首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Data from a previous study conducted in Baltimore, MD, showed that ambient fine particulate matter less than 2.5 mum in diameter (PM2.5) concentrations were strongly correlated with corresponding personal PM2.5 exposures, whereas ambient O3, NO2, and SO2 concentrations were weakly correlated with their personal exposures to these gases. In contrast, many of the ambient gas concentrations were reasonable surrogates of personal PM2.5 exposures. METHODS: Personal multipollutant exposures and corresponding ambient air pollution concentrations were measured for 43 subjects living in Boston, MA. The cohort consisted of 20 healthy senior citizens and 23 schoolchildren. Simultaneous 24-hour integrated PM2.5, O3, NO2, and SO2 personal exposures and ambient concentrations were measured. All PM2.5 samples were also analyzed for SO4 (sulfate). We analyzed personal exposure and ambient concentration data using correlation and mixed model regression analyses to examine relationships among (1) ambient PM2.5 concentrations and corresponding ambient gas concentrations; (2) ambient PM2.5 and gas concentrations and their respective personal exposures; (3) ambient gas concentrations and corresponding personal PM2.5 exposures; and (4) personal PM2.5 exposures and corresponding personal gas exposures. RESULTS: We found substantial correlations between ambient PM2.5 concentrations and corresponding personal exposures over the course of time. Additionally, our results support the earlier finding that summertime gaseous pollutant concentrations may be better surrogates of personal PM2.5 exposures (especially personal exposures to PM2.5 of ambient origin) than they are surrogates of personal exposures to the gases themselves. CONCLUSIONS: Particle health effects studies that include both ambient PM2.5 and gaseous concentrations as independent variables must be analyzed carefully and interpreted cautiously, since both parameters may be serving as surrogates for PM2.5 exposures.  相似文献   

2.
BACKGROUND: Epidemiologic studies have shown associations between asthma outcomes and outdoor air pollutants such as nitrogen dioxide and particulate matter mass < 2.5 mum in diameter (PM(2.5)). Independent effects of specific pollutants have been difficult to detect because most studies have relied on highly correlated central-site measurements. OBJECTIVES: This study was designed to evaluate the relationship of daily changes in percent-predicted forced expiratory volume in 1 sec (FEV(1)) with personal and ambient air pollutant exposures. METHODS: For 10 days each, we followed 53 subjects with asthma who were 9-18 years of age and living in the Los Angeles, California, air basin. Subjects self-administered home spirometry in themorning, afternoon, and evening. We measured personal hourly PM(2.5) mass, 24-hr PM(2.5) elemental and organic carbon (EC-OC), and 24-hr NO(2), and the same 24-hr average outdoor central-site(ambient) exposures. We analyzed data with transitional mixed models controlling for personal temperature and humidity, and as-needed beta(2)-agonist inhaler use. RESULTS: FEV(1) decrements were significantly associated with increasing hourly peak and daily average personal PM(2.5), but not ambient PM(2.5). Personal NO(2) was also inversely associated with FEV(1). Ambient NO(2) was more weakly associated. We found stronger associations among 37 subjects not taking controller bronchodilators as follows: Personal EC-OC was inversely associated with morning FEV(1); for an interquartile increase of 71 mug/m(3) 1-hr maximum personal PM(2.5), overall percent-predicted FEV(1) decreased by 1.32% [95% confidence interval (CI), -2.00 to -0.65%]; and for an interquartile increase of 16.8 ppb 2-day average personal NO(2), overall percent-predicted FEV(1) decreased by 2.45% (95% CI, -3.57 to -1.33%). Associations of both personal PM(2.5) and NO(2) with FEV(1) remained when co-regressed, and both confounded ambient NO(2). CONCLUSIONS: Independent pollutant associations with lung function might be missed using ambient data alone. Different sets of causal components are suggested by independence of FEV(1) associations with personal PM(2.5) mass from associations with personal NO(2).  相似文献   

3.
The US Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind lawn mowers, string trimmers, and chainsaws. Personal and background air quality measurements were collected on equipment operators for carbon monoxide (CO), particulate matter 相似文献   

4.
Personal nephelometers provide useful real-time measurements of airborne particulate matter (PM). Recent studies have applied this tool to assess personal exposures and related health effects. However, a thorough quality control (QC) procedure for data collected from such a device in a large-scale exposure assessment study is lacking. We have evaluated the performance of a personal nephelometer (personal DataRAM or pDR) in the field. We present here a series of post hoc QC procedures for improving the quality of the pDR data. The correlations and the ratios between the pDRs and the collocated gravimetric measurements were used as indices of the pDR data quality. The pDR was operated in four modes: passive (no pump), active (with personal sampling pumps), active with a heated inlet, and a humidistat. The pDRs were worn by 21 asthmatic children, placed at their residences indoors and outdoors, as well as at a central site. All fixed-site pDRs were collocated with Harvard Impactors for PM2.5 (HI2.5). By examining the differences between the time-weighted average concentrations calculated from the real-time pDRs' readings and recorded internally by the pDRs, we identified 9.1% of the pDRs' measurements suffered from negative drifts. By comparing the pDRs' daily base level with the HI2.5 measurements, we identified 5.7% of the pDRs' measurements suffered from positive drifts. High relative humidity (RH) affected outdoor pDR measurements, even when a heater was used. Results from a series of chamber experiments suggest that the heated air stream cooled significantly after leaving the heater and entering the pDR light-scattering chamber. An RH correction equation was applied to the pDR measurements to remove the RH effect. The final R2 values between the fixed-site pDRs and the collocated HI2.5 measurements ranged between 0.53 and 0.72. We concluded that with a carefully developed QC procedure, personal nephelometers can provide high-quality data for assessing PM exposures on subjects and at fixed locations. We also recommend that outdoor pDRs be operated in the active mode without a heater and that the RH effect be corrected with an RH correction equation.  相似文献   

5.
BACKGROUND: Research has shown associations between pediatric asthma outcomes and airborne particulate matter (PM). The importance of particle components remains to be determined. METHODS: We followed a panel of 45 schoolchildren with persistent asthma living in Southern California. Subjects were monitored over 10 days with offline fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation. Personal active sampler exposures included continuous particulate matter < 2.5 microm in aerodynamic diameter (PM2.5), 24-hr PM2.5 elemental and organic carbon (EC, OC), and 24-hr nitrogen dioxide. Ambient exposures included PM2.5, PM2.5 EC and OC, and NO2. Data were analyzed with mixed models controlling for personal temperature, humidity and 10-day period. RESULTS: The strongest positive associations were between FeNO and 2-day average pollutant concentrations. Per interquartile range pollutant increase, these were: for 24 microg/m3 personal PM2.5, 1.1 ppb FeNO [95% confidence interval (CI), 0.1-1.9]; for 0.6 microg/m3 personal EC, 0.7 ppb FeNO (95% CI, 0.3-1.1); for 17 ppb personal NO2, 1.6 ppb FeNO (95% CI, 0.4-2.8). Larger associations were found for ambient EC and smaller associations for ambient NO2. Ambient PM2.5 and personal and ambient OC were significant only in subjects taking inhaled corticosteroids (ICS) alone. Subjects taking both ICS and antileukotrienes showed no significant associations. Distributed lag models showed personal PM2.5 in the preceding 5 hr was associated with FeNO. In two-pollutant models, the most robust associations were for personal and ambient EC and NO2, and for personal but not ambient PM2.5. CONCLUSION: PM associations with airway inflammation in asthmatics may be missed using ambient particle mass, which may not sufficiently represent causal pollutant components from fossil fuel combustion.  相似文献   

6.
Personal exposure to particles in Banská Bystrica, Slovakia   总被引:1,自引:0,他引:1  
Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was conducted in Banska Bystrica, Slovakia, to characterize the range of personal exposures to air pollutants and to determine the influence of occupation, season, residence location, and outdoor and indoor concentrations on personal exposures. Twenty-four-hour personal, at-home indoor, and ambient measurements of PM10, PM2.5, sulfate (SO4(2-)) and nicotine were obtained for 18 office workers, 16 industrial workers, and 15 high school students in winter and summer. Results showed that outdoor levels of pollutants were modest, with clear seasonal differences: outdoor PM10 summer/winter mean = 35/45 microg/m3; PM2.5 summer/winter mean = 22/32 microg/m3. SO4(2-) levels were low (4-7 microg/m3) and relatively uniform across the different sample types (personal, indoor, outdoor), areas, and occupational groups. This suggests that SO4(2-) may be a useful marker for combustion mode particles of ambient origin, although the relationship between personal exposures and ambient SO4(2-) levels was more complex than observed in North American settings. During winter especially, the central city area showed higher concentrations than the suburban location for outdoor, personal, and indoor measures of PM10, PM2.5, and to a lesser extent for SO4(2-), suggesting the importance of local sources. For PM2.5 and PM10, ratios consistent with expectations were found among exposure indices for all three subject groups (personal>indoor>outdoor), and between work type (industrial>students>office workers). The ratio of PM2.5 personal to indoor exposures ranged from 1.0 to 3.9 and of personal to outdoor exposures from 1.6 to 4.2. The ratio of PM10 personal to indoor exposures ranged from 1.1 to 2.9 and the ratio of personal to outdoor exposures from 2.1 to 4.1. For a combined group of office workers and students, personal PM10/PM2.5 levels were predicted by statistically significant multivariate models incorporating indoor (for PM2.5) or outdoor (for PM10) PM levels, and nicotine exposure (for PM10). Small but significant fractions of the overall variability, 15% for PM2.5 and 17% for PM10, were explained by these models. The results indicate that central site monitors underpredict actual human exposures to PM2.5 and PM10. Personal exposure to SO4(2-) was found to be predicted by outdoor or indoor SO4(2-) levels with 23-71% of the overall variability explained by these predictors. We conclude that personal exposure measurements and additional demographic and daily activity data are crucial for accurate evaluation of exposure to particles in this setting.  相似文献   

7.
Air pollution epidemiologic studies use ambient pollutant concentrations as surrogates of personal exposure. Strong correlations among numerous ambient pollutant concentrations, however, have made it difficult to determine the relative contribution of each pollutant to a given health outcome and have led to criticism that health effect estimates for particulate matter may be biased due to confounding. In the current study we used data collected from a multipollutant exposure study conducted in Baltimore, Maryland, during both the summer and winter to address the potential for confounding further. Twenty-four-hour personal exposures and corresponding ambient concentrations to fine particulate matter (PM(2.5)), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide were measured for 56 subjects. Results from correlation and regression analyses showed that personal PM(2.5) and gaseous air pollutant exposures were generally not correlated, as only 9 of the 178 individual-specific pairwise correlations were significant. Similarly, ambient concentrations were not associated with their corresponding personal exposures for any of the pollutants, except for PM(2.5), which had significant associations during both seasons (p < 0.0001). Ambient gaseous concentrations were, however, strongly associated with personal PM(2.5) exposures. The strongest associations were shown between ambient O(3) and personal PM(2.5) (p < 0.0001 during both seasons). These results indicate that ambient PM(2.5) concentrations are suitable surrogates for personal PM(2.5) exposures and that ambient gaseous concentrations are surrogates, as opposed to confounders, of PM(2.5). These findings suggest that the use of multiple pollutant models in epidemiologic studies of PM(2.5) may not be suitable and that health effects attributed to the ambient gases may actually be a result of exposures to PM(2.5).  相似文献   

8.
In this article we present results from a 2-year comprehensive exposure assessment study that examined the particulate matter (PM) exposures and health effects in 108 individuals with and without chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), and asthma. The average personal exposures to PM with aerodynamic diameters < 2.5 microm (PM2.5) were similar to the average outdoor PM2.5 concentrations but significantly higher than the average indoor concentrations. Personal PM2.5 exposures in our study groups were lower than those reported in other panel studies of susceptible populations. Indoor and outdoor PM2.5, PM10 (PM with aerodynamic diameters < 10 microm), and the ratio of PM2.5 to PM10 were significantly higher during the heating season. The increase in outdoor PM10 in winter was primarily due to an increase in the PM2.5 fraction. A similar seasonal variation was found for personal PM2.5. The high-risk subjects in our study engaged in an equal amount of dust-generating activities compared with the healthy elderly subjects. The children in the study experienced the highest indoor PM2.5 and PM10 concentrations. Personal PM2.5 exposures varied by study group, with elderly healthy and CHD subjects having the lowest exposures and asthmatic children having the highest exposures. Within study groups, the PM2.5 exposure varied depending on residence because of different particle infiltration efficiencies. Although we found a wide range of longitudinal correlations between central-site and personal PM2.5 measurements, the longitudinal r is closely related to the particle infiltration efficiency. PM2.5 exposures among the COPD and CHD subjects can be predicted with relatively good power with a microenvironmental model composed of three microenvironments. The prediction power is the lowest for the asthmatic children.  相似文献   

9.
Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diameter相似文献   

10.
During summer 1991, we collected indoor, outdoor, and personal ozone concentration data as well as time-activity data in State College, Pennsylvania. These concentrations were measured for 23 children and their homes using passive ozone samplers. Outdoor concentrations were also measured at a stationary ambient monitoring site. Results from this pilot study demonstrate that fixed-site ambient measurements may not adequately represent individual exposures. Outdoor ozone concentrations showed substantial spatial variation between rural and residential regions. Ignoring this spatial variation by using fixed-site measurements to estimate personal exposures can result in an error as high as 127%. In addition, evidence from our pilot study indicates that ozone concentrations of a single indoor microenvironment may not represent those of other indoor microenvironments. Personal exposures were significantly correlated with both indoor (r = 0.55) and outdoor (r = 0.41) concentrations measured at home sites. Multiple regression analyses identified indoor ozone concentrations as the most important predictors of personal exposures. However, models based on time-weighted indoor and outdoor concentrations explained only 40% of the variability in personal exposures. When the model included observations for only those participants who spent the majority of their day in or near their homes, an R2 of 0.76 resulted when estimates were regressed on measured personal exposures. It is evident that contributions from diverse indoor and outdoor microenvironments must be considered to estimate personal ozone exposures accurately.  相似文献   

11.
Personal PM2.5 exposure and markers of oxidative stress in blood   总被引:8,自引:0,他引:8       下载免费PDF全文
Ambient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 micro m in diameter (PM(2.5)) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 micro g/m(3) for personal PM(2.5) exposure, 9.2 micro g/m(3) for background PM(2.5) concentration, and 8.1 X 10(-6)/m for personal carbon black exposure. Personal carbon black exposure and PLAAS concentration were positively associated (p < 0.01), whereas an association between personal PM(2.5) exposure and PLAAS was only of borderline significance (p = 0.061). A 3.7% increase in MDA concentrations per 10 micro g/m(3) increase in personal PM(2.5) exposure was found for women (p < 0.05), whereas there was no significant relationship for the men. Similarly, positive associations between personal PM(2.5)exposure and both RBC and hemoglobin concentrations were found only in women (p < 0.01). There were no significant relationships between background PM(2.5) concentration and any of the biomarkers. This suggests that exposure to particles in moderate concentrations can induce oxidative stress and increase RBCs in peripheral blood. Personal exposure appears more closely related to these biomarkers potentially related to cardiovascular disease than is ambient PM(2.5) background concentrations.  相似文献   

12.
Ascertaining the true risk associated with exposure to particulate matter (PM) is difficult, given the fact that pollutant components are frequently correlated with each other and with other gaseous pollutants; relationships between ambient concentrations and personal exposures are often not well understood; and PM, unlike its gaseous co-pollutants, does not represent a single chemical. In order to examine differences between observed versus true health risk estimate from epidemiologic studies, we conducted a simulation using data from a recent multi-pollutant exposure assessment study in Baltimore, MD. The objectives of the simulation were twofold: (a) to estimate the distribution of personal air pollutant exposures one might expect to observe within a population, given the corresponding ambient concentrations found in that location and; (b) using an assumed true health risk with exposure to one pollutant, to estimate the distribution of health risk estimates likely to be observed in an epidemiologic study using ambient pollutant concentrations as a surrogate of exposure as compared with actual personal pollutant exposures. Results from the simulations showed that PM2.5 was the only pollutant where a true association with its total personal exposures resulted in a significant observed association with its ambient concentrations. The simulated results also showed that true health risks associated with personal exposure to O3 and NO2 would result in no significant observed associations with any of their respective ambient concentrations. Conversely, a true association with PM2.5 would result in a significant, observed association with NO2 (beta=0.0115, 95% confidence interval (CI): 0.0056, 0.0185) and a true association with exposure to SO4(2-) would result in an observed significant association with O3 (beta=0.0035, 95% CI: 0.0021, 0.0051) given the covariance of the ambient pollutant concentrations. The results provide an indication that, in Baltimore during this study period, ambient gaseous concentrations may not have been adequate surrogates for corresponding personal gaseous exposures to allow the question to be investigated using central site monitors. Alternatively, the findings may suggest that in some locations, observed associations with the gaseous pollutants should be interpreted with caution, as they may be reflecting associations with PM or one of its chemical components.  相似文献   

13.
This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5?μm in aerodynamic diameter (PM(2.5)) and daily mortality in the New York City metropolitan area during the period 2001-2005. Personal PM(2.5) exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10?μg/m(3) increase in personal exposure to PM(2.5) from outdoor sources on the previous day. The corresponding estimates per a 10?μg/m(3) increase in PM(2.5) ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM(2.5) were also higher during the summer months.  相似文献   

14.
OBJECTIVES: Airborne particles have been linked to pulmonary oxidative stress and inflammation. Because these effects may be particularly great for traffic-related particles, we examined associations between particle exposures and exhaled nitric oxide (FE(NO)) in a study of 44 senior citizens, which involved repeated trips aboard a diesel bus. METHODS: Samples of FE(NO) collected before and after the trips were regressed against microenvironmental and ambient particle concentrations using mixed models controlling for subject, day, trip, vitamins, collection device, mold, pollen, room air nitric oxide, apparent temperature, and time to analysis. Although ambient concentrations were collected at a fixed location, continuous group-level personal samples characterized microenvironmental exposures throughout facility and trip periods. RESULTS: In pre-trip samples, both microenvironmental and ambient exposures to fine particles were positively associated with FE(NO). For example, an interquartile increase of 4 microg/m(3) in the daily microenvironmental PM(2.5) concentration was associated with a 13% [95% confidence interval (CI), 2-24%) increase in FE(NO). After the trips, however, FE(NO) concentrations were associated pre-dominantly with microenvironmental exposures, with significant associations for concentrations measured throughout the whole day. Associations with exposures during the trip also were strong and statistically significant with a 24% (95% CI, 15-34%) increase in FE(NO) predicted per interquartile increase of 9 microg/m(3) in PM(2.5). Although pre-trip findings were generally robust, our post-trip findings were sensitive to several influential days. CONCLUSIONS: Fine particle exposures resulted in increased levels of FE(NO) in elderly adults, suggestive of increased airway inflammation. These associations were best assessed by microenvironmental exposure measurements during periods of high personal particle exposures.  相似文献   

15.
A case-control study was conducted in five French metropolitan areas in order to assess the role of traffic-related air pollution in the occurrence of childhood asthma. This paper presents the study design and describes the distribution of key exposure variables. A set of 217 pairs of matched 4- to 14-year-old cases and controls were investigated (matching criteria: city, age, and gender). Current and past environmental smoke exposures, indoor allergens or air pollution sources, and personal and family atopy were assessed by standard questionnaires. When possible, direct measurements were done to check the validity of this information, on current data: skin prick tests, urine cotinine, house dust mites densities, personal exposures to, and home indoor concentrations of NO(x) and PM(2.5). Cumulative exposure to traffic-related pollutants was estimated through two indices: "traffic density" refers to a time-weighted average of the traffic density-to-road distance ratio for all home and school addresses of each child's life; "air pollution" index combines lifelong time-activity patterns and ambient air concentration estimates of NO(x), using an air dispersion model of traffic exhausts. Average current PM(2.5) personal exposure is 23.8 microg/m3 (SD=17.4), and average indoor concentrations=22.5 microg/m3 (18.2); corresponding values for NO(2) are 31.4 (13.9) and 36.1 (21.4) microg/m3. Average lifelong calculated exposures to traffic-related NO(x) emissions are 62.6 microg/m3 (43.1). The five cities show important contrasts of exposure to traffic pollutants. These data will allow comparison of lifelong exposures to indicators of traffic exhausts between cases and controls, including during early ages, while controlling for a host of known enhancers or precipitators of airway chronic inflammation and for possible confounders.  相似文献   

16.
BACKGROUND: Although the dispersion model approach has been used in some epidemiologic studies to examine health effects of traffic-specific air pollution, no study has evaluated the model predictions vigorously. METHODS: We evaluated total and traffic-specific particulate matter < 10 and < 2.5 microm in aero-dynamic diameter (PM(10), PM(2.5)), nitrogren dioxide, and nitrogen oxide concentrations predicted by Gaussian dispersion models against fixed-site measurements at different locations, including traffic-impacted, urban-background, and alpine settings between and across cities. The model predictions were then used to estimate individual subjects' historical and cumulative exposures with a temporal trend model. RESULTS: Modeled PM(10) and NO(2) predicted at least 55% and 72% of the variability of the measured PM(10) and NO(2), respectively. Traffic-specific pollution estimates correlated with the NO(x) measurements (R(2) >or=0.77) for background sites but not for traffic sites. Regional background PM(10) accounted for most PM(10) mass in all cities. Whereas traffic PM(10) accounted for < 20% of the total PM(10), it varied significantly within cities. The modeling error for PM(10) was similar within and between cities. Traffic NO(x) accounted for the majority of NO(x) mass in urban areas, whereas background NO(x) accounted for the majority of NO(x) in rural areas. The within-city NO(2) modeling error was larger than that between cities. CONCLUSIONS: The dispersion model predicted well the total PM(10), NO(x), and NO(2) and traffic-specific pollution at background sites. However, the model underpredicted traffic NO(x) and NO(2) at traffic sites and needs refinement to reflect local conditions. The dispersion model predictions for PM(10) are suitable for examining individual exposures and health effects within and between cities.  相似文献   

17.
BACKGROUND: Numerous epidemiologic studies report associations between outdoor concentrations of particles and adverse health effects. Because personal exposure to particles is frequently dominated by exposure to nonambient particles (those originating from indoor sources), we present an approach to evaluate the relative impacts of ambient and nonambient exposures. METHODS: We developed separate estimates of exposures to ambient and nonambient particles of different size ranges (PM2.5, PM10-2.5 and PM10) based on time-activity data and the use of particle sulfate measurements as a tracer for indoor infiltration of ambient particles. To illustrate the application of these estimates, associations between cardiopulmonary health outcomes and the estimated exposures were compared with associations computed using measurements of personal exposures and outdoor concentrations for a repeated-measures panel study of 16 patients with chronic obstructive pulmonary disease conducted in the summer of 1998 in Vancouver. RESULTS: Total personal fine particle exposures were dominated by exposures to nonambient particles, which were not correlated with ambient fine particle exposures or ambient concentrations. Although total and nonambient particle exposures were not associated with any of the health outcomes, ambient exposures (and to a lesser extent ambient concentrations) were associated with decreased lung function, decreased systolic blood pressure, increased heart rate, and increased supraventricular ectopic heartbeats. Measures of heart rate variability showed less consistent relationships among the various exposure metrics. CONCLUSIONS: These results demonstrate the usefulness of separating total personal particle exposures into their ambient and nonambient components. The results support previous epidemiologic findings using ambient concentrations by demonstrating an association between health outcomes and ambient (outdoor origin) particle exposures but not with nonambient (indoor origin) particle exposures.  相似文献   

18.
Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.  相似文献   

19.
20.
Central monitoring site (CMS) concentrations have been used to represent population-based personal exposures to particulate matter (PM) of ambient origin. We investigated the associations of the concentrations of PM(2.5) and PM(10) and their elemental components for elderly clinic patients with chronic obstructive pulmonary disease in two cities with different PM compositions, that is, New York City (NYC) and Seattle. Daily measurements of CMS, outdoor residential, and indoor PM(10) and PM(2.5) concentrations, as well as personal PM(10), were made concurrently for 12-consecutive winter days at 9 NYC and 15 Seattle residences, as well for 9 NYC residences in summer. Filters were analyzed for elemental components using X-ray fluorescence (XRF), and for black carbon (BC) by light reflectance, and outdoor-indoor-personal relationships of PM components were examined using mixed-effect models. Using sulfur (S) as a tracer of PM of ambient origin, the mean contributions of outdoor PM(2.5) was 55.2% of the indoor concentrations in NYC, and 80.0% in Seattle, and outdoor PM(2.5) in NYC and Seattle were 19.7 and 18.5% of personal PM(2.5) concentration. S was distributed homogeneously in both cities (R(2)=0.65), whereas nickel (R(2)=0.23) was much more spatially heterogeneous. Thus, CMS measurements can adequately reflect personal exposures for spatially uniform components, such as sulfate, but they are not adequate for components from more local sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号