首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the fight-or-flight response, epinephrine and norepinephrine released by the sympathetic nervous system increase L-type calcium currents conducted by Ca(V)1.2a channels in the heart, which contributes to enhanced cardiac performance. Activation of beta-adrenergic receptors increases channel activity via phosphorylation by cAMP-dependent protein kinase (PKA) tethered to the distal C-terminal domain of the alpha(1) subunit via an A-kinase anchoring protein (AKAP15). Here we measure phosphorylation of S1928 in dissociated rat ventricular myocytes in response to beta-adrenergic receptor stimulation by using a phosphospecific antibody. Isoproterenol treatment increased phosphorylation of S1928 in the distal C-terminal domain, and a similar increase was observed with a direct activator of adenylyl cyclase, forskolin, confirming that the cAMP and PKA are responsible. Pretreatment with selective beta1- and beta2-adrenergic antagonists reduced the increase in phosphorylation by 79% and 42%, respectively, and pretreatment with both agents completely blocked it. In contrast, treatment with these agents in the presence of 1,2-bis(2-aminophenoxy)ethane-N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester to buffer intracellular calcium results in only beta1-stimulated phosphorylation of S1928. Whole-cell patch clamp studies with intracellular BAPTA demonstrated that 98% of the increase in calcium current was attributable to beta1-adrenergic receptors. Thus, beta-adrenergic stimulation results in phosphorylation of S1928 on the Ca(V)1.2 alpha1 subunit in intact ventricular myocytes via both beta1- and beta2-adrenergic receptor pathways, but the beta2-dependent increase in phosphorylation depends on elevated intracellular calcium and does not contribute to regulation of whole-cell calcium currents at basal calcium levels. Our results correlate phosphorylation of S1928 with beta1-adrenergic functional up-regulation of cardiac calcium channels in the presence of BAPTA in intact ventricular myocytes.  相似文献   

2.
In hippocampal pyramidal cells, dopamine acts at D1 receptors to reduce peak Na(+) currents by activation of phosphorylation by PKA anchored via an A kinase-anchoring protein (AKAP15). However, the mechanism by which AKAP15 anchors PKA to neuronal Na(+) channels is not known. By using a strategy of coimmunoprecipitation from transfected tsA-201 cells, we have found that AKAP15 directly interacts with Na(v)1.2a channels via the intracellular loop between domains I and II. This loop contains key functional phosphorylation sites. Mutagenesis indicated that this interaction occurs through a modified leucine zipper motif near the N terminus of the loop. Whole-cell patch clamp recordings of acutely dissociated hippocampal pyramidal cells revealed that the D1 dopamine receptor agonist SKF 81297 reduces peak Na(+) current amplitude by 20.5%, as reported previously. Disruption of the leucine zipper interaction between Na(v)1.2a and AKAP15 through the inclusion of a small competing peptide in the patch pipette inhibited the SKF 81297-induced reduction in peak Na(+) current, whereas a control peptide with mutations in amino acids important for the leucine zipper interaction did not. Our results define the molecular mechanism by which G protein-coupled signaling pathways can rapidly and efficiently modulate neuronal excitability through local protein phosphorylation of Na(+) channels by specifically anchored PKA.  相似文献   

3.
Kamp TJ  Hell JW 《Circulation research》2000,87(12):1095-1102
Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecular details of regulation of L-type Ca(2+) channels by protein kinase A (PKA) and protein kinase C (PKC) pathways. Multiple G protein-coupled receptors act through cAMP/PKA pathways to regulate L-type channels. ss-Adrenergic receptor stimulation results in a marked increase in I:(Ca), which is mediated by a cAMP/PKA pathway. Growing evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of I:(Ca), including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the alpha(1C) (Ca(v)1.2) subunit. Both alpha(1C) and ss(2a) subunits of the channel are substrates for PKA in vivo. The regulation of L-type Ca(2+) channels by Gq-linked receptors and associated PKC activation is complex, with both stimulation and inhibition of I:(Ca) being observed. The amino terminus of the alpha(1C) subunit is critically involved in PKC regulation. Crosstalk between PKA and PKC pathways occurs in the modulation of I:(Ca). Ultimately, precise regulation of I:(Ca) is needed for normal cardiac function, and alterations in these regulatory pathways may prove important in heart disease.  相似文献   

4.
We report a novel action of intracellular adenosine monophosphate (AMP) to inhibit beta-adrenergic signaling in isolated rat ventricular myocytes. Extracellular application of adenosine or AMP suppressed isoproterenol (Iso)-induced prolongation of action potential duration (APD). This effect was completely abolished by an A(1)-receptor antagonist, DPCPX. Intracellular application of AMP, but not adenosine, attenuated Iso-induced APD prolongation. Iso-induced increases in the L-type Ca(2+) current (I(Ca,L)) were also inhibited by intracellular AMP. These inhibitory effects were not affected by either DPCPX or glibenclamide. In vitro, AMP directly inhibited PKA activity via binding to its regulatory subunit. These results suggest that intracellular AMP attenuates beta-adrenergic signaling by directly inhibiting PKA activity, independently of A(1)-purinergic receptor.  相似文献   

5.
L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein caveolin-3 in muscle. Here we demonstrate that a subpopulation of L-type Ca(2+) channels is localized to caveolae in ventricular myocytes as part of a macromolecular signaling complex necessary for beta(2)-adrenergic receptor (AR) regulation of I(Ca,L). Immunofluorescence studies of isolated ventricular myocytes using confocal microscopy detected extensive colocalization of caveolin-3 and the major pore-forming subunit of the L-type Ca channel (Ca(v)1.2). Immunogold electron microscopy revealed that these proteins colocalize in caveolae. Immunoprecipitation from ventricular myocytes using anti-Ca(v)1.2 or anti-caveolin-3 followed by Western blot analysis showed that caveolin-3, Ca(v)1.2, beta(2)-AR (not beta(1)-AR), G protein alpha(s), adenylyl cyclase, protein kinase A, and protein phosphatase 2a are closely associated. To determine the functional impact of the caveolar-localized beta(2)-AR/Ca(v)1.2 signaling complex, beta(2)-AR stimulation (salbutamol plus atenolol) of I(Ca,L) was examined in pertussis toxin-treated neonatal mouse ventricular myocytes. The stimulation of I(Ca,L) in response to beta(2)-AR activation was eliminated by disruption of caveolae with 10 mM methyl beta-cyclodextrin or by small interfering RNA directed against caveolin-3, whereas beta(1)-AR stimulation (norepinephrine plus prazosin) of I(Ca,L) was not altered. These findings demonstrate that subcellular localization of L-type Ca(2+) channels to caveolar macromolecular signaling complexes is essential for regulation of the channels by specific signaling pathways.  相似文献   

6.
Beta-adrenoceptor stimulation robustly increases cardiac L-type Ca2+ current (ICaL); yet the molecular mechanism of this effect is still not well understood. Previous reports have shown in vitro phosphorylation of a consensus protein kinase A site at serine 1928 on the carboxyl terminus of the alpha1C subunit; however, the functional role of this site has not been investigated in cardiac myocytes. Here, we examine the effects of truncating the distal carboxyl terminus of the alpha1C subunit at amino acid residue 1905 or mutating the putative protein kinase A site at serine 1928 to alanine in adult guinea pig myocytes, using novel dihydropyridine-insensitive alpha1C adenoviruses, coexpressed with beta2 subunits. Expression of alpha1C truncated at 1905 dramatically attenuated the increase of peak ICaL induced by isoproterenol. However, the point mutation S1928A did not significantly attenuate the beta-adrenergic response. The findings indicate that the distal carboxyl-terminus of alpha1C plays an important role in beta-adrenergic upregulation of cardiac L-type Ca2+ channels, but that phosphorylation of serine 1928 is not required for this effect.  相似文献   

7.
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and Rem or Rad, but CaV1.2 and CaV beta 2a transfected cells elicit Ca2+ channel currents in the absence of these small G proteins. Importantly, CaV3 (T type) Ca2+ channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca2+ channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca2+ channel expression and beta-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary beta-subunits, serve as regulators of L type Ca2+ channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways.  相似文献   

8.
Two types of calcium channels in guinea pig ventricular myocytes.   总被引:16,自引:4,他引:16       下载免费PDF全文
In cardiac muscle, Ca2+ plays a key role in regulation of numerous processes, including generation of the action potential and development of tension. The entry of Ca2+ into the cell is regulated primarily by voltage-gated channels in the membrane. Until recently, it was felt that only one type of Ca2+ channel existed in cardiac ventricular muscle. Experiments reported here suggest that in isolated guinea pig ventricular myocytes, there are two distinct types of Ca2+ channels with markedly different activation thresholds, inactivation kinetics, and sensitivities to inorganic and organic Ca2+ channel blockers. The channels were also distinguished based on their response to increased frequency of clamping such that the current through the low-threshold channel decreased while that through the high-threshold channel increased. In a few cells, the current through both channels was enhanced by isoproterenol, a beta-adrenergic agonist, but only the high-threshold channel was enhanced by the Ca2+-channel agonist Bay K 8644. Thus, isolated guinea pig ventricular myocytes appear to have two types of Ca2+ channels distinguished by various criteria.  相似文献   

9.
In skeletal muscle cells, voltage-dependent potentiation of Ca2+ channel activity requires phosphorylation by cAMP-dependent protein kinase (PKA) anchored via an A-kinase anchoring protein (AKAP15), and the most rapid sites of phosphorylation are located in the C-terminal domain. Surprisingly, the site of interaction of the complex of PKA and AKAP15 with the alpha1-subunit of Ca(V)1.1 channels lies in the distal C terminus, which is cleaved from the remainder of the channel by in vivo proteolytic processing. Here we report that the distal C terminus is noncovalently associated with the remainder of the channel via an interaction with a site in the proximal C-terminal domain when expressed as a separate protein in mammalian nonmuscle cells. Deletion mapping of the C terminus of the alpha1-subunit using the yeast two-hybrid assay revealed that a distal C-terminal peptide containing amino acids 1802-1841 specifically interacts with a region in the proximal C terminus containing amino acid residues 1556-1612. Analysis of the purified alpha1-subunit of Ca(V)1.1 channels from skeletal muscle by saturation sequencing of the intracellular peptides by tandem mass spectrometry identified the site of proteolytic processing as alanine 1664. Our results support the conclusion that a noncovalently associated complex of the alpha1-subunit truncated at A1664 with the proteolytically cleaved distal C-terminal domain, AKAP15, and PKA is the primary physiological form of Ca(V)1.1 channels in skeletal muscle cells.  相似文献   

10.
Cerebral aneurysm rupture and subarachnoid hemorrhage (SAH) inflict disability and death on thousands of individuals each year. In addition to vasospasm in large diameter arteries, enhanced constriction of resistance arteries within the cerebral vasculature may contribute to decreased cerebral blood flow and the development of delayed neurological deficits after SAH. In this study, we provide novel evidence that SAH leads to enhanced Ca2+ entry in myocytes of small diameter cerebral arteries through the emergence of R-type voltage-dependent Ca2+ channels (VDCCs) encoded by the gene CaV 2.3. Using in vitro diameter measurements and patch clamp electrophysiology, we have found that L-type VDCC antagonists abolish cerebral artery constriction and block VDCC currents in cerebral artery myocytes from healthy animals. However, 5 days after the intracisternal injection of blood into rabbits to mimic SAH, cerebral artery constriction and VDCC currents were enhanced and partially resistant to L-type VDCC blockers. Further, SNX-482, a blocker of R-type Ca2+ channels, reduced constriction and membrane currents in cerebral arteries from SAH animals, but was without effect on cerebral arteries of healthy animals. Consistent with our biophysical and functional data, cerebral arteries from healthy animals were found to express only L-type VDCCs (CaV 1.2), whereas after SAH, cerebral arteries were found to express both CaV 1.2 and CaV 2.3. We propose that R-type VDCCs may contribute to enhanced cerebral artery constriction after SAH and may represent a novel therapeutic target in the treatment of neurological deficits after SAH.  相似文献   

11.
Cardiac-specific expression of an activated calcineurin protein in the hearts of transgenic (CLN) mice produces a profound hypertrophy that rapidly progresses to heart failure. While calcineurin is regulated by Ca2+, the potential effects of calcineurin on cardiac myocyte Ca2+ handling has not been evaluated. To this end, we examined L-type Ca2+ currents (I(Ca)) in left ventricular myocytes. CLN myocytes had larger (approximately 80%) cell capacitance and enhanced I(Ca) density (approximately 20%) compared with non-transgenic (NTG) littermates, but no change in the current-voltage relationship, single-channel conductance or protein levels of alpha 1 or beta 2 subunit of L-type Ca2+ channels. Interestingly, the kinetics of I(Ca) inactivation was faster (approximately two-fold) in CLN myocytes compared with NTG myocytes. Ryanodine application slowed the rate of I(Ca) inactivation in both groups and abolished the kinetic difference, suggesting that Ca2+ dependent inactivation is increased in CLN myocytes due to altered SR Ca2+ release. Treatment of CLN mice with Cyclosporine A (CsA), a calcineurin inhibitor, prevented myocyte hypertrophy and changes in I(Ca) activity and inactivation kinetics. However, there was no direct effect of CsA on I(Ca) in either NTG or CLN myocytes, suggesting that endogenous calcineurin activity does not directly regulate Ca2+ channel activity. This interpretation is consistent with the observation that I(Ca) density, inactivation kinetics and regulation by isoproterenol were normal in cardiac-specific transgenic mice expressing calcineurin inhibitory protein domains from either Cain or AKAP79. Taken together these data suggest that chronic activation of calcineurin is associated with myocyte hypertrophy and a secondary enhancement of intracellular Ca2+ handling that is tied to the hypertrophy response itself.  相似文献   

12.
Cardiac beta-adrenergic receptors accelerate heart rate by modulating ionic currents through a pathway involving cyclic AMP-dependent protein kinase A (PKA). Previous studies have focused on the regulation of Ca2+ channels by PKA; however, due to the heterogeneity of K+ channels expressed within the heart, little is known about the mechanism by which PKA modulates individual K+ channels. Here we report that PKA strongly enhanced the activity of a cloned delayed rectifier K+ channel that is normally expressed in cardiac atria. This effect required a single PKA consensus phosphorylation site located near the amino terminus of the channel protein. Furthermore, patch clamp analysis revealed that PKA phosphorylation increased the open time that single channels spend in higher conductance states. These studies provide evidence that hormonal modulation of a cardiac K+ channel involves direct phosphorylation by PKA.  相似文献   

13.
Hypertension is a perplexing multiorgan disease involving renal primary pathology and enhanced angiotensin II vascular reactivity. Here, we report that a novel form of a local Ca2+ signaling in arterial smooth muscle is linked to the development of angiotensin II-induced hypertension. Long openings and reopenings of L-type Ca2+ channels in arterial myocytes produce stuttering persistent Ca2+ sparklets that increase Ca2+ influx and vascular tone. These stuttering persistent Ca2+ sparklets arise from the molecular interactions between the L-type Ca2+ channel and protein kinase Calpha at only a few subsarcolemmal regions in resistance arteries. We have identified AKAP150 as the key protein, which targets protein kinase Calpha to the L-type Ca2+ channels and thereby enables its regulatory function. Accordingly, AKAP150 knockout mice (AKAP150-/-) were found to lack persistent Ca2+ sparklets and have lower arterial wall intracellular calcium ([Ca2+]i) and decreased myogenic tone. Furthermore, AKAP150-/- mice were hypotensive and did not develop angiotensin II-induced hypertension. We conclude that local control of L-type Ca2+ channel function is regulated by AKAP150-targeted protein kinase C signaling, which controls stuttering persistent Ca2+ influx, vascular tone, and blood pressure under physiological conditions and underlies angiotensin II-dependent hypertension.  相似文献   

14.
BACKGROUND: Embryonic hearts exhibit spontaneous electrical activity, which depends on Ca2+ influx through L-type Ca2+ channels. In this study the expression of the L-type Ca2+ channel alpha1 subunit gene in the developing mouse heart was investigated. METHODS AND RESULTS: Mouse cardiac ventricles 9.5 days post coitum (dpc), 18 dpc and adult were used. At 9.5 dpc the level of Cav1.3 mRNA was higher than that of Cav1.2 mRNA. With development, Cav1.2 mRNA increased and Cav1.3 mRNA decreased. Analysis of Cav1.3 splicing variants showed that Cav1.3(1b) mRNA was expressed at a higher density than Cav1.3(1a) mRNA. Cav1.3 protein was detected only at 9.5 dpc, whereas Cav1.2 protein was expressed from 9.5 dpc and its expression increased with development. L-type Ca2+ currents were prominent at 9.5 dpc. The Ca2+ current amplitude at 9.5 dpc was comparable to that at 18 dpc, and was larger in adults than at the embryonic stage. L-type Ca2+ current at 9.5 dpc was activated and/or inactivated at more negative membrane potentials than at 18 dpc or adult. L-type Ca2+ channels at 9.5 dpc were less sensitive to inhibition by nisoldipine than at adult. CONCLUSIONS: The Cav1.3 channel is functionally expressed in early embryonic mouse ventricular myocytes and potentially underlies ventricular automaticity.  相似文献   

15.
Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias?   总被引:10,自引:0,他引:10  
L-type Ca2+ channels (LTCCs) are the main portal for Ca2+ entry into cardiac myocytes. These ion channel proteins open in response to cell membrane depolarizations elicited by action potentials, and LTCC current (I(Ca)) flows during the action potential plateau, to increase cellular Ca2+ (Ca2+(i)) and trigger myocardial contraction. I(Ca) is also implicated in the genesis of cardiac arrhythmias under conditions such as heart failure and cardiac hypertrophy, in which the action potential plateau and QT interval are prolonged. This article reviews recent findings about the molecular regulation of LTCCs by the Ca2+-dependent signaling molecule, calmodulin kinase II (CaMKII), and compares this form of regulation with regulation by calmodulin-binding domains and beta-adrenergic receptor agonists. LTCC dysregulation is discussed in the context of new results showing that CaMKII can be a proarrhythmic signal in disease conditions in which Ca2+(i) is disordered and cardiac repolarization is excessively prolonged.  相似文献   

16.
Local, rhythmic, subsarcolemmal Ca2+ releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na(+)-Ca2+ exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of beta-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca2+ cycling and beating rate is also present in vivo, as the regulation of beating rate by local beta-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca2+ cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca2+ balance and spontaneous SR Ca2+ cycling, ie, phospholamban and L-type Ca2+ channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na(+)-Ca2+ exchanger current and is crucial for both basal and reserve cardiac pacemaker function.  相似文献   

17.
alpha1-Adrenoceptor stimulation (alpha1ARS) modulates cardiac muscle contraction under physiological conditions by means of changes in Ca2+ current through L-type channels (ICa,L) and Ca2+ sensitivity of the myofilaments. However, the cellular mechanisms of alpha1ARS are not fully clarified. In this study, we investigated the role of Ca2+/calmodulin-dependent PK II (CaMKII) in the regulation of ICa,L during alpha1ARS in isolated adult rat ventricular myocytes by using the perforated patch-clamp technique. CaMKII inhibition with 0.5 microM KN-93 abolished the potentiation in ICa,L observed during alpha1ARS by 10 microM phenylephrine. In the presence of PKC inhibitor (10 microM chelerythrine), the potentiation of ICa,L by phenylephrine also disappeared. In Western immunoblotting analysis, phenylephrine (> or =1 microM) increased the amount of autophosphorylated CaMKII (active CaMKII) significantly, and this increase was abolished by CaMKII inhibition or PKC inhibition. Also, we investigated changes in the subcellular localization of active CaMKII by using immunofluorescence microscopy and immunoelectron microscopy. Before alpha1ARS, active CaMKII was exclusively located just beneath the plasmalemma. However, after alpha1ARS, active CaMKII was localized close to transverse tubules, where most of L-type Ca2+ channels are located. From these results, we propose that CaMKII, which exists near transverse tubules, is activated and phosphorylated by alpha1ARS and that CaMKII activation directly potentiates ICa,L in rat ventricular myocytes.  相似文献   

18.
BACKGROUND: Transient outward current (I(to)) and L-type calcium current (I(Ca)) are important repolarization currents in cardiac myocytes. These two currents often undergo disease-related remodeling while other currents are spared, suggesting a functional coupling between them. Here, we investigated the effects of I(to) channel blockers, 4-aminopyridine (4-AP) and heteropodatoxin-2 (HpTx2), on I(Ca) in cardiac ventricular myocytes. METHODS AND RESULTS: I(Ca) was recorded in enzymatically dissociated mouse and guinea pig ventricular myocytes using the whole-cell voltage clamp method. In mouse ventricular myocytes, 4-AP (2 mM) significantly facilitated I(Ca) by increasing current amplitude and slowing inactivation. These effects were not voltage-dependent. Similar facilitating effects were seen when equimolar Ba2+ was substituted for external Ca2+, indicating that Ca2+ influx is not required. Measurements of Ca2+/calmodulin-dependent protein kinase (CaMKII) activity revealed significant increases in cells treated with 4-AP. Pretreatment of cells with 10 microM KN93, a specific inhibitor of CaMKII, abolished the effects of 4-AP on I(Ca.) To test the requirement of I(to), we studied guinea pig ventricular myocytes, which do not express I(to) channels. In these cells, 2 mM 4-AP had no effect on I(Ca) amplitude or kinetics. In both cell types, Ca2+-induced I(Ca) facilitation, a CaMKII-dependent process, was observed. However, 4-AP abolished Ca2+-induced I(Ca) facilitation exclusively in mouse ventricular myocytes. CONCLUSION: 4-AP, an I(to) blocker, facilitates L-type Ca2+ current through a mechanism involving the I(to) channel and CaMKII activation. These data indicate a functional association of I(Ca) and I(to) in cardiac myocytes.  相似文献   

19.
20.
Ca(2+) influx via L-type Ca(v)1.2 channels is essential for multiple physiological processes, including gene expression, excitability, and contraction. Amplification of the Ca(2+) signals produced by the opening of these channels is a hallmark of many intracellular signaling cascades, including excitation-contraction coupling in heart. Using optogenetic approaches, we discovered that Ca(v)1.2 channels form clusters of varied sizes in ventricular myocytes. Physical interaction between these channels via their C-tails renders them capable of coordinating their gating, thereby amplifying Ca(2+) influx and excitation-contraction coupling. Light-induced fusion of WT Ca(v)1.2 channels with Ca(v)1.2 channels carrying a gain-of-function mutation that causes arrhythmias and autism in humans with Timothy syndrome (Ca(v)1.2-TS) increased Ca(2+) currents, diastolic and systolic Ca(2+) levels, contractility and the frequency of arrhythmogenic Ca(2+) fluctuations in ventricular myocytes. Our data indicate that these changes in Ca(2+) signaling resulted from Ca(v)1.2-TS increasing the activity of adjoining WT Ca(v)1.2 channels. Collectively, these data support the concept that oligomerization of Ca(v)1.2 channels via their C termini can result in the amplification of Ca(2+) influx into excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号