首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose. The purpose of this study was to estimate the activation energy at the glass transition temperature (and the fragility index) of amorphous indomethacin from the influence of heating rate on the features of the relaxation peaks obtained by thermally stimulated depolarization currents (TSDC) and to compare the obtained results with those obtained by other procedures based on TSDC data. Methods. The glass transition temperature region of amorphous indomethacin was characterized at different heating rates by TSDC in a way similar to that used to determine the kinetics of the glass transition relaxation by differential scanning calorimetry. The features of a thermal sampled TSDC peak, namely the temperature location and the intensity, depend on the heating rate. Results. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating rate dependence of the TSDC peak location, T m, and of the maximum intensity of the TSDC peak, I(T m). Conclusions. The methods for determining the activation energy for structural relaxation and fragility of indomethacin from TSDC data obtained with different heating rates were compared with other procedures previously proposed. TSDC, which is not a very familiar technique in the community of pharmaceutical scientists, proved to be a very convenient technique to study molecular mobility and to determine the fragility index in glass-forming systems. The value of 60 appears as a reasonable value of the fragility index of indomethacin.  相似文献   

2.
In this study we have investigated the features of the glass transition relaxation of indomethacin using Differential Scanning Calorimetry (DSC). The purpose of this work is to provide an estimation of the activation energy at the glass transition temperature, as well as of the fragility index, of amorphous indomethacin from DSC data. To do so, the glass transition temperature region of amorphous indomethacin was characterized in both cooling and heating regimes. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating and cooling rate dependence of the location of the DSC profile of the glass transition. The obtained results were similar in the heating and in the cooling modes. The results on the fragility index of indomethacin obtained in the present study, m = 60 in the cooling mode and m = 56 in the heating mode, are compared with other values previously published in the literature.  相似文献   

3.
Although the potential advantages of the amorphous solid state is widely recognized among pharmaceutical researchers, its industrial applications have been mainly limited to freeze-dried injectable formulations where the amorphous form is naturally produced. Applications in oral dosage forms have been limited due, at least in part, to the poor state of knowledge regarding physical properties and stability of amorphous materials. Relaxation behavior is perhaps one of the most important physical characteristics of amorphous materials because relaxation kinetics are closely related to physical and chemical stability. Although recent developments in calorimetry methodology have facilitated detailed characterization of relaxation behavior, some experimental difficulties remain, and quantitative analysis of structural relaxation is still under development. This review focuses on the calorimetric investigation of the structural relaxation of drugs and excipients, and discusses the difficulties in the experimental evaluation of the relaxation time by those methods. We also present an original investigation of the impact of increases in relaxation time during an annealing experiment on the values of relaxation time, tau, and stretched exponential constant, beta, obtained from analysis of the experiment according to the Kohlraush-Williams-Watts kinetic model. Using results from a numerical simulation, we find that the values of tau and beta obtained from the data analysis are too large and too small, respectively, but the value of stretched relaxation time, tau(beta), remains reliable. The time dependence of the relaxation time is likely to play an important role in the non-Arrhenius behavior of pharmaceutical glasses.  相似文献   

4.
Purpose. To evaluate a simple calorimetric method for estimating the fragility of amorphous pharmaceutical materials from the width of the glass transition region. Methods. The glass transition temperature regions of eleven amorphous pharmaceutical materials were characterized at six different heating and cooling rates by differential scanning calorimetry (DSC). Results. Activation energies for structural relaxation (which are directly related to glass fragility) were estimated from the scan rate dependence of the glass transition temperature, and correlations between the glass transition widths and the activation energies were examined. The expected correlations were observed, and the exact nature of the relationship varied according to the type of material under consideration. Conclusions. The proposed method of determining the fragility of amorphous materials from the results of simple DSC experiments has some utility, although "calibration of the method for each type of materials is necessary. Further work is required to establish the nature of the relationships for a broad range of amorphous pharmaceutical materials.  相似文献   

5.
The objective of the present work is to determine if crystallization onset observed for an amorphous solid correlate with relaxation time at temperatures above and below the calorimetric glass transition (T(g)). Crystallization onset of spray-dried and freeze-dried amorphous sucrose were measured calorimetrically. Relaxation times measured in two temperature ranges by different techniques (isothermal calorimetry, dielectric spectroscopy) followed the expected modified Vogel-Tammann-Fulcher (VTF) behavior when extrapolated to a temperature near T(g). However, the change in slope was more conspicuous for freeze-dried sucrose, indicating that amorphous materials generated using different techniques differ in their mobilities for temperatures below T(g). Dielectric relaxation time values obtained above T(g) were well correlated to onset of crystallization. The model predicted 21 days for crystallization onset for spray-dried samples stored 7 K below T(g), compared to the experimentally observed crystallization onset of 17 days. Onset times versus temperature for freeze-dried sucrose, however, show a change in slope on approaching T(g), with the onsets somewhat decoupling from measured mobility for temperatures below T(g). Molecular mobility in amorphous materials at temperatures both above and below T(g) can be correlated to macroscopic physical change such as crystallization, but prediction of crystallization onset from relaxation time is only qualitatively correct at temperatures well below T(g).  相似文献   

6.
Purpose. To find out if the physical instability of a lyophilized dosage form is related to molecular mobility below the glass transition temperature. Further, to explore if the stability data generated at temperatures below the glass transition temperature can be used to predict the stability of a lyophilized solid under recommended storage conditions. Methods. The temperature dependence of relaxation time constant, , was obtained for sucrose and trehalose formulations of the monoclonal antibody (5 mg protein/vial) from enthalpy relaxation studies using differential scanning calorimetry. The non-exponentiality parameter, , in the relaxation behavior was also obtained using dielectric relaxation spectroscopy. Results. For both sucrose and trehalose formulations, the variation in with temperature could be fitted Vogel-Tammann-Fulcher (VTF) equation. The two formulations exhibited difference sensitivities to temperature. Sucrose formulation was more fragile and exhibited a stronger non-Arrhenius behavior compared to trehalose formulation below glass transition. Both formulations exhibited <2% aggregation at t values <10, where t is the time of storage. Conclusions. Since the relaxation times for sucrose and trehalose formulations at 5°C are on the order of 108 and 106 hrs, it is likely that both formulations would undergo very little (<2%) aggregation in a practical time scale under refrigerated conditions.  相似文献   

7.
The enthalpic relaxation of three amorphous benzodiazepines, diazepam, temazepam and triazolam was studied using differential scanning calorimetry for ageing temperatures which were below the glass transition temperature, and ageing times up to 16 h. Experimental determination of the relaxation enthalpy and the heat capacity change, both accompanying the glass transition, enabled us to calculate the extent of relaxation of the amorphous drugs at specific ageing conditions. Fitting of the relaxation function to the Williams-Watts two parameter decay function led to calculation of the mean relaxation time constant tau and the molecular relaxation time distribution parameter beta. The mean relaxation time constants for the three drugs increased from approximately ten h at the glass transition temperature with more than eight orders of magnitude at 66 K below the glass transition temperature. It was found that the benzodiazepines exhibited significant molecular mobility until approximately 50 K below the glass transition temperature; below this temperature molecular mobility becomes unimportant with respect to the shelf life stability. Hence the presented procedure provides the formulation scientist with a tool to set storage conditions for amorphous drugs and glassy pharmaceutical products.  相似文献   

8.
Purpose. To show that thermally stimulated depolarization currents (TSDC), which is a dielectric experimental technique relatively unknown in the pharmaceutical scientists community, is a powerful technique to study molecular mobility in pharmaceutical solids, below their glass transition temperature (Tg). Indomethacin (Tg = 42°C) is used as a model compound. Methods. TSDC is used to isolate the individual modes of motion present in indomethacin, in the temperature range between –165°C and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in indomethacin. Results. Two different relaxational processes were detected and characterized: the glass transition relaxation, or -process, and a sub-Tg relaxation, or secondary process. The lower temperature secondary process presents a very low intensity, a very low activation energy, and a very low degree of cooperativity. The fragility index (Angell's scale) of indomethacin obtained from TSDC data is m = 64, which can be compared with other values reported in the literature and obtained from other experimental techniques. Conclusions. TSDC data indicate that indomethacin is a relatively strong glass former (fragility similar to glycerol but lower than sorbitol, trehalose, and sucrose). The high-resolution power of the TSDC technique is illustrated by the fact that it detected and characterized the secondary relaxation in indomethacin, which was not possible by other techniques.  相似文献   

9.
The structural relaxation time is a measure of the molecular mobility involved in enthalpy relaxation, and thus, is a measure of the dynamics of amorphous (glassy) pharmaceutical solids that determines physicochemical properties and reactivity of drugs in amorphous formulations. In this article we describe a novel method for characterization of structural relaxation using isothermal microcalorimetry, which directly measures the rate of heat release during the relaxation processes. The structural relaxation time is then obtained from a fit of the power data to the derivative version of the Kohlrausch-Williams-Watts (KWW) equation. The relaxation times of quenched and lyophilized samples of saccharides were studied using an isothermal microcalorimeter, the Thermal Activity Monitor (TAM). In addition to the KWW derivative function, a derivative equation of the modified stretched exponential function (MSE) was employed to evaluate TAM data. The later (MSE) appeared to have numerical advantages over the KWW equation. The data demonstrate, as expected, that structural relaxation times of amorphous solids depend on a number of variables, including nature of material, temperature, moisture content, thermal history, etc. Isothermal microcalorimetry with the TAM provides a very fast and reliable way to characterize the dynamics of glassy materials, which in many respects is superior to the conventional DSC approach. To the extent stability and structural relaxation dynamics in the glass are correlated, structural relaxation parameters derived by isothermal microcalorimetry may provide data useful for rational development of stable peptide and protein formulations and for the control of their processing.  相似文献   

10.
Purpose The aims of the study are to characterize the slow molecular mobility in solid raffinose in the crystalline pentahydrate form, as well as in the anhydrous amorphous form (Tg = 109°C at 5°C/min), and to analyze the differences and the similarities of the molecular motions in both forms.Methods Thermally stimulated depolarization current (TSDC) is used to isolate the individual modes of motion present in raffinose, in the temperature range between −165 and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in raffinose. The features of the glass transition relaxation in raffinose were characterized by differential scanning calorimetry (DSC).Results A complex mobility was found in the crystalline form of raffinose. From the analysis of the TSDC data, we conclude that these molecular motions are local and noncooperative. A sub-Tg relaxation, or secondary process, was also detected and analyzed by TSDC in the amorphous phase. It has low activation energy and low degree of cooperativity. The glass transition was studied by DSC. The fragility index (Angell’s scale) of raffinose obtained from DSC data is m = 148.Conclusions TSDC proved to be an adequate technique to study the molecular mobility in the crystalline pentahydrate form of raffinose. In the amorphous form, on the other hand, the secondary relaxation was analyzed by TSDC, but the study of the glass transition relaxation was not possible by this experimental technique as a consequence of conductivity problems. The DSC study of the glass transition indicates that raffinose is an extremely fragile glass former.  相似文献   

11.
The purpose of this study is to investigate the mechanism of protein stabilization by sugars in the solid state. That is, explore whether the stabilization is controlled by "glass dynamics" or by native structure preservation through "specific interaction" between sugars and protein. The IgG1 antibody (150 kD) and recombinant human serum albumin (rHSA) (65 kD) were formulated with sorbitol, trehalose, and sucrose. Degradation of lyophilized formulations was quantified using size exclusion (SEC) and ion-exchange chromatography (IEX). The secondary structure of the protein in these formulations was characterized using Fourier Transform Infrared (FTIR) spectroscopy. The molecular mobility, as measured by the stretched relaxation time (tau(beta)) was obtained by fitting the modified stretched exponential (MSE) equation to the calorimetric data from the Thermal Activity Monitor (TAM). Compared with sucrose and trehalose, sorbitol could only slightly protect the protein against aggregation and had no effect on chemical degradation. The chemical degradation and aggregation rates of the protein decreased when the weight ratio of sucrose to protein increased from 0 to 2:1. Storage stability of the proteins showed a reasonably good correlation with the degree of retention of native structure of protein during drying as measured by the spectral correlation coefficient for FTIR spectra. The plots of tau(beta) as a function of fraction of sucrose passed through a maximum at 1:1 weight ratio of sucrose to protein. That is, the molecular mobility did not correlate with the stability of protein at high levels of sucrose content. Although the glass transition appears to be an important parameter for stability, protein stabilization by sugars in the solid state cannot be wholly explained by the glass dynamics mechanism, at least as measured by tau(beta). However, it is possible that the beta-relaxations rather than the alpha-relaxations (i.e., the tau we measured) are critical to stability. The data show that storage stability correlates best with "structure" as determined by FTIR spectroscopy. However, while a specific interaction between stabilizer and protein might be responsible for the preservation of native structure, the evidence supporting this position is not compelling.  相似文献   

12.
The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.  相似文献   

13.
Purpose. In polymeric coatings, plasticizers are used to improve the film-forming characteristic of the polymers. In this study, a computerized method (VolSurf with GRID) was used as a novel tool for the prediction plasticization efficiency () of test compounds, and for determining the critical molecular properties needed for polymer plasticization. Methods. The film-former, starch acetate DS 2.8 (SA), was plasticized with each of 24 tested compounds. A decrease in glass transition temperature of the plasticized free films (determined by differential scanning calorimeter (DSC)) was used as an indicator for . Partial least squares discriminant analysis was used to correlate the experimental data with the theoretical molecular properties of the plasticizers. Results. A good correlation (r2 = 0.77, q2 = 0.58) between the molecular modeling results and the experimental data demonstrated that can be predicted from the three-dimensional molecular structure of a compound. Favorable structural properties identified for the potent SA plasticizer were strong hydrogen bonding capacity and a definitive hydrophobic region on the molecule. Conclusions. The VolSurf method is a valuable tool for predicting the plasticization efficiency of a compound. The correlation between experimental and calculated glass transition temperature values verifies that physicochemical properties are primary factors influencing plasticization efficiency of a compound.  相似文献   

14.
In this work we study the molecular mobility in the amorphous solid state and in the glass transformation region of two compounds, diazepam and nordazepam; these are two benzodiazepines, a family of psychotropic drugs with sedative, anxiolytic and muscle-relaxing properties. The experimental techniques used are thermostimulated currents (TSC) and differential scanning calorimetry (DSC). TSC is a time-dependent technique recognized for its high resolving power; the use of this technique in the depolarization and polarization modes (TSDC and TSPC respectively), provides results that confirm and complement results of dielectric relaxation spectroscopy (DRS) published recently. On the other hand, the variation with the heating rate of the temperature position of the DSC glass transition signal also allowed the estimation of the activation energy at Tg and of the dynamic fragility of the two glass formers.  相似文献   

15.
The thermal and dielectric responses of Vitamin E Preparation USP have been examined to further understand the melting and solidification of this material. A TA Instruments 2920 Differential Scanning Calorimeter was used to examine the thermal response of the sample at a range of scanning speeds. Isothermal dielectric studies were performed using a Novocontrol Dielectric Spectrometer over a range of temperatures down to -70 degrees C and a frequency range of 10(6)-10(-2) Hz. The differential scanning calorimetry (DSC) studies showed an anomalous response whereby at slow heating rates (2 degrees C min(-1)) a small exotherm followed immediately by an endotherm was observed. This response was considerably diminished in magnitude at higher rates (5 degrees C min(-1)) and was not observed at the fastest heating rate of 10 degrees C min(-1). No thermal events were seen on cooling the sample to -60 degrees C. It was suggested that the material formed a glass on cooling, with a predicted transition temperature of approximately -100 degrees C. Further studies using a liquid nitrogen cooling system indicated that the system did indeed exhibit a glass transition, albeit at a higher temperature than predicted (ca -63 degrees C). Low frequency dielectric analysis showed a clear relaxation peak in the loss component, from which the relaxation time could be calculated using the Havriliak-Negami model. The relationship between the relaxation time and the temperature was studied and was found to follow the Vogel-Tammann-Fulcher (VTF) modification of the Arrhenius equation. It is therefore concluded that Vitamin E Preparation USP is a glass-forming material that exhibits kinetically-hindered recrystallisation and melting behaviour. The study has also indicated that DSC and low frequency dielectric analysis may be powerful complementary tools in the study of the low temperature behaviour of pharmaceuticals.  相似文献   

16.
Verapamil hydrochloride (VH) is a very popular calcium channel blocker. Solubility of its crystalline form in the blood reaches only 10–20%. Thus, it seems to be very important to improve its bioavailability. In this article, we show that the preparation of the amorphous form of VH enhance its dissolution rate. In addition we performed dielectric measurements to describe molecular dynamics of this active pharmaceutical ingredient (API). Since examined sample is typical ionically conducting material, to gain information about structural relaxation we employed the dielectric modulus formalism. The temperature dependence of the structural relaxation time can be described over the entire measured range by a single Vogel–Fulcher–Tamman (VFT) equation. From the VFT fits the glass transition temperature was estimated as Tg = 320.1 K. Below glass transition temperature one clearly visible secondary relaxation, with activation energy Ea = 37.8 kJ/mol, was reported. Deviations of experimental data from KWW fits on high-frequency flank of α-peak indicate the presence of an excess wing in tested sample. Based on Kia Ngai's coupling model we identified the excess wing as true Johari–Goldstein process. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:828–839, 2010  相似文献   

17.
Purpose. The applicability of isothermal microcalorimetry (IMC) for evaluating enthalpy relaxation and recovery processes of amorphous material was assessed. Methods. A maltose-based formulation was prepared by freeze-dry method. Differential scanning calorimetry (DSC) was used to investigate its glass transition and relaxation behaviors. IMC was applied to quantitatively analyze the relaxation and the recovery processes. The IMC data were analyzed using a derivative of the Kohlrausch-Williams-Watts equation. Results. The glass transition temperature of the formulation and its fictive temperature stored at 15°C for 1 year were 62 and 32°C, respectively. DSC study showed that annealing below the fictive temperature increased the enthalpy recovery, but it was decreased by annealing at higher temperatures. IMC enabled direct observation of the heat flow during both the relaxation and the recovery processes. The decay constant for the recovery process (recovery time) was much smaller and less sensitive to the temperature than that for the relaxation process (relaxation time). Conclusions. IMC was successfully used to obtain quantitative information on both relaxation and recovery processes of amorphous material. The relaxation parameters obtained by this method could explain the thermodynamic behavior of the formulation.  相似文献   

18.
The objective of the present study was to estimate the molecular mobility of glassy itraconazole below the glass transition, in comparison with structural analogues (i.e. miconazole and ketoconazole).Glassy itraconazole and miconazole were prepared by cooling from the melt. The glassy state of the drug was investigated with modulated temperature DSC using the following conditions: amplitude +/-0.212 K, period 40 s, underlying heating rate 2 K/min. The glass transition was determined from the reversing heat flow and occurred at 332.4 (+/-0.5) K and 274.8 (+/-0.4) K for itraconazole and miconazole, respectively. The jump in heat capacity at the glass transition was 303.42 (+/-3.43) J/mol K for itraconazole and 179.35 (+/-0.89) J/mol K for miconazole. The influence of the experimental conditions on the position of the glass transition of itraconazole was investigated by varying the amplitude from +/-0.133 to +/-0.292 K and the period from 25 to 55 s, while the underlying heating rate was kept constant at 2 K/min. Glass transition temperature, T(g), was not significantly influenced by the frequency of the modulation nor by the cooling rate. However, the relaxation enthalpy at the glass transition increased with decreasing cooling rate indicating relaxation during the glass formation process. To estimate the molecular mobility of the glassy materials, annealing experiments were performed from T(g)--10 to T(g)--40 K for periods ranging from 15 min to 16 h.Fitting the extent of relaxation of glassy itraconazole to the Williams--Watts decay function and comparing the obtained values with those of amorphous miconazole and ketoconazole indicated that the molecular mobility is influenced by the complexity of the molecular structure. The more complex the structure, the more stable the amorphous state.  相似文献   

19.
The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.  相似文献   

20.
Purpose. To determine the viscosity and the frequency-dependent shear modulus of supercooled indomethacin as a function of temperature near and above its glass transition temperature and from these data to obtain a quantitative measure of its molecular mobility in the amorphous state. Methods. Viscoelastic measurements were carried with a controlled strain rheometer in the frequency domain, at 9 temperatures from 44° to 90°C. Results. The viscosity of supercooled indomethacin shows a strong non-Arrhenius temperature dependence over the temperature range studied, indicative of a fragile amorphous material. Application of the viscosity data to the VTF equation indicates a viscosity of 4.5 × 1010 Pa.s at the calorimetric Tg of 41°C, and a T0 of –17°C. From the complex shear modulus and the Cole-Davidson equation the shear relaxation behaviour is found to be non-exponential, and the shear relaxation time at Tg is found to be approximately 100 sec. Conclusions. Supercooled indomethacin near and above its Tg exhibits significant molecular mobility, with relaxation times similar to the timescales covered in the handling and storage of pharmaceutical products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号