Jia DZ  Liang YJ  Yan SL  Ding Y  Chen LM  Shi Z  Zeng MS  Liu GF  Fu LW 《Cancer letters》2007,249(2):256-270
Pyrazolon derivatives were reported to have cytotoxicity to some tumour cells. In the present study, we investigated the effect of Lgf-YL-9 on cytotoxicity and cell apoptosis in human epidermoid carcinoma drug-sensitive parental KB cells and multidrug resistant (MDR) KBv200 cells. Lgf-YL-9 exhibited potent cytotoxicity not only to KB cells but also to KBv200 cells, and the IC(50) were 3.81 and 3.45 microg/mL in KB cells and KBv200 cells, respectively. Importantly, Lgf-YL-9 effectively inhibited tumour growth of KB cell xenografts in nude mice. Lgf-YL-9-induced cell apoptosis was confirmed by chromatin condensation, DNA fragmentation, Annexin-V and propidium iodide (PI) double-staining assay and poly(ADP-ribose) polymerase (PARP) cleavage. Furthermore, Lgf-YL-9-mediated apoptosis in KB cells and KBv200 cells was accompanied by the loss of mitochondrial membrane potential (DeltaPsi(m)), the release of cytochrome c, and the activation of caspases-3, -7, and -9, but not by intercalating to DNA. Although Lgf-YL-9-induced apoptosis was associated with the decrease of DeltaPsi(m), reactive oxygen species (ROS) reduction was interestingly observed in both cell lines. The data suggest that Lgf-YL-9 has similar cytotoxicity to drug-sensitive parental KB cells and MDR KBv200 cells. Lgf-YL-9-induced apoptosis is involved in a new ROS-independent mitochondrial dysfunction pathway, but not in intercalating to DNA.  相似文献   

15.
Deng WJ  Zeng ZL  Liang YJ  Dai CL  Zhang JY  Fu LW 《癌症》2008,27(4):364-368
背景与目的:阿霉素是一种应用广泛的抗癌药物,肿瘤组织中阿霉素的浓度比血液浓度能更准确地反映其疗效。本研究采用肿瘤组织中阿霉素浓度的高效液相色谱检测法比较耐药KBv200细胞和敏感KB细胞裸鼠移植瘤组织中阿霉素的浓度。方法:建立KB、KBv200细胞裸鼠移植瘤模型,以高效液相色谱法检测肿瘤组织中阿霉素的浓度。色谱柱为反相BDSC18柱(250mm×4.6mm,ID5μm),流动相:乙腈/0.02mol/L磷酸二氢钾(1∶2.4,V/V,pH3.9);激发波长480nm,发射波长580nm;流速:1.0mL/min。结果:在所建立的色谱条件下,肿瘤组织中阿霉素的线性范围为29.3~7500ng/g,线性相关系数r=0.9998,最低检测浓度为14ng/g。在3750、468.8和117.2ng/g三个浓度的萃取回收率分别为(99.35±7.65)%、(99.79±5.73)%和(103.67±6.76)%,方法回收率分别为(91.89±7.03)%、(94.94±5.18)%、(100.83±5.32)%,日内及日间RSD均小于4.2%。在阿霉素注射后第1、3、5h,KBv200细胞裸鼠移植瘤组织中阿霉素的浓度分别为(139.32±54.68)、(260.00±126.11)和(173.26±13.88)ng/g,KB细胞裸鼠移植瘤组织中分别为(385.13±42.55)、(523.38±138.84)和(460.75±86.85)ng/g,在相同的时间点,KBv200细胞裸鼠移植瘤组织中阿霉素的浓度明显低于其敏感KB细胞株(P<0.05)。结论:采用高效液相色谱法测得耐药细胞肿瘤组织中抗癌药物的浓度低于相应的敏感细胞肿瘤组织。  相似文献   

16.
P-glycoprotein (P-gp) pumps multiple types of drugs out of the cell, using energy generated from ATP, and confers multidrug resistance (MDR) on cancer cells. ZD6474 is an orally active, selective inhibitor of the vascular endothelial growth factor receptor, epidermal growth factor receptor, and rearranged during transfection tyrosine kinases. This study was designed to examine whether ZD6474 reverses P-gp-mediated MDR in cancer cells. Here, we show that clinically achievable levels of ZD6474 reverse P-gp-mediated MDR of the P-gp-overexpressing cell lines derived from breast cancer, MCF-7/adriamycin (ADR), and human oral epidermoid carcinoma, KBV200 to ADR, docetaxel, and vinorelbine. This ability to reverse the P-gp-mediated resistance is comparable to that of another frequently used reversal agent known as verapamil. ZD6474 itself moderately inhibits the proliferation of both MCF-7 and MCF-7/ADR cells with almost equal activity, but its inhibitory effect is not altered by co-incubation with verapamil, suggesting that ZD6474 may not be a substrate of P-gp. In addition, ZD6474 increases the intracellular accumulation of the P-gp substrate, rhodamine-123, and ADR, by enhancing the uptake and/or decreasing the efflux of these compounds in resistant cells. Further studies show that ZD6474 stimulates ATPase activity in a dose-dependent manner, which is required for the proper function of P-gp. In contrast, ZD6474 does not inhibit the expression level of P-gp. Our results suggest that ZD6474 is capable of reversing MDR in cancer cells by directly inhibiting the function of P-gp, a finding that may have clinical implications for ZD6474.  相似文献   

17.
Purpose: This study aimed to evaluate the multidrug resistance (MDR) reversal activity of quercetin (Que) in combination with hyperthermia (HT) in human myelogenous leukemia cells K562/A.

Methods: The cytotoxicity of Que alone and the effect of Que and HT to doxorubicin (Dox) cytotoxicity were determined using MTT assay in K562 and K562/A cells. K562/A cells was heated with or without Que pretreatment, and the protein and mRNA levels of heat shock protein 70 (HSP70) and P-glycoprotein (P-gp) were determined by flow cytometry (FCM) and RT-PCR, respectively. Intracellular accumulation of Dox, cell cycle and apoptosis were monitored with FCM.

Results: Que alone inhibited cell growth in a dose-dependent manner in K562 and K562/A cells. Either Que or HT alone had a weak reversal effect on Dox resistance, however, combination HT and Que showed a much more significant reversal effect on Dox resistance (reverse fold 9.49). The elevated protein expression and mRNA level of HSP70 and P-gp in response to HT were inhibited by Que. Pretreatment with Que caused the cells to accumulate Dox 8.3-fold higher than in control cells. In addition, Que induced apoptosis and G2/M arrest in a dose-dependent manner, and the combination of Que and HT was found to have a synergistic efeect on apoptosis.

Conclusions: Que pretreatment could significantly inhance the MDR reversal activity of HT in resistant cell line, by sensitizing the cell to reversing MDR activity of HT.  相似文献   

18.
Summary We evaluated the multidrug resistance (MDR)-modulating effects of progesterone (PRG) and an orally active, structurally related compound, megestrol acetate (MA), in several MDR human cell lines. At 100 m, both steroids inhibited the binding of aVinca alkaloid photoaffinity analog to P-glycoprotein (P-gp) in MDR human neuroblastic SH-SY5Y/VCR cells [which show >1500-fold resistance to vincristine (VCR) in the tetrazolium dye (MTT) assay]. However, 100 m MA markedly enhanced the binding of [3H]-azidopine to P-gp in both SH-SY5Y/VCR cells and the MDR human epidermoid KB-GSV2 cell line (which displays 250-fold resistance to VCR in the MTT assay). PRG had little effect on the binding of [3H]-azidopine to P-gp. MA at low doses was more effective than PRG in sensitizing cells to VCR and enhancing their accumulation of [3H]-VCR. The highly resistant SH-SY5Y/VCR subline exhibited significant collateral sensitivity to both steroids. These data suggest that MA may be a clinically useful modulator of MDR.This work was supported by NIH grant CA-47652. The first author (G. E. F.) was supported by PHS grant DK07134-15  相似文献   

19.
Yan Dong  Shujuan Shao  Jun Hu  Peiman Yang   《Oral oncology》2009,45(11):991-997
Multidrug resistance (MDR) is a major barrier for chemotherapy of many cancers. Mdr-1 plays a key role in the development of MDR as extensively verified. However, the role of Raf-1 overexpression in the development of multidrug resistance in human squamous carcinoma (KBv200) cells remains largely unknown. The aim of this study was to investigate the correlation of Raf-1 overexpression with the development of multidrug resistance in KBv200 cells. Furthermore, we explored the reversal effect of Raf-1 siRNA transfection and Raf-1/Mdr-1 siRNAs co-transfection on the multidrug resistance of KBv200 cells and potential mechanism of reversing the multidrug resistance. MTT and flow cytometry assay were used to investigate the reversal effect of single transfection with either Raf-1 or Mdr-1 siRNA and double transfection with Raf-1/Mdr-1 siRNAs to vincristine of KBv200 cells. RT-PCR, immunofluorescence and Western Blot were used to detect mRNA and protein expression of Raf-1 and multidrug-resistant gene Mdr-1. The results of gene detection showed that the expression levels of both Raf-1 and Mdr-1 were greatly decreased upon Raf-1 silencing alone or in combination with Mdr-1 silencing. Raf-1 or Mdr-1 siRNA single transfection could reverse the multidrug resistance of KBv200 cells effectively. Compared with single transfection, Raf-1/Mdr-1 siRNAs co-transfection can significantly reduce IC50 values and increase the apoptotic rates of KBv200 cells. The above results suggested that Raf-1 gene may be a novel target for reversing the multidrug resistance of human squamous carcinoma cells. Raf-1/Mdr-1 siRNAs co-transfection might be a promising approach to abrogate the multidrug resistance of cancer cells. The potential mechanism may be via inhibiting the multidrug-resistant gene Mdr-1 expression efficiently.  相似文献   

20.
5-Bromotetrandrine (BrTet) was shown to overcome multi-drug resistance (MDR) in vitro and in vivo by inhibiting the overexpression and efflux function of P-glycoprotein in our previous study. The purpose of the present study was to evaluate the effect of BrTet on the sensitivity of doxorubicin (Dox) induced apoptosis in intrinsic resistant human hepatic cancer Bel7402 cells. The cells were treated with non-toxic concentrations of BrTet (1 μM, 2 μM, 4 μM) or the positive control drug verapamil (Vrp) (10 μM) for 24 h followed by a low dose Dox (3 μM) for 24 h. The results showed that BrTet pretreatment followed by Dox led to typical apoptotic characters as indicated by morphologic changes, DNA fragmentation and changes in cell cycle, while the same dose of BrTet, Vrp and Dox alone did not induce apoptosis in Bel7402 cells. In addition, the pretreatment of BrTet or Vrp followed by Dox induced activation of caspase-3, release of cytochrome c and AIF from mitochondria into cytosol, loss of mitochondrial transmembrane potential (ΔΨm) and elevation of Bax/Bcl-2 ratio, with no effect on activation of caspase-8 and the expression of Fas/FasL. In conclusion, BrTet pretreatment enhanced the sensitivity of Dox to induce apoptosis by causing loss of ΔΨm and elevating the ratio of Bax/Bcl-2, eventually activated mitochondrial apoptotic pathway. These findings further support the potential of BrTet to be used in clinical trail of cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号