首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A considerable fraction of mutations associated with hereditary disorders and cancers affect splicing. Some of them cause exon skipping or the inclusion of an additional exon, whereas others lead to the inclusion of intronic sequences or deletion of exonic sequences through the activation of cryptic splice sites. We focused on the latter cases and have designed a series of vectors that express modified U7 small nuclear RNAs (snRNAs) containing a sequence antisense to the cryptic splice site. Three cases of such mutation were investigated in this study. In two of them, which occurred in the PTCH1 and BRCA1 genes, canonical splice donor sites had been partially impaired by mutations that activated nearby intronic cryptic splice donor sites. Another mutation found in exonic region in CYP11A created a novel splice donor site. Transient expression of the engineered U7 snRNAs in HeLa cells restored correct splicing in a sequence-specific and dose-dependent manner in the former two cases. In contrast, the third case, in which the cryptic splice donor site in the exonic sequence was activated, the expression of modified U7 snRNA resulted in exon skipping. The correction of aberrant splicing by suppressing intronic cryptic splice sites with modified U7 is expected be a promising alternative to gene replacement therapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
5.
Functional annotation of SNPs (as generated by HapMap (http://www.hapmap.org) for instance) is a major challenge. SNPs that lead to single amino acid substitutions, stop codons, or frameshift mutations can be readily interpreted, but these represent only a fraction of known SNPs. Many SNPs are located in sequences of splicing relevance-the canonical splice site consensus sequences, exonic and intronic splice enhancers or silencers (exonic splice enhancer [ESE], intronic splice enhancer [ISE], exonic splicing silencer [ESS], and intronic splicing silencer [ISS]), and others. We propose using sets of matching DNA and complementary DNA (cDNA) as a screening method to investigate the potential splice effects of SNPs in RT-PCR experiments with tissue material from genotyped sources. We have developed a software solution (SNPSplicer; http://www.ikmb.uni-kiel.de/snpsplicer) that aids in the rapid interpretation of such screening experiments. The utility of the approach is illustrated for SNPs affecting the donor splice sites (rs2076530:A>G, rs3816989:G>A) leading to the use of a cryptic splice site and exon skipping, respectively, and an exonic splice enhancer SNP (rs2274987:C/T), leading to inclusion of a new exon. We anticipate that this methodology may help in the functional annotation of SNPs in a more high-throughput fashion.  相似文献   

6.
Genomic variations with no apparent effect ("neutral polymorphisms") may have a significant effect on splicing. The effect of this type of mutation is difficult to spot, unless a functional assay is undertaken. In our study, DNA sequencing of a patient with clinically defined neurofibromatosis type 1 (NF1) showed only a single polymorphism in intron 30 due to an A>G transition 279 nucleotides from the 3' splice site. Using a minigene splicing assay we conclusively show that this change produces a cryptic exon with a 3' SS defined by the nucleotide change and the unexpected activation of a very weak 5'SS. Further site directed mutagenesis studies aimed at identifying the signals involved in the cryptic exon inclusion were carried out. Interestingly we find that particular characteristics of the cryptic 5' SS are essential for its inclusion. Significantly an additional single nucleotide change disrupting the cryptic 5'ss consensus sequence rescues the effect of the pathogenetic mutation resulting in normal splicing.  相似文献   

7.
Hereditary angioedema (HAE) is a disease caused by defects in the C1 inhibitor gene (SERPING1/C1NH). We screened the entire C1NH gene for mutations in a large series of 87 Spanish families (77 with type I, and 10 with type II HAE) by SSCP, sequencing, Southern blotting, and quantitative multiplex PCR of short fluorescent fragments (QMPSF), and we characterized several defects at the mRNA level. We found large rearrangements in 13 families, and point mutations or microdeletions/insertions in 74 families. The 13 large rearrangements included nine exon deletions, of which at least eight were distinct, two were distinct exon duplications, and two were rearrangements whose precise nature could not be determined. We confirmed that exon 4 is particularly prone to rearrangements. Thirty-six mutations were unreported, and included 10 microdeletions/insertions, 10 missense, five nonsense, eight splicing, and three splicing or missense mutations. Moreover, we detected six novel uncharacterized sequence variants (USV). RT-PCR studies showed that in addition to several intronic splice site mutations tested, the exonic mutations c.882C>G and c.884T>G, located near the 3' end of exon 5, also produced exon skipping. This is the first evidence of SERPING1/C1NH mutations in coding regions that differ from the canonical splice sites that affect splicing, which suggests the presence of an exonic splicing enhancer (ESE) in exon 5.  相似文献   

8.
9.
Although single base-pair substitutions in splice junctions constitute at least 10% of all mutations causing human inherited disease, the factors that determine their phenotypic consequences at the RNA level remain to be fully elucidated. Employing a neural network for splice-site recognition, we performed a meta-analysis of 478 disease-associated splicing mutations, in 38 different genes, for which detailed laboratory-based mRNA phenotype assessment had been performed. Inspection of the +/-50-bp DNA sequence context of the mutations revealed that exon skipping was the preferred phenotype when the immediate vicinity of the affected exon-intron junctions was devoid of alternative splice-sites. By contrast, in the presence of at least one such motif, cryptic splice-site utilization, became more prevalent. This association was, however, confined to donor splice-sites. Outside the obligate dinucleotide, the spatial distribution of pathological mutations was found to differ significantly from that of SNPs. Whereas disease-associated lesions clustered at positions -1 and +3 to +6 for donor sites and -3 for acceptor sites, SNPs were found to be almost evenly distributed over all sequence positions considered. When all putative missense mutations in the vicinity of splice-sites were extracted from the Human Gene Mutation Database for the 38 studied genes, a significantly higher proportion of changes at donor sites (37/152; 24.3%) than at acceptor splice-sites (1/142; 0.7%) was found to reduce the neural network signal emitted by the respective splice-site. Based upon these findings, we estimate that some 1.6% of disease-causing missense substitutions in human genes are likely to affect the mRNA splicing phenotype. Taken together, our results are consistent with correct donor splice-site recognition being a key step in exon recognition.  相似文献   

10.
11.
12.
To identify human intronic sequences associated with 5' splice site recognition, we performed a systematic search for motifs enriched in introns downstream of both constitutive and alternative cassette exons. Significant enrichment was observed for U-rich motifs within 100 nucleotides downstream of 5' splice sites of both classes of exons, with the highest enrichment between positions +6 and +30. Exons adjacent to U-rich intronic motifs contain lower frequencies of exonic splicing enhancers and higher frequencies of exonic splicing silencers, compared with exons not followed by U-rich intronic motifs. These findings motivated us to explore the possibility of a widespread role for U-rich motifs in promoting exon inclusion. Since cytotoxic granule-associated RNA binding protein (TIA1) and TIA1-like 1 (TIAL1; also known as TIAR) were previously shown in vitro to bind to U-rich motifs downstream of 5' splice sites, and to facilitate 5' splice site recognition in vitro and in vivo, we investigated whether these factors function more generally in the regulation of splicing of exons followed by U-rich intronic motifs. Simultaneous knockdown of TIA1 and TIAL1 resulted in increased skipping of 36/41 (88%) of alternatively spliced exons associated with U-rich motifs, but did not affect 32/33 (97%) alternatively spliced exons that are not associated with U-rich motifs. The increase in exon skipping correlated with the proximity of the first U-rich motif and the overall "U-richness" of the adjacent intronic region. The majority of the alternative splicing events regulated by TIA1/TIAL1 are conserved in mouse, and the corresponding genes are associated with diverse cellular functions. Based on our results, we estimate that approximately 15% of alternative cassette exons are regulated by TIA1/TIAL1 via U-rich intronic elements.  相似文献   

13.
14.
15.
16.
Farber lipogranulomatosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the ASAH1 gene. In the largest ever study, we identified and characterized ASAH1 mutations from 11 independent Farber disease (FD) families. A total of 13 different mutations were identified including 1 splice, 1 polypyrimidine tract (PPT) deletion and 11 missense mutations. Eleven mutations were exclusive to the Indian population. The IVS6+4A>G splice and IVS5‐16delTTTTC PPT deletion mutations resulted in skipping of exon 6 precluding thereby the region responsible for cleavage of enzyme precursor. A missense mutation (p.V198A) resulted in skipping of exon 8 due to inactivation of an exonic splicing enhancer (ESE) element. This is the first report of mutations affecting PPT and ESE in the ASAH1 gene resulting in FD.  相似文献   

17.
Ke S  Zhang XH  Chasin LA 《Genome research》2008,18(4):533-543
We have used comparative genomics to characterize the evolutionary behavior of predicted splicing regulatory motifs. Using base substitution rates in intronic regions as a calibrator for neutral change, we found a strong avoidance of synonymous substitutions that disrupt predicted exonic splicing enhancers or create predicted exonic splicing silencers. These results attest to the functionality of the hexameric motif set used and suggest that they are subject to purifying selection. We also found that synonymous substitutions in constitutive exons tend to create exonic splicing enhancers and to disrupt exonic splicing silencers, implying positive selection for these splicing promoting events. We present evidence that this positive selection is the result of splicing-positive events compensating for splicing-negative events as well as for mutations that weaken splice-site sequences. Such compensatory events include nonsynonymous mutations, synonymous mutations, and mutations at splice sites. Compensation was also seen from the fact that orthologous exons tend to maintain the same number of predicted splicing motifs. Our data fit a splicing compensation model of exon evolution, in which selection for splicing-positive mutations takes place to counter the effect of an ongoing splicing-negative mutational process, with the exon as a whole being conserved as a unit of splicing. In the course of this analysis, we observed that synonymous positions in general are conserved relative to intronic sequences, suggesting that messenger RNA molecules are rich in sequence information for functions beyond protein coding and splicing.  相似文献   

18.
Uncovering frequent motives of action by which variants impair 3′ splice site (3′ss) recognition and selection is essential to improve our understanding of this complex process. Through several mini‐gene experiments, we demonstrate that the pyrimidine (Y) to purine (R) transversion NM_000267.3(NF1):c.1722‐11T>G, although expected to weaken the polypyrimidine tract, causes exon skipping primarily by introducing a novel AG in the AG‐exclusion zone (AGEZ) between the authentic 3′ss AG and the branch point. Evaluation of 90 additional noncanonical intronic NF1 3′ss mutations confirmed that 63% of all mutations and 89% (49/55) of the single‐nucleotide variants upstream of positions ‐3 interrupt the AGEZ. Of these AGEZ‐interrupting mutations, 24/49 lead to exon skipping suggesting that absence of AG in this region is necessary for accurate 3′ss selection already in the initial steps of splicing. The analysis of 91 noncanonical NF1 3′ss mutations also shows that 90% either introduce a novel AG in the AGEZ, cause a Y>R transversion at position ‐3 or remove ≥2 Ys in the AGEZ. We confirm in a validation cohort that these three motives distinguish spliceogenic from splice‐neutral variants with 85% accuracy and, therefore, are generally applicable to select among variants of unknown significance those likely to affect splicing.  相似文献   

19.
20.
Mutations causing defective splicing in the human hprt gene.   总被引:2,自引:0,他引:2  
Ten intron mutations and one exon mutation giving rise to defective splicing in the human gene for hypoxanthine phosphoribosyl transferase (hprt) in T-lymphocytes have been characterized. The splicing mutants were detected by PCR amplification of hprt cDNA and direct sequencing. Nine of the mutants showed skipping of whole exons or parts of exons in the cDNA, one mutant had an inclusion of an intron sequence into the cDNA, and one mutant showed both inclusion of an intron sequence and skipping of exons as well as a normal cDNA. Genomic PCR and direct sequencing of the splice sites involved showed one deletion of three base pairs and 10 different single base alterations to be responsible for these splice alterations. One mutation in the last base pair of exon 6 causing skipping of the entire exon 6 was found, whereas an identical mutation in the last base pair of exon 2 caused no aberrant splicing. It was also found that a deletion mutation in the pyrimidine rich stretch of the acceptor site of intron 7 caused skipping of the entire exon 8, whereas a base substitution in the last base of intron 7 caused exclusion of only the first 21 base pairs of exon 8 as a result of the activation of a cryptic acceptor site in exon 8. The results show that many different types of mutations at several different sites can cause splicing errors in the hprt gene and that the sequence differences between the splice sites influence the possible spectrum of mutations in each site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号