首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal spleen cells, when cultured with irradiated trinitrophenyl (TNP)-derivatized syngeneic spleen cells, develop cytotoxic effectors that lyse most effectiviely a TNP-derivatized target that is H-2 compatible with the effector. However, these effectors also lyse to a lesser extent TNP tumor and TNP spleen targets that are H-2 incompatible. This cross-reactive lysis correlates with the degree of cytolysis seen on the TNP-derivatized syngeneic target; it appears to be medicated by Thy 1.2-bearing cells and is inhibited by antisera to the K and/or D loci of the target cell and not by antisera to non-K or non-D surface antigens. Nonradiolabeled TNP-derivatized lymphoid cells syngeneic to either the stimulator or the target are able to competitively inhibit cross-reactive lysis, while TNP chicken red blood cells are unable to specifically inhibit lysis. These data on cross-reactive lysis of TNP-conjugated targets are most consistent with the altered-self hypothesis.  相似文献   

2.
Intravenous injection of CBA mice with H-2-compatible irradiated B10.BR spleen cells led to a sequence of negative and positive selection of the host T-cell response against the multiple foreign minor histocompatibility antigens (HA) on the injected cells. By 1 d posttransfer, thoracic duct lymphocytes (TDL) of the host had lost the capacity to differentiate in vitro into cytotoxic cells specific for the injected minor HA; spleen and lymph node cells, by contrast, gave normal or enriched responses at this time. By 5 d posttransfer, TDL were hyperresponsive to the injected antigens. Selection with disrupted (sonicated) cells gave similar findings. With injection of either irradiated of disrupted spleen cells, the H-2 haplotype of the minor HA- bearing cells had no apparent effect on the magnitude of selection. By contrast, treatment of spleen cells with glutaraldehyde before injection led to H-2 restriction of selection, i.e., negative selection of the CBA response to B10.BR was marked with injection of glutaraldehyde-treated H-2-compatible B10.BR cells but was minimal with H-2-different B10 or B10.D2 cells. These data are taken to imply that, at least in H-2-incompatible situations, the minor HA-bearing cells must be processed by host cells, i.e., to allow the antigens to become associated with self H-2 determinants. Circumstantial evidence from studies on the specificity of selection induced with glutaraldehyde- treated cells from mice of the B10 recombinant strains suggested that I region-restricted T cells may control the induction of H2K, D- restricted cytotoxic precursor cells.  相似文献   

3.
The relative immunogenicity of the H-7.1 alloantigen has been shown in a previous communication to be regulated by a gene in the D region of the mouse major histocompatibility (H-2) complex. The level of relative immunogenicity was inferred from survival times of H-7.1-incompatible skin grafts donated by donors with different H-2 haplotype origins of H-2D region genes. In this communication we report the results of an extension of these previous investigations into the possible role of H-2D region genes in controlling the capacity of H-7.1-incompatible lymphocytes to stimulate H-7.1-speciflc mixed lymphocyte culture proliferation and generation of cytotoxic effector cells. The results reported herein demonstrate that the H-2D genotype of H-7.1-incompatible stimulator cells determines the relative H-7.1-specific capacity of those lymphocytes to stimulate H-7.1-specific proliferation of in vivo primed responder T cells in secondary mixed lymphocyte culture. H-2D(b)-bearing, H-7.l-incompatible stimulators were significantly more effective in stimulating H-7.1-specific proliferation than H-2D(d)-bearing stimulators. As expected, H-2D(b), H-7.1-in-compatible stimulators were also more effective than H-2D(d) a stimulators in generating H-7.1- specific cytotoxic effector cells. Further, the susceptibility of (51)Cr- labeled, H-7.1-incompatible lymphoblast targets to H-7.1-specific lysis was similarly regulated by an H-2D gene. Reciprocal H-2 restriction (F(1) cells are capable of killing only the cells bearing the immunizing cell parental H-2 haplotype) observed by other investigators for cytolysis of non-H-2-incompatible targets was not observed. H-2D a-bearing, H-7.1- incompatible stimulators stimulated generation of cytotoxic effectors capable of detectably lysing H-2D(b) but not H-2D(a)-bearing, H-7.1- incompatible targets. The impact of these observations on the proposed models for H-2 restriction of non-H-2 histocompatibility antigen-specific cytolysis is discussed.  相似文献   

4.
Mouse thymidine kinase (tk-) C3H L (H-2k) cells transformed by the technique of DNA-mediated gene transfer with the herpes simplex virus tk gene together with the BALB/c H-2Ld gene express H-2Ld molecules indistinguishable from their counterparts on spleen cells. An established cloned cell line (8-5) was used to assess the function of the H-2Ld antigen in determining the specificity of alloreactive as well as anti-vesicular stomatitis virus (VSV) cytotoxic T cells (CTL). Both anti-H-2d and anti-H-2Ld CTL displayed a cytotoxic effect against 8-5 cells but not a control cell line transformed with the tk gene only (tk+ cells). Further evidence that 8-5 cells express H-2Ld was provided by the finding that monoclonal anti-H-2Ld but not H-2Dd antibodies blocked target cell lysis by the effector cells. Both BALB/c (H-2d) and DBA/2 (H-2d) animals generated anti-VSV CTL that lysed infected 8-5 but not tk+ cells. To further establish that H-2Ld controlled the specificity of the effector cells, a monoclonal antibody directed against H-2Ld was shown to inhibit lysis of infected 8-5 target cells. To determine whether other H-2d-encoded gene products could serve as restricting antigens for anti-VSV CTL in BALB/c animals, unlabeled VSV infected 8-5 cells were tested for their ability to block lysis of 51chromium-labeled P815 (H-2d)-infected target cells. The 8-5-VSV inhibitor cells inhibited lysis to a slightly lesser extent than unlabeled P815-VSV cells, indicating that H-2Ld plays a major if not exclusive role in restricting anti-VSV CTL in H-2d animals.  相似文献   

5.
Splenic lymphocytes from B10.A and B10.D2 mice were sensitized in vitro to trinitrophenyl (TNP)-modified autologous spleen cells. The effector cells generated were assayed in a 51Cr-release assay on TNP-modified syngeneic or congenic spleen target cells. Effector cells from B10.A donors lysed TNP-modified H-2Kk- but not H-2Dd-region products, whereas B10.D2 effectors reacted with modified products of both the H-2Kd and H-2Dd regions. As an independent confirmation that this selective K-end lysis by B10.A effector cells is due to an H-2-linked responder cell defect (4), anti-H-2Kk but not anti-H-2Dd sera were shown to inhibit the lysis of B10.A-TNP targets by B10.A effectors. In contrast, anti-H-2Dd sera inhibited the lysis of B10.A-TNP targets by B10.D2 effectors. Anti-Ia antibodies had no detectable effect on lysis. Anti-TNP-keyhole limpet hemocyanin sera blocked the lysis of TNP-modified targets, irrespective of whether the effector cells were directed against TNP-modified autologous H-2 products or H-2 alloantigens. These results independently verify that B10. A responding lymphocytes do not generate effector cells to TNP-modified H-2Dd products, whereas B10.D2 lymphocytes do (4), and suggest that some TNP groups are sterically close to (or part of) the serologically defined H-2K- and H-2D-region antigens.  相似文献   

6.
Murine thymus derived (T) lymphocytes primed in vivo to mouse 129 (H-2bc) derived H-2-negative F9 embryonal carcinoma cells and rechallenged in vitro with X-irradiated F9 stimulator cells differentiated into anti-F9 cell immune cytotoxic T lymphocytes (CTL). Using CBA mouse derived splenic responder T cells, F9 stimulator cells triggered a primary cytotoxic anti-F9 response. The CTL generated lysed the F9 antigen-positive target cells F9. PCC3 and PCC4, but not the F9 antigen-negative mouse 129 derived PYS tumor cells, nor LPS induced H-2bc blast cells. Mouse 129 anti-F9 cell antisera but not H-2k anti-H-2bc antisera blocked the lytic interaction with F9 target cells. Similarily unlabeled F9 cells but not H-2bc blast cells inhibited the anti-F9 cell cytotoxicity H-2k anti-F9 cell immune CTL were found to be cytotoxic for syngeneic spermatogonia, known to express the F9 antigen. The results suggest not only that CTL can recognize and lyse H-2-negative target cells, but also that CTL precursors can be sensitized against H-2-negative stimulator cells. From the data available it may be inferred that anti-F9 Cell immune CTL recognize the F9 antigen, known to be linked with the T/t locus. Since anti-F9 cell immune CTL lyse syngeneic spermatogonia, the system may be useful to analyze in vitro the induction and effector phase of a T-cell-mediated cytotoxic autoimmune orchitis.  相似文献   

7.
Spleen cells cultured with syngeneic trinitrophenyl (TNP)-modified stimulator cells display a cytotoxic effect against syngeneic TNP- modified targets, but not against modified targets from unrelated H-2 haplotypes. Targets that share the K and I region of the H-2 complex with the stimulator (or effector) cell are lysed to the same extent as the specific targets, while targets that share the I region only are not. When only the D region is shared, a weak cytotoxic effect is observed. Therefore, the stimulator (or effector) and target cell must share the K or D but not the I region of the H-2 complex in order for optimal cytotoxicity to occur. Spleen cells sensitized to irradiated TNP-modified H-2-allogeneic cells are cytotoxic to these specific cells. Coculture of F1 hybrid cells with irradiated TNP-modified parental cells result in a cytotoxic effect against only those specific parental cells and not TNP-modified cells from the other parent. The cytotoxic effect of the F1 effector cells in the cell-mediated lympholysis test is blocked by the addition of unlabeled TNP-modified targets that are H-2 syngeneic with the sensitizing parental strain, but not H-2 syngeneic with the other parental strain. These data demonstrate that the specificity of the effector cell in this syngeneic cytotoxicity system is directed against altered self H-2-controlled- gene products, rather than a requirement for sharing of histocompatibility genes between effector and target cell in order for lysis to occur. The role of H-2 antigens in determining the sensitivity of a target cell to T-cell-mediated lysis is discussed.  相似文献   

8.
After appropriate in vivo or in vitro immunization, cytotoxic T lymphocytes (CTL) are generated which efficiently kill cells bearing particular membrane antigens in common with the immunizing cell (reviewed in reference 1). Such CTL have been most thoroughly studied in mice, employing alloimmunization with cells differing at the major histocompatibility locus, H-2. in such cases, the predominant cell surface antigens recognized by the CTL appear to be the molecules carrying the serologically defined H-2 specificities, coded for by the K and D regions of the H-2 complex (2). In other syngeneic models of cell-mediated specific cytolysis, involving lymphocyte chariomeningitis (LCM) virus- or ectromelia virus-infected cells or TNP-modified lymphoid cells, thymus-derived cells also constitute the main effector cell type. The CTL generated in these latter systems function most efficiently when virus-infected or TNP-modified target cells share identitites at the H-2K or H-2D loci with the effector CTL and stimulator cells (3-5). Another set of experimental systems in which CTL are generated and play a significant biological role is that of immunity to tumor-associated antigens (TAA) (6). The nature of the TAA which the CTL recognize is only beginning to be understood. Several recent reports indicated the existence of physiochemical and/or antigenic relationships between TAA and H-2 antigens (7,8). These relationships, together with the genetic restrictions cited above in the generation of CTL involving products of the H-2K or H-2D loci suggested the possibility that in certain tumor systems, the TAA which are able to most effectively stimulate CTL responses might be structurally similar to, or linked with, the H-2K or H- 2D molecules on the tumor surface. It has been previously demonstrated in allogenic models that antisera specific for the appropriate H-2K or H-2D products present on a target cell could specifically block CTL-mediated lysis (1,9). This report demonstrates that certain anti-H-2 alloantisera specific for the target tumor cells can block lysis of those target cells mediated by syngeneic tumor-specific CTL effector cells.  相似文献   

9.
Congenitally thymusless nude mice that lacked functional T cells were reconstituted with H-2-compatible or -incompatible thymus grafts taken from either fetal, newborn, or adult mice and transplanted under the kidney capsule or subcutaneously. Transplantation with unirradiated fetal (15--17 d) or newborn thymus grafts reconstituted the nude mice as assessed by their subsequent generation of virus-specific cytotoxic T cells in vivo or alloreactive T cells in vitro. The restriction specificity of T cells from homozygous mice was exclusively for the nude host H-2, as shown by direct cytolysis or by cold target competitive inhibition assays. irrespective of whether nude mice were reconstituted with H-2-compatible, semiallogeneic, or H-2-incompatible, unirradiated newborn or fetal thymus grafts (in order of decreasing efficiency of reconstitution). The restriction specificity for the nonhost H-2 of the thymus could not be demonstrated even after primary or secondary sensitization in an infected appropriate F1 environment. These nude mice reconstituted with fetal or newborn grafts were tolerant to the H-2 of the thymus donors. Nude mice transplanted with irradiated adult thymus grafts were reconstituted functionally with syngeneic or semisyngeneic but not with allogeneic thymus grafts. In homozygous nu/nu irradiated heterozygous recipients of F1 thymus grafts, the restriction specificity for the nonhost thymic H-2 could not be elicited upon adoptive sensitization in irradiated and infected F1 heterozygote stimulator mice; in fact, these chimeras' lymphocytes were not tolerant to the nonhost H-2. The discrepancy between the restorative capacity of unirradiated vs. irradiated thymus grafts suggests that precursors of T cells in nude mice can acquire restriction specificity and immunocompetence independently of a conventional, functioning H-2-compatible thymus if exposed to an allogeneic fetal or a newborn thymus that contains functioning thymocytes of donor type but not if reconstituted with an irradiated adult allogeneic thymus.  相似文献   

10.
The regulatory influence of the rat major histocompatibility complex (MHC) (Ag-B complex) on the specificity of cytotoxic T lymphocytes was investigated. It was shown that the effector cells were specific for the original Ag-B phenotype in rat systems in which the responder and stimulator cell populations were unquestionably MHC identical but expressed different minor alloantigens of viral antigens. However, combined in vivo immunization and restimulation in culture of lymphocytes from rat strains previously thought to be MHC compatible resulted in the generation of cytotoxic T lymphocytes which effectively lyse not only target cells from the specific stimulating strains but also, to varying degrees, target cells from third party strains regardless of their Ag-B haplotypes. Genetic analysis indicates that expression of these cytotoxic T-cell-defined ("CT") antigens, found on both T and B lymphocytes, detectable thus far only with cytotoxic lymphocytes, is controlled by a single locus which segregates in backcross populations with the rat MHC. Discrepancies between the nature of CT antigens of the rat Ag-B and I-region specificities of the mouse H-2 are discussed.  相似文献   

11.
C.B-20 mice were immunized with splenocytes or B leukemia cells (BCL1) from Ig H chain allotype congenic strains. Spleen cells from these immunized mice were rechallenged in vitro to generate H-2-restricted cytotoxic T cells that were specific for target antigens controlled by genes linked to the Ig H chain locus. The anti-Ig H cytotoxic T cells detected an antigen(s) expressed only on surface Ig+ cells. Thus, T cell lymphoblasts, eight BALB/c myeloma cell lines, and a T cell lymphoma were not lysed by the effector cells. In contrast, B cell lymphoblasts and the surface Ig+ BCL1 cells were sensitive to lysis. A surface Ig- hybridoma (which secretes the IgM from the BCL1 cells) generated by fusing BCL1 cells to X63 myeloma cells was not killed by the effector cells. These data indicate that cytotoxic T cells specific for antigenic determinants on either surface IgM+ or IgD+ or on a molecule that is coordinately expressed on IgM+ or IgD+ cells can be generated and that such cells might play a role in regulating the growth of normal B cells or surface Ig+ tumor cells in vivo.  相似文献   

12.
Negative and positive selection procedures were used to establish whether the strong proliferative response of T cells to M1sa determinants is H-2 restricted. After negative selection of H-2 determinants in vivo, it was shown that T cells give high primary mixed lymphocyte reactions in vitro to M1sa determinants presented on H-2-incompatible stimulator cells. Other studies demonstrated that (a) negative selection of T cells to M1sa determinants on H-2-incompatible cells removed T cells with specificity for M1sa-bearing H-2-compatible cells, and (b) T cells primed in vitro or in vivo to M1sa determinants on H-2-compatible cells gave high secondary responses to M1sa determinants presented either on H-2-compatible or H-2-incompatible stimulator cells. From these data we conclude that T cells recognize M1sa determinants per se rather than an association of M1sa plus self or allo-H-2 determinants.  相似文献   

13.
Efforts were made to generate C57BL/6 cytotoxic effector cells to a syngeneic leukemia (E{male}G2) bearing AKR/Gross virus antigens. As we were unable to induce significant cytotoxic activity by immunization with up to 10(8) irradiated E{male}G2 cells, even when cells from such primed animals were subsequently restimulated with E{male}G2 cells in vitro, C57BL/6 mice were immunized with an aliogeneic, virus-producing AKR leukemic cell line (AKR SL3). Peritoneal exudate cells and, to a lesser degree, spleen cells from these mice showed significant lytic activity toward the immunizing allogeneic tumor but not toward E{male}G2. When spleen cells were harvested from animals {approximately equal to}10 d after injection of AKR SL3 and rechallenged in vitro with either E{male}G2 or AKR.H-2(b) SL1, another tumor that displays AKR/Gross virus antigens, then a vigorous cytotoxic response against E{male}G2 and AKR. H-2(b) SL1 was obtained. Effector cells generated by AKR SL3 priming followed by in vitro stimulation with E{male}G2 or AKR.H-2(b) SL1 lysed only cells of H-2(b) haplotype which were strongly positive for the display of serologically detectable AKR/Gross virus antigens. Thus, AKR SL3 cells were not lysed nor were EL4 cells (H-2(b); but only weakly positive for gp70). Cells not bearing the MuLV antigens tested for, such as P815 mastocytoma cells and spleen cell "blasts" from C57BL/6 and CBA (H-2(k)) mice, were also insusceptible to attack. The cytotoxic effector cells induced bore Thy 1.2 alloantigen and were of the Lyt 1+2+ phenotype. Collectively, these findings are consistent with the conclusion that the cytotoxic T cells raised against E{male}G2 are directed against AKR/Gross virus-associated antigens and are H-2 restricted. It will be of interest to determine the relevance of such effector cells to the known resistance of the C57BL/6 mouse to AKR/Gross virus-induced leukemia.  相似文献   

14.
Mouse splenic lymphocytes and lymphoid tumor cells were modified with the trinitrophenyl (TNP) group either by treatment with trinitrobenzene sulfonate (TNBS) (which covalently modifies cell surface proteins) or with TNP stearoyl dextran (TSD) (which binds to the cell by noncovalent forces). These cell preparations were compared for their ability to: (a) sensitive syngeneic splenic lymphocytes leading to the generation of cytotoxic effector cells; (b) serve as lysable targets in a 4-h(51)Cr- release assay for effector cells generated in (a); and (c) act as blocking cells in the lysis of TNBS-medified targets lysed by TNP self effector cells generated in (a). In none of these three experimental systems did TSD-medified syngeneic spleen or H-2-matched tumor cells act either as a sensitizing immunogen or as a target antigen, despite the demonstration that quantitatively equivalent mounts of TNP were exposed on the cell surface in the TNBS- and TSD-modified cells. In contrast, TNBS-modified spleen cells sensitized syngeneic lymphocytes to generate effectors against TNBS-modified syageneic targets. Furthermore, TNBS- modified, H-2-matched cells served as specific lysable targets and as inhibiting cells for such effectors. These results indicate that the manner in which TNP is associated with the cell surface is important in the immunogenicity and antigenicity of hapten-modified syngeneic stimulating cells in generating H-2-associated cell-mediated lympholysis (CML) reactions. These findings raise the possibility that a covalent or at least a stable linkage with cell surface proteins (possibly H-2- controlled products) is important for immunological function. Furthermore, these observations do not favor the dual receptor model for H-2-restricted syngeneic CML if it is assumed in such a model that one receptor is specific for the TNP moiety and the second for unmodified self major histocompatibility products.  相似文献   

15.
Using a 51Cr cytotoxicity assay, the sensitivity of murine cytotoxic T cells to T cell mediated cytotoxicity has been tested. Two experimental approaches have been used. First, cytotoxic T-blast-lymphocytes (CTBL), enriched by the velocity sedimentation at 1 g were used both as cytotoxic effector cells and as 51Cr-labelled target cells. It was found that murine CTBL are capable to lyse directly and specifically allogeneic CTBL within 200 minutes. The second approach used was to incubate CTBL together with CTBL, the cytotoxic activity of which was directed against the transplantation antigens of the added allogeneic CTBL population. After 10 hours, the residual cytotoxic activity was tested. Again it was found that CTBL were capable of functionally inactivating allogeneic CTBL. Therefore the results obtained are incompatible with the concept that target cell lysis by cytotoxic T lymphocytes is mediated by a non specific "lymphotoxin", secreted by activated T cells after the antigen-recognition phase in the confined space between T cells and target cells.  相似文献   

16.
Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific.  相似文献   

17.
Interferon (IFN) pretreatment of low-passage mouse embryonic fibroblasts (MEF) infected with lymphocytic choriomeningitis virus or vaccinia virus rendered these cells two to three times more susceptible to lysis by H-2 restricted, virus-specific cytotoxic T lymphocytes (CTL) than control, virus-infected MEF. The increased sensitivity to lysis correlated with increased expression of surface H-2 antigens, but not viral antigens. Continuous cell lines already highly sensitive to CTL-mediated lysis and already expressing high levels of surface H-2 antigens were unaffected by IFN pretreatment. These results suggest that IFN treatment, by increasing surface H-2 levels, may result in increased association of surface H-2 and virus antigens, leading to enhanced recognition and lysis by virus-specific CTL.  相似文献   

18.
Cytotoxic T cells specific for Sendai virus were generated by culturing murine spleen cells in vitro together with UV-inactivated Sendai virus. In vivo immunization of donor mice with UV-inactivated Sendai virus resulted in an in vitro secondary response of increased magnitude. Cytotoxic activity was demonstrated in a short-term 51Cr-release assay, using syngeneic tumor cells which had been coated with inactivated Sendai virus by incubation at 4 degrees C for 30 min. The lysis of Sendai virus-coated target cells was restricted by the H-2 haplotype of the target cells, suggesting that the H-2 genes of the target cell contributed to the specificity of the lysis. Kinetic experiments showed that susceptibility to lysis by cytotoxic T cells specific for Sendai virus appeared within 30 min after coating target cells with inactivated virus. Furthermore, there was no detectable synthesis of new proteins in cells treated with UV-inactivated Sendai virus. For these reasons, we suggest that neither viral replication nor the synthesis of new proteins are necessary for the production of the antigen recognized by cytotoxic cells specific for Sendai virus. We infer that the virus-specific component on the target cells is probably a preformed virion antigen adsorbed onto or integrated into the cell membrane. These results imply that, if the cytotoxic T cell recognizes a single antigenic determinant specified both by viral and H-2 genes, this determinant is formed by the physical association of H-2 and Sendai virus antigens rather than by their alteration during the processes of synthesis.  相似文献   

19.
Expression of alien histocompatibility antigens on Epstein-Barr virus transformed, cultured lymphoblastoid cell lines (LCL), which were established from normal peripheral blood lymphocytes (PBL), was studied by means of mixed lymphocyte reaction (MLR), cell mediated lysis (CML) and primed lymphocyte typing (PLT). Stimulation of PBL by autologous LCL resulted in some MLR responses and generation of cytotoxic effector cells against autologous LCL. Restimulation of PBL by 16 individual allogeneic PBL failed to prime an individual lymphocytes against autologous LCL in PLT tests. However, stimulation of PBL by a pooled normal PBL resulted in generation of cytotoxic cells against autologous LCL. Culturing of stimulated PBL in the presence of T cell growth factor (TCGF) for 30 days was shown to maintain cytotoxic effector cells in the cell population.  相似文献   

20.
Use of syngeneic, allogeneic, F1, AND H-2 recombinatn mice has shown that animals injected with lymphocytic choriomeningitis (LCM) virus generate T cells which are cytotoxic for H-2K or H-2D compatible, but not H-2 different, virus-infected target cells. Three separate lines of evidence are presented which indicate that these immune T cells are sensitized to "altered-self," the self antigens involved being coded for in the H-2K or H-2d regions. Firstly, cytotoxic activity associated with mutuality at H-2D iy, lysis mediated by immune T cells from F1 or H-2 recombinant mice is specifically inhibited only by presence of unlabeled, virus-infected cells that are H-2 compatible with the targets. Thirdly, LCM-immune F1 and H-2 recombinant T cells inoculated into irradiated, virus-infected recipients proliferate only to kill target cells that are H-2 compatible with both the donor and the recipient. All of these experiments establish that there is a dissociation of T-cell activities between parental haplotypes in F1 mice, and between H-2K and H-2D in recombinants. It would thus seem that there are at least two specificities of tlcm-immune T cells in homozygotes, associated with either H-2K or H-2D, and four specificities in F1 hybrids. The significance of these findings, with respect both to gene duplication and to the marked polymorphism in the H-2 system, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号