首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The efficiency of somatic cell reprogramming to pluripotency using defined factors is dramatically affected by the cell type of origin. Here, we show that human keratinocytes, which can be reprogrammed at a higher efficiency than fibroblast [Nat Biotechnol 2008;26:1276-1284], share more genes hypermethylated at CpGs with human embryonic stem cells (ESCs) than other somatic cells frequently used for reprogramming. Moreover, pluripotent cells reprogrammed from keratinocytes (KiPS) are more similar to ESCs than those reprogrammed from fibroblasts (FiPS) in regard to DNA methylation levels, mostly due to the presence of genes that fail to acquire high levels of DNA methylation in FiPS cells. We propose that higher reprogramming efficiency correlates with the hypermethylation of tissue-specific genes rather than with a more permissive pluripotency gene network.  相似文献   

3.
The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A(1) protein expression of early-passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC-state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.  相似文献   

4.
5.
Nuclei of embryonic stem cells reprogram somatic cells   总被引:9,自引:0,他引:9  
The restricted potential of a differentiated cell can be reverted back to a pluripotent state by cell fusion; totipotency can even be regained after somatic cell nuclear transfer. To identify factors involved in resetting the genetic program of a differentiated cell, we fused embryonic stem cells (ESCs) with neurosphere cells (NSCs). The fusion activated Oct4, a gene essential for pluripotency, in NSCs. To further identify whether cytoplasmic or nuclear factors are responsible for its reactivation, we fused either karyoplasts or cytoplasts of ESCs with NSCs. Our results show that ESC karyoplasts could induce Oct4 expression in the somatic genome, but cytoplasts lacked this ability. In addition, mitomycin C-treated ESCs, although incapable of DNA replication and cell division, could reprogram 5-azacytidine-treated NSCs. We therefore conclude that the Oct4 reprogramming capacity resides in the ESC karyoplast and that gene reactivation is independent of DNA replication and cell division.  相似文献   

6.
7.
8.
Recently, an additional type of pluripotent stem cell-line derived from mouse embryos has been established and termed epiblast stem cell (EpiSC), and is expected to be an important tool for studying the mechanisms of maintenance of pluripotency since they depend on basic fibroblast growth factor-MAPK and Activin A-Smad2/3 signaling to maintain pluripotency, unlike mouse embryonic stem cells (ESCs). Further, because of the similarities between mouse EpiSCs and human ESCs, EpiSCs are expected to be effective experimental models for human stem cell therapy. Recently, study for conversion from ESC state to EpiSC state or reversion from EpiSC state to ESC state has attracted interest since these techniques may lead to increasing the potential of pluripotent stem cells and our knowledge about their developmental status. In the present study, we find that a low oxygen concentration in culture environment accelerated, improved, and stabilized the EpiSC state of the converted cells from the ESC state using Oct4ΔPE-GFP transgenic ESCs. Induced EpiSCs (iEpiSCs) in hypoxia possess closer gene expression patterns to native EpiSCs, and bisulfite sequences for the promoter regions of Stella and Oct4 genes have elucidated that the iEpiSC gain EpiSC-specific methylation patterns in hypoxia. Our data provide evidence that oxygen concentration is an important factor for establishment of the EpiSC-specific state.  相似文献   

9.
Histone demethylase LSD1 can form complex with different Rcor family corepressors in different cell types. It remains unknown if cell-specific Rcor proteins function specifically in distinct cell types. Here, we report that Rcor2 is predominantly expressed in ESCs and forms a complex with LSD1 and facilitates its nucleosomal demethylation activity. Knockdown of Rcor2 in ESCs inhibited ESC proliferation and severely impaired the pluripotency. Moreover, knockdown of Rcor2 greatly impaired the formation of induced pluripotent stem (iPS) cells. In contrast, ectopic expression of Rcor2 in somatic cells together with Oct4, Sox2, and Klf4 promoted the formation of iPS cells. Most interestingly, ectopic expression of Rcor2 in both mouse and human somatic cells effectively substituted the requirement for exogenous Sox2 expression in somatic cell reprogramming.  相似文献   

10.
Undifferentiated mouse embryonic stem cells (ESCs) possess low numbers of mitochondrial DNA (mtDNA), which encodes key subunits associated with the generation of ATP through oxidative phosphorylation (OXPHOS). As ESCs differentiate, mtDNA copy number is regulated by the nuclear-encoded mtDNA replication factors, which initiate a major replication event on Day 6 of differentiation. Here, we examined mtDNA replication events in somatic cells reprogrammed to pluripotency, namely somatic cell-ES (SC-ES), somatic cell nuclear transfer ES (NT-ES) and induced pluripotent stem (iPS) cells, all at low-passage. MtDNA copy number in undifferentiated iPS cells was similar to ESCs whilst SC-ES and NT-ES cells had significantly increased levels, which correlated positively and negatively with Nanog and Sox2 expression, respectively. During pluripotency and differentiation, the expression of the mtDNA-specific replication factors, PolgA and Peo1, were differentially expressed in iPS and SC-ES cells when compared to ESCs. Throughout differentiation, reprogrammed somatic cells were unable to accumulate mtDNA copy number, characteristic of ESCs, especially on Day 6. In addition, iPS and SC-ES cells were also unable to regulate ATP content in a manner similar to differentiating ESCs prior to Day 14. The treatment of reprogrammed somatic cells with an inhibitor of de novo DNA methylation, 5-Azacytidine, prior to differentiation enabled iPS cells, but not SC-ES and NT-ES cells, to accumulate mtDNA copies per cell in a manner similar to ESCs. These data demonstrate that the reprogramming process disrupts the regulation of mtDNA replication during pluripotency but this can be re-established through the use of epigenetic modifiers.  相似文献   

11.
12.
13.
14.
Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.  相似文献   

15.
16.
17.
18.
19.
20.
c-Myc participates in diverse cellular processes including cell cycle control, tumorigenic transformation, and reprogramming of somatic cells to induced pluripotent cells. c-Myc is also an important regulator of self-renewal and pluripotency of embryonic stem cells (ESCs). We recently demonstrated that loss of the Max gene, encoding the best characterized partner for all Myc family proteins, causes loss of the pluripotent state and extensive cell death in ESCs strictly in this order. However, the mechanisms and molecules that are responsible for these phenotypes remain largely obscure. Here, we show that Sirt1, p53, and p38(MAPK) are crucially involved in the detrimental phenotype of Max-null ESCs. Moreover, our analyses revealed that these proteins are involved at varying levels to one another in the hierarchy of the pathway leading to cell death in Max-null ESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号