首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While human fetal xenografts placed into immunocompromised animal hosts have been shown to survive and grow, their ability to function and influence the host tissue has not been fully examined. Therefore, we implanted grafts of human fetal mesencephalic tissue intracranially into rats with unilateral 6-hydroxydopamine lesions of their nigrostriatal dopaminergic innervation and tested the rats behaviorally for reductions in apomorphine-induced rotations. The purpose of this study was to test the ability of these grafts to provide a functional reinnervation by comparing the behavioral changes with the morphology and presence of electrophysiologically active dopaminergic neurons within the graft and with firing rates of host striatal neurons. Adult Sprague-Dawley rats that had been unilaterally lesioned and that showed a stable two peak pattern of apomorphine-induced rotations received grafts of human fetal mesencephalic tissue placed directly into the lesioned striatum. These rats were then further tested each month for five months for reductions in their turning behavior. At 5 to 6 months postgrafting, electrophysiological recordings were made of cells within the graft and within the host striatum. The rats were then examined immunohistochemically to evaluate graft survival and extent of reinnervation of the host tissue. The rats receiving mesencephalic dopaminergic grafts demonstrated a 79% reduction in their apomorphine-induced rotations. Electrophysiological recordings revealed spontaneously active dopaminergic neurons within the graft as well as host striatal cell firing rates consistent with those of dopamine-innervated cells. Furthermore, immunohistochemical studies confirmed graft survival and revealed marked fiber outgrowth from the graft into and throughout the striatum. Taken together these findings provide evidence that grafts of human fetal mesencephalic tissue are able to produce behavioral improvements in lesioned animals which are associated with the presence of dopaminergic neurons within the graft and are consistent with normal host striatal cell activity levels.  相似文献   

2.
Spontaneous release and metabolism of dopamine (DA) from intrastriatal grafts of fetal mesencephalic DA neurons was measured by intracerebral dialysis. Mesencephalic DA cell suspensions were implanted into the head of the caudate-putamen in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway. Four months later, when tests for amphetamine-induced turning behaviour showed that the grafts had become functional, loops of dialysis tubing were implanted into the striatum on the grafted side and the contralateral non-lesioned side of the grafted rats, and in a similar position in the denervated caudate-putamen of 6-OHDA lesioned control rats. Dialysis perfusates collected from the 6-OHDA lesioned striata showed a reduction of about 95-98% in DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). In the grafted animals these levels had recovered to about 40% of control for DA and to 12-16% of control for HVA and DOPAC. In addition, the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) was increased in the grafted striata compared to both the lesioned and non-lesioned controls. Amphetamine had little or no effect on DA release in the 6-OHDA lesioned rats, but caused a marked increase in DA release in the grafted rats, this response being proportional to that seen in intact striata. Since the subsequent histochemical analysis showed that the dialysis probe had been located in the transplant-reinnervated part of the caudate-putamen, the results provide additional evidence that the grafted DA neurons exert their functional effects through a continuous active transmitter release from their newly-established terminals in the reinnervated host target.  相似文献   

3.
Blocks of embryonic rat ventral mesencephalic tissue containing the developing A8–A10 dopamine (DA) cell groups were cryopreserved and stored for approximately 1 year, at which time this tissue was thawed, dissociated into a cell suspension, and compared to a similar preparation of fresh mesencephalic tissue for viability in tissue culture and neural grafts. Estimates of total cell number immediately prior to plating in culture indicated that cryopreserved tissue yields fewer cells, but when this reduced cell number is compensated for, and equal numbers of cells were plated in culture, approximately equal total numbers of neurons, as well as tyrosine hydroxylase (TH)-positive neurons, were present in cultures from cryopreserved and fresh tissue. Grafting of equal numbers of fresh and cryopreserved mesencephalic cells into the striatum of adult rats with large unilateral lesions of the nigrostriatal DA pathway tended to yield smaller grafts with fewer surviving TH-positive cells with less extensive neuronal processes when tissue was previously cryopreserved. However, grafts derived from freeze-stored tissue provided a similar timecourse and extent of behavioral recovery in amphetamine-induced rotational tests to that provided by fresh tissue grafts. Taken together, our findings indicate that while cryopreservation of mesencephalic tissue has its costs — reduced cell yield in cultures and grafts, and compromised morphology in grafts — sufficient numbers of cryopreserved neurons survive the grafting procedure to ameliorate behavioral signs of DA depletion in the lesioned rat model.  相似文献   

4.
The survival rate of dopamine (DA) neurons in mesencephalic grafts to young adult rats is poor, estimated at 5-20%, and even poorer in grafts to the aged striatum. Grafted cells die in young adult rats during the first 4 days after implantation. The present study was undertaken to determine whether the decreased survival of DA neurons in grafts to aged rats is (1) due to additional cell death during the immediate postgrafting interval or (2) due to protracted cell loss during longer postgrafting intervals. We compared survival rates of tyrosine hydroxylase-immunoreactive (THir) neurons in cell suspension grafts to young adult (3 months) and aged (24 months) male Fischer 344 rats at 4 days and 2 weeks after transplantation. At 4 days after grafting, mesencephalic grafts within the aged rat striatum contain approximately 25% of the number of THir neurons in the same mesencephalic cell suspension grafted to young adult rats. This corroborates the decreased survival of grafted DA neurons we have demonstrated previously at 10 weeks postgrafting. THir neurons in grafts to the intact striatum possessed a significantly shorter "long axis" than their counterparts on the lesioned side. No significant differences in the number of apoptotic nuclear profiles or total alkaline phosphatase staining between mesencephalic grafts to young and aged rats were detectable at 4 days postgrafting. In summary, the present study indicates that the exaggerated cell death of grafted DA neurons that occurs following implantation to the aged striatum occurs during the immediate postgrafting interval, timing identical to that documented for young adult hosts.  相似文献   

5.
One hypothesis regarding the etiology of schizophrenia proposes that disruption of the dopaminergic innervation of the prefrontal cortex leads to an increase in dopamine (DA) transmission in subcortical regions. In the present study, we examined the effect of 6-hydroxydopamine lesions of the medial prefrontal cortex (mPFC) dopamine innervation on the spontaneous electrophysiological activity of ventral tegmental DA neurons recorded in vivo. DA cell activity was assessed along three dimensions: (1) the relative proportion of DA neurons exhibiting spontaneous activity, (2) their basal firing rate, and (3) the mean percentage of spikes fired in bursts. In lesioned rats, DA neurons in the ventral tegmental area (VTA) exhibited a significantly slower mean firing rate, as well as a significant reduction in the percentage of spikes fired in bursts relative to controls. In contrast, depletion of DA in the mPFC did not have a significant effect on the relative proportion of VTA DA neurons exhibiting spontaneous activity. We suggest that by reducing the basal electrophysiological activity of VTA DA neurons, mPFC DA depletion may lead to an increase in the level of responsivity of the system to excitatory stimuli. Thus, the magnitude of increase in action potential-dependent DA release that occurs in response to a challenge may be augmented in lesioned rats.  相似文献   

6.
To enhance the current therapeutic benefit of dopamine (DA) neuron grafts in Parkinson's disease, strategies must be developed that increase both DA neuron survival and fiber outgrowth into the denervated striatum. Previous work in our laboratory has demonstrated that dopaminergic neurons grow to greater size when co-grafted with striatal cell suspensions and display extensive tyrosine hydroxylase-positive (TH+) projections, but no conclusion could be reached concerning enhancement of survival of grafted DA neurons. The aim of the present study was to characterize further the potential trophic effects of striatal co-grafts on grafted mesencephalic DA neuron survival. Unilaterally lesioned male Fischer 344 rats were grafted with either a suspension of mesencephalic cells or with both mesencephalic and striatal cell suspensions. Co-grafts were either mixed together or placed separately into the striatum. Lesioned rats receiving no graft served as controls. Rotational behavior was assessed following amphetamine challenge at 2 weeks prior to grafting and at 4 and 8 weeks following grafting. Only rats receiving co-grafts of nigral and striatal suspensions separated by a distance of 1 mm showed significant behavioral recovery from baseline rotational asymmetry. Both mixed and separate striatal co-grafts were associated with a doubling of DA neuron survival compared with solo mesencephalic grafts. In the mixed co-graft experiment, DA neurite branching appeared enhanced and TH-rich patches were observed, whereas with co-grafts that were separated, TH+ innervation of the intervening host striatum was increased significantly. These results provide the first evidence suggesting that nigral-striatal co-grafts, particularly those placed separately and in proximity to each other, increase both DA neuron survival and neurite extension from the mesencephalic component of the grafts. J. Comp. Neurol. 399:530–540, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
目的 观察并检测胚鼠纹状体外侧节突 (LGE)对多巴胺能 (DA)细胞存活性的促进和营养导向作用。方法 将帕金森病 (PD)模型随机分成四组 :Co -culture组 (n =12 ) ;Cograft组 (n =12 ) ;Solo -VM组 (n =12 ) ;Con trol组 (n =8)。将胚鼠LGE细胞和腹侧中脑组织 (VM )制成细胞悬液 ,植入Control组外的其他各组动物的尾壳核。 2周后进行PD鼠行为学检测 ,连续观察 2 4周 ,继之将各组大鼠处死 ,进行免疫组化染色。结果 Co -culture组和Co - graft组大鼠移植后旋转行为较Solo -VM组大鼠明显减少。CO -culture组和CO - graft组之间大鼠的旋转行为比较 ,无统计学差异。免疫组化观察证实LGE和VM离体培养移植和新鲜移植均能提高DA细胞的存活性 ,增加宿主纹状体内DA纤维重新支配的密度 ,并形成明显的DA细胞团。结论 LGE细胞对VM移植物有明显的营养导向作用 ,并可增强DA细胞的存活 ,促进移值后DA细胞功能持久维持 ,并增加DA细胞再支配的密度  相似文献   

8.
Extracellular single unit recording and microiontophoretic techniques were used to determine the sensitivities and interactions of D1 and D2 dopamine (DA) receptors in the caudate putamen (CPu) of rats that were denervated of DA by intraventricular injections of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). Seven to 10 d after the 6-OHDA injection, DA levels in the ipsilateral CPu were reduced to 11.8% of control. Current-response curves revealed that the inhibitory responses of CPu neurons to microiontophoretic administration of both the selective D1 receptor agonist SKF-38393 and the selective D2 receptor agonist quinpirole were significantly increased in 6-OHDA-pretreated rats, suggesting up-regulation of both receptor subtypes. Although our previous studies have established that D1 receptor activation is normally required for (enables) the inhibitory effects of selective D2 agonists in the CPu, this requirement was no longer evident in 6-OHDA-denervated rats. Whereas acute DA depletion [produced by the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT)] attenuated the inhibitory effects of quinpirole on CPu neurons, long-term DA denervation (produced by 6-OHDA) enhanced the inhibitory effects of the D2 agonist. The enhanced effects of quinpirole in 6-OHDA-lesioned rats were not due to residual DA stimulating supersensitive D1 receptors (i.e., enabling) since further DA depletion (99.7%), produced by acute administration of AMPT in 6-OHDA-lesioned rats, failed to diminish the inhibitory efficacy of quinpirole. In addition to relieving D2 receptors from the need for D1 receptor-mediated enabling, 6-OHDA lesions also abolished the normal synergistic relationship between the receptor subtypes since low (subinhibitory) currents of SKF-38393 (4 nA) failed to potentiate the inhibitory effects of quinpirole on CPu neurons in lesioned rats. Similar findings (i.e., supersensitivity and loss of synergistic effects) were obtained from rats that had received repeated pretreatment with reserpine (2.5 mg/kg) for 4 d, indicating that these effects of 6-OHDA lesions were due to the depletion of synaptic DA rather than to the structural loss of DA terminals. Therefore, both the quantitative (potentiation) and the qualitative (enabling) synergistic effects between D1 and D2 receptors in the rat CPu were abolished when these receptors were functionally supersensitive. The present study provides electrophysiological support for previous behavioral studies indicating that the requirement of D1 receptor stimulation for D2 receptor-mediated functional effects (enabling) is not maintained in rats chronically depleted of DA by either 6-OHDA lesions or repeated reserpine.  相似文献   

9.
The present study examined the effects of unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) on electrophysiological properties of subthalamic neurons (STN) in adult rats. Most neurons displayed regular spontaneous tonic firing patterns in both control and lesioned animals; however, the percentage of neurons with spontaneous burst firing at hyperpolarized membrane potentials was increased significantly in lesioned animals compared with controls (45% vs. 14% respectively). In the presence of bicuculline, a gamma-aminobutyric acid type A (GABAA) receptor antagonist, electrical stimulation of the internal capsule produced monosynaptic excitatory postsynaptic potentials (EPSPs) in almost all recorded neurons. DA (50 microM) increased the amplitude and/or duration of the EPSPs in neurons from both groups, whereas the DA D1 receptor agonist SKF 81297 (10 microM) produced a significant increase in amplitude and/or duration of EPSPs in neurons from the lesioned group only. This latter increase was blocked by pretreatment with the DA D1 antagonist SCH 23390 (10 microM). These data suggest that unilateral degeneration of DA neurons in the SNc changes firing properties and enhances electrophysiological responsiveness of STN neurons to activation of DA D1 receptors.  相似文献   

10.
11.
Parkinson's disease (PD) is a neurodegenerative disease marked by severe loss of dopamine (DA) neurons in the nigrostriatal system, which results in depletion of striatal DA. Transplantation of embryonic ventral mesencephalic (VM) DA neurons into the striatum is a currently explored experimental treatment aimed at replacing lost DA in the nigrostriatal system, but is plagued with poor survival (5-20%) of implanted neurons. Here, we tested the ability of erythropoietin (Epo) to provide neuroprotection for embryonic day 14 (E14) VM DA neurons. Epo was tested in vitro for the ability to augment tyrosine hydroxylase-immunoreactive (TH-ir) neuron survival under normal cell culture conditions. In vitro, Epo did not increase the number of TH-ir neurons when administered at the time of plating the E14 VM cells in culture. We also tested the efficacy of Epo to enhance E14 VM transplants in vivo. Rats unilaterally lesioned with 6-hydroxydopamine received transplants that were incubated in Epo. Treatment with Epo produced significant increases in TH-ir neuron number, soma size, and staining intensity. Animals receiving Epo-treated grafts exhibited significantly accelerated functional improvements and significantly greater overall improvements from rotational asymmetry compared to control grafted rats. These data indicate that the survival of embryonic mesencephalic TH-ir neurons is increased when Epo is administered with grafted cells in a rodent model of PD. As direct neurotrophic effects of Epo were not observed in vitro, the mechanism of Epo neuroprotection remains to be elucidated.  相似文献   

12.
We have recently demonstrated that a diffusible factor(s) derived from explanted adult rat sciatic nerve can increase the number and neurite outgrowth of embryonic rat dopamine (DA) neurons in culture. The present study extends this finding to compare DA neuron-sciatic nerve co-grafts to grafts of DA-rich neural tissue alone for behavioral and morphological effects in rats with unilateral nigrostriatal lesions of the DA pathway. Our results indicate that the presence of a co-grafted segment of sciatic nerve increased the likelihood of rapid behavioral recovery and promoted complete recovery mediated by small grafts that yielded only modest behavioral changes in the absence of co-grafted nerve. These behavioral effects were accompanied by a modest increase in survival of grafted tyrosine hydroxylase-positive neurons in the striatum and a more pronounced increase in the area and density of striatal reinnervation provided by grafted DA neurons in co-grafted animals. This evidence supports the view that a diffusible product of explanted peripheral nerve acts as a growth-promoting factor for embryonic DA neurons and that the presence of this factor augments the behavioral efficacy of grafted DA neurons.  相似文献   

13.
Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are a promising unlimited source of cells for cell replacement therapy in Parkinson's disease (PD). A number of studies have demonstrated functionality of DA neurons originating from hESCs when grafted to the striatum of rodent and non‐human primate models of PD. However, several questions remain in regard to their axonal outgrowth potential and capacity to integrate into host circuitry. Here, ventral midbrain (VM) patterned hESC‐derived progenitors were grafted into the midbrain of 6‐hydroxydopamine‐lesioned rats, and analyzed at 6, 18, and 24 weeks for a time‐course evaluation of specificity and extent of graft‐derived fiber outgrowth as well as potential for functional recovery. To investigate synaptic integration of the transplanted cells, we used rabies‐based monosynaptic tracing to reveal the origin and extent of host presynaptic inputs to grafts at 6 weeks. The results reveal the capacity of grafted neurons to extend axonal projections toward appropriate forebrain target structures progressively over 24 weeks. The timing and extent of graft‐derived dopaminergic fibers innervating the dorsolateral striatum matched reduction in amphetamine‐induced rotational asymmetry in the animals where recovery could be observed. Monosynaptic tracing demonstrated that grafted cells integrate with host circuitry 6 weeks after transplantation, in a manner that is comparable with endogenous midbrain connectivity. Thus, we demonstrate that VM patterned hESC‐derived progenitors grafted to midbrain have the capacity to extensively innervate appropriate forebrain targets, integrate into the host circuitry and that functional recovery can be achieved when grafting fetal or hESC‐derived DA neurons to the midbrain.  相似文献   

14.
We recently found that human amniotic epithelial (HAE) cells secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine (DA) neurons. The present study explored whether implantation of HAE cells can be a possible means to deliver trophic factors into the brain to prevent the death of DA neurons in a rat model of Parkinson's disease. We first investigated the ability of HAE cells to produce factors capable of promoting DA cell survival in vitro, and then tested whether HAE cell grafts survive and prevent the death of nigral DA neurons in rats with 6-hydroxydopamine lesions. A treatment with conditioned medium derived from HAE cell cultures enhanced the survival of tyrosine hydroxylase (TH)-immunopositive DA cells in serum-free cultures. The conditioned medium also protected the morphological integrity of TH-positive neurons against toxic insult with 6-hydroxydopamine. HAE cells were grafted into the midbrain of immunosuppressed rats. The rats were then subjected to a unilateral nigrostriatal lesion induced by intrastriatal infusions of 6-hydroxydopamine. HAE cell transplants were found to survive without evidence for overgrowth 2 weeks postgrafting. The number of nigral DA cells, detected with either TH-immunohistochemistry or retrograde labelling with fluorogold, was significantly increased in rats given the grafts as compared to that in control animals without the grafts. The results indicate that HAE cells produce diffusible molecules that can enhance the survival of DA neurons. Although the factors that contribute to the currently observed effects remain to be fully determined, implantation of HAE cells could be a viable strategy to counteract the loss of DA neurons in Parkinson's disease.  相似文献   

15.
Depletion of cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) in adult rats increases the locomotor activating effects of amphetamine. It also impairs sensorimotor gating processes, an effect reversed by the antipsychotic haloperidol. These behavioral effects are suggestive of pronounced hyper‐responsiveness of the mesolimbic dopamine (DA) projection to the N.Acc. However, it is unclear whether local cholinergic depletion results predominantly in exaggerated presynaptic DA release or a postsynaptic upregulation of DAergic function. The purpose of the present study is to test the former possibility by employing in vivo voltammetry to examine changes in the levels of extracellular DA within the N.Acc. in response to either mild tail pinch stress or amphetamine administration. While both cholinergic‐lesioned and control rats showed reliable stress‐induced increases in extracellular DA on two consecutive test days, those in the lesioned rats were significantly less pronounced. In response to amphetamine, a separate cohort of lesioned rats also exhibited smaller increases in extracellular DA release than controls, despite showing greater locomotor activity. Moreover, the increased behavioral response to amphetamine in lesioned rats coincided temporally with decreasing levels of DA in the N.Acc. The results confirm that cholinergic depletion within the N.Acc. suppresses presynaptic DA release and suggest that lesion‐induced behavioral effects are more likely due to postsynaptic DA receptor upregulation. The results are also discussed in the context of schizophrenia, where post mortem studies have revealed a selective loss of cholinergic interneurons within the ventral striatum. Synapse, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
C Rosenblad  D Kirik  A Bj?rklund 《Neuroreport》1999,10(8):1783-1787
We investigated here the effect of the novel glial cell line-derived neurotrophic factor (GDNF)-family member neurturin (NTN) on transplanted fetal dopamine (DA) neurons. Three groups of rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA system received intrastriatal grafts of embryonic ventral mesencephalic tissue. Following transplantation animals received repeated injections of vehicle or NTN (0.3 microg or 3.0 microg) over three weeks posttransplantation. NTN-treated animals had significantly (1.8-fold) more tyrosine hydroxylase-immunoreactive (TH-IR) neurons. Graft volume, TH-IR cell volume and overall dopaminergic host reinnervation remained unchanged. Amphetamine-induced rotation was rapidly compensated in all grafted rats. We conclude that administration of NTN may be a powerful way to increase survival of transplanted fetal DA neurons.  相似文献   

17.
Dopaminergic control of striatal neurons is retained in rats sustaining lesions of the nigrostriatal bundle (NSB) as long as 10% of the projection remains, suggesting that enhanced efficiency of dopamine (DA) transmission may compensate for the denervation of the striatum. To examine this hypothesis we have studied the extracellular concentration of striatal DA using brain dialysis. In control rats, haloperidol (1 mg/kg, i.p.) or depolarization of striatal tissue with 25 mM KCl increased, and gamma-butyrolactone (500 mg/kg, i.p.) decreased DA and homovanillic acid (HVA) levels in striatal dialysates. Three weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) to substantia nigra, DA content in the ipsilateral striatum was decreased by 60-98%. Nevertheless, extracellular DA concentration in the lesioned striata remained unchanged in rats with 60-90% DA depletions. More extensive lesions (96% DA depletion) were accompanied by 60% reduction in DA release. In contrast, extracellular HVA levels in the lesioned striata decreased proportionally to the depletion of tissue DA, indicating decreased inactivation of extracellular DA. We propose that the capacity of the residual DA terminals to maintain normal levels of extracellular DA after 60-90% NSB lesions may serve to compensate for the partial denervation of the striatal tissue. Disruption of striatal DA functions and postsynaptic supersensitivity after more extensive lesions may be associated with the failure of the NSB to fully compensate for loss of DA terminals. In striata contralateral to the 6-OHDA lesions, increased DA release was also observed. In addition, 60-90% ipsilateral DA depletions were accompanied by 32% and 42% increases in DA and HVA content in contralateral tissue, respectively. The possibility of the contralateral sprouting of DA terminals is discussed.  相似文献   

18.
The present study examined the role of graft placement and behavioural task complexity in determining the functional efficacy of intrastriatal grafts of dopamine-rich fetal ventral mesencephalon (VM) placed in the dopamine (DA) depleted striatum. The functional effects of two different striatal placements of VM grafts were evaluated using tests of drug-induced motor asymmetry, simple sensorimotor orienting response, and a more complex sensorimotor integrative task (disengage behaviour), in which the rat has to perform the orienting response while in the act of eating. Rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway, received either implants of dissociated fetal VM in the central or ventrolateral portions of the denervated striatum. Nongrafted lesioned rats served as controls. Nine weeks after grafting, the rats were tested on separate days for disengage behaviour, sensorimotor orientation, and amphetamine-induced rotational behaviour. Consistent with previous findings, the two graft placements had differential effects on drug-induced motor asymmetry and sensorimotor responses: the centrally placed VM grafts reversed amphetamine-induced rotational asymmetry but had little effect on the sensorimotor deficit, whereas the ventrolaterally placed grafts reversed the sensorimotor orientation deficits without any effect on the drug-induced rotation. In contrast, fetal VM grafts, regardless of their placement, did not ameliorate the observed deficits in disengage behaviour; that is the grafted rats that had recovered their sensorimotor response in the absence of food were unable to perform the same orienting response while eating. These results provide evidence that functional intrastriatal VM grafts which are capable of restoring sensorimotor responses or motor asymmetry fail to affect lesion-induced deficits in a task that requires more complex sensorimotor integration. It is suggested that the degree of anatomical integration of the grafted DA neurons into the host circuitry will determine the efficacy of the grafts to influence more complex sensorimotor integrative deficits in the DA lesion model.  相似文献   

19.
Previously, we observed that injection of an adenoviral (Ad) vector expressing glial cell line-derived neurotrophic factor (GDNF) into the striatum, but not the substantia nigra (SN), prior to a partial 6-OHDA lesion protects dopaminergic (DA) neuronal function and prevents the development of behavioral impairment in the aged rat. This suggests that striatal injection of AdGDNF maintains nigrostriatal function either by protecting DA terminals or by stimulating axonal sprouting to the denervated striatum. To distinguish between these possible mechanisms, the present study examines the effect of GDNF gene delivery on molecular markers of DA terminals and neuronal sprouting in the aged (20 month) rat brain. AdGDNF or a control vector coding for beta-galactosidase (AdLacZ) was injected unilaterally into either the striatum or the SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the side of vector injection. Two weeks postlesion, rats injected with AdGDNF into either the striatum or the SN exhibited a reduction in the area of striatal denervation and increased binding of the DA transporter ligand [(125)I]IPCIT in the lesioned striatum compared to control animals. Furthermore, injections of AdGDNF into the striatum, but not the SN, increased levels of tyrosine hydroxylase mRNA in lesioned DA neurons in the SN and prevented the development of amphetamine-induced rotational asymmetry. In contrast, the level of T1 alpha-tubulin mRNA, a marker of neuronal sprouting, was not increased in lesioned DA neurons in the SN following injection of AdGDNF either into the striatum or into the SN. These results suggest that GDNF gene delivery prior to a partial lesion ameliorates damage caused by 6-OHDA in aged rats by inhibiting the degeneration of DA terminals rather than by inducing sprouting of nigrostriatal axons.  相似文献   

20.
In adult rats with a unilateral 6-hydroxydopamine-induced destruction of the nigrostriatal dopamine (DA) pathway, grafts of embryonic substantia nigra can establish a new dopaminergic terminal fiber plexus in the previously denervated neostriatum and compensate for some of the behavioral deficits induced by the nigrostriatal lesion. In the present study the synaptic connections of the ingrowing DA fibers from the graft were analyzed ultrastructurally, using immunocytochemical localization of tyrosine hydroxylase (TH), in animals whose lesion-induced motor asymmetry had been completely compensated for by the nigral grafts. In two of the animals, horseradish peroxidase-wheatgerm agglutinin conjugate was injected into the graft in order to trace possible reciprocal afferent connections to the graft from the host striatum. TH-immunoreactive axons from the graft were seen to make abundant symmetric synapses with neuronal elements in the host neostriatum. Between 85 and 90% of these synapses were on dendritic shafts and spines, and the rest were on neuronal perikarya. Two principal targets were identified: dendrites of spiny neurons, the majority of which are likely to be striatal projection neurons; and the cell bodies of giant neurons, most (or perhaps all) of which are known to be cholinergic interneurons. The synapses made on dendritic spines, which constituted about 40% of all TH-positive synapses formed by the TH-positive neurons in the graft, resembled those seen in normal animals, both in that they made contacts with spine necks and in that they invariably were associated with an asymmetric TH-negative synapse contacting the spine head. The innervation of the giant cell perikarya, which constituted about 6% of all TH-positive synapses found, was strikingly abnormal in that the graft-derived TH-positive fibers formed dense pericellular "baskets" selectively around the giant cell bodies. Such arrangements were never seen in the normal striatum, nor did they occur in the intact contralateral striatum in the grafted animals. It is proposed that this apparent dopaminergic hyperinnervation from the graft could provide a powerful inhibition of the cholinergic interneurons in the reinnervated host striatum, and that such an inhibitory mechanism could assist in the graft-induced functional recovery by potentiating the functional effects of DA synapses terminating on the spiny efferent neurons. This dual innervation may thus help to explain why restoration of only a small proportion of the striatal DA innervation by the graft is sufficient to induce complete compensation of, e.g., motor asymmetry in the lesioned rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号