首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Neurofibrillary tangles (NFT) are pathological cytoskeletal structures composed of paired helical filaments (PHF), and are found in neurons of patients afflicted with many neurodegenerative disorders, including Alzheimer's disease (AD). We previously found that an antiserum against casein kinase II (CK-II) stained NFT intensely in the brain tissue of AD patients. In the current study, we found that the anti-CK-II antiserum stains NFT and neuronal inclusions in many other neurodegenerative diseases as well, including Guam-Parkinson dementia complex, chromosome 18 deletion syndrome, progressive supranuclear palsy, Kufs' disease, and Pick's disease. This antiserum reacted, in crude brain homogenates, with both a doublet of Mr 43,000 and a Mr 27,000 Da protein which could correspond to the alpha, alpha', and beta chains of CK-II. The staining of these bands was adsorbed by preincubating anti-CK-II antiserum with purified CK-II. Preincubation of brain sections with purified CK-II strongly intensified the immunostaining of NFT with anti-CK-II, suggesting that NFT may bind CK-II. In the AD brain homogenates, the particulate CK-II levels are increased whereas the cytosolic levels are decreased without a change in total CK-II levels, consistent with the idea that CK-II binds to the particulate PHF, a major constituent of NFT. In accord with these findings, purified PHF bound CK-II, but purified PHF did not contain CK-II as its component. These results suggest that CK-II might be an extraneously deposited component of NFT. Thus, the altered CK-II compartmentalization might have significant consequences in the pathogenesis of AD.  相似文献   

2.
Abnormal protein kinase C levels and protein kinase C-dependent phosphorylation are biochemical alterations in brain tissue obtained from patients with Alzheimer's disease. Because many biochemical and biophysical abnormalities are found in peripheral tissues of patients with Alzheimer's disease, we studied protein kinase C levels and the in vitro phosphorylation of proteins under protein kinase C-activating conditions in fibroblasts derived from patients with Alzheimer's disease. The concentration of protein kinase C-like immunoreactivity was reduced in Alzheimer's disease samples, although the protein kinase C activity determined by the phosphorylation of exogenous histone was not. The degree of in vitro phosphorylation of an Mr 79,000 protein in the presence of protein kinase C activators was less in Alzheimer's disease than in control fibroblast cytosol, and a reduction was more prominent in cases of familial Alzheimer's disease than in sporadic Alzheimer's disease. Therefore, the aberrant phosphorylation mediated by protein kinase C is found not only in the brain but also in fibroblasts.  相似文献   

3.
Decreased levels of protein kinase C (PKC) and a reduction in the in vitro phosphorylation of a Mr 86,000 protein (P86), the major PKC substrate, are biochemical characteristics of brain tissue from patients with Alzheimer's disease (AD) (Cole et al., 1988). In the current study, we utilized antibodies against individual isozymes of PKC to assess the degree of involvement of different PKC isoforms in AD. The concentration of PKC(beta II) was lower in particulate fractions prepared from AD hippocampal and cortical tissue than in controls and higher in AD cytosol fractions from the cortex than in controls. Immunohistochemical studies in AD neocortex revealed reduced numbers of anti-PKC(beta II)-immunopositive neurons and diminished staining intensity. In contrast, AD hippocampal neurons in CA3-CA4 were more intensely stained with anti-PKC(beta II) antiserum than were controls. The concentration of PKC(beta I) was lower in particulate fractions prepared from AD hippocampus than in controls and was higher in soluble fractions prepared from AD cortex than in controls. The concentration of PKC(alpha) was lower in AD particulate fractions than in controls in the hippocampus. Immunohistochemistry with PKC(alpha) antiserum revealed moderately intense neuron staining and an intense staining of glial cells in AD neocortex. The concentrations and histochemical distributions of PKC(gamma) were not altered in the disease. PKC immunoreactivity was also found in neuritic plaques. The staining patterns of neuritic plaques with different isoform antibodies varied considerably. Anti-PKC(alpha) faintly stained entire plaques and surrounding glial cells; anti-PKC(beta I) stained dystrophic plaque neurites; and anti-PKC(beta II) stained the amyloid-containing portions of plaques.  相似文献   

4.
The microtubule-associated phosphoprotein, tau, is an integral component of paired helical filaments in Alzheimer neurofibrillary tangles (NFT). The mechanism of NFT formation is unknown but aberrant phosphorylation of tau may be contributory. Calcium/calmodulin-dependent protein kinase type II (CaM kinase II), the most abundant kinase in the brain, phosphorylates tau in vitro. We found CaM kinase II immunoreactivity concentrated in human hippocampal pyramidal neurons of CA1 and the subiculum. In Alzheimer's disease (AD) staining intensity of CA1 and subicular neurons is strikingly increased despite NFT formation and neuronal depletion. Enhanced CaM kinase II activity, possibly a result of deafferentation, may contribute to phosphorylation of tau protein leading to NFT deposition and neuronal death in AD.  相似文献   

5.
Activation of the amyloid beta-protein precursor, secretary pathway through alpha-secretase has been reported to increase the secretion of neuroprotective amyloid precursor protein and preclude the formation of amyloid beta-protein. Activation of protein kinase C has been shown to accelerate this secretory pathway. These results prompted us to focus on a potential links between protein kinase C and the amyloid beta-protein-related pathology of Alzheimer disease (AD). Although protein kinase C is reported to occur in senile plaques, its catalytic activity has not been investigated. As the phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) has been used as a marker for activation of protein kinase C in vivo, we examined its phosphorylation in brain tissues obtained from seven AD patients and five non-demented subjects using an antibody that specifically recognized MARCKS phosphorylated by protein kinase C. Phosphorylation of MARCKS in cortical neurons in AD brains was weaker than that in control brains. Interestingly, however, phosphorylation of MARCKS was detected in microglia and dystrophic neurites within neuritic plaques, a mature form of amyloid beta-protein deposits. These results suggest that protein kinase C alteration is associated with AD pathology and that protein kinase C is activated in microglia and dystrophic neurites by amyloid beta-protein in AD brains.  相似文献   

6.
DYRK1A, dual-specificity tyrosine-regulated kinase 1A, maps to human chromosome 21 within the Down syndrome (DS) critical region. Dyrk1 phosphorylates the human microtubule-associated protein tau at Thr212 in vitro, a residue that is phosphorylated in fetal tau and hyper-phosphorylated in Alzheimer disease (AD) and tauopathies, including Pick disease (PiD). Furthermore, phosphorylation of Thr212 primes tau for phosphorylation by glycogen synthase kinase 3 (GSK-3). The present study examines Dyrk1A in the cerebral cortex of sporadic AD, adult DS with associated AD, and PiD. Increased Dyrk1A immunoreactivity has been found in the cytoplasm and nuclei of scattered neurons of the neocortex, entorhinal cortex, and hippocampus in AD, DS, and PiD. Dyrk1A is found in sarkosyl-insoluble fractions which are enriched in phosphorylated tau in AD brains, thus suggesting a possible association of Dyrk1A with neurofibrillary tangle pathology. Yet, no clear relationship has been observed between tau phosphorylation at Thr212, and GSK-3 and Dyrk1A expression in diseased brains. Transgenic mice bearing a triple tau mutation (G272V, P301L, and R406W) and expressing hyper-phosphoyrylated tau in neurons of the entorhinal cortex, hippocampus, and cerebral neocortex show increased expression of Dyrk1A in individual neurons in the same regions. However, transgenic mice over-expressing Dyrk1A do not show increased phosphorylation of tau at Thr212, thus suggesting that Dyrk1A over-expression does not trigger per se hyper-phosphorylation of tau at Thr212 in vivo. The present observations indicate modifications in the expression of constitutive Dyrk1A in the cytoplasm and nuclei of neurons in various neurodegenerative diseases associated with tau phosphorylation.  相似文献   

7.
In Alzheimer's disease (AD) brain, increased levels of cyclooxygenase-2 (COX-2), cell cycle markers, and p38 MAP kinase (MAPK) can be detected in neuronal cells. Besides mediating COX-2 expression, p38 MAPK is suggested to mediate cell cycle progression through phosphorylation of the retinoblastoma protein (pRb). In this study, we show that neuronal immunoreactivity for phosphorylated p38 MAPK does not correlate with COX-2 or phosphorylated pRb (ppRb) in control and AD temporal cortex. Immunoreactivity for activated p38 MAPK co-localizes with AT8 immunoreactivity and increases with the occurrence of neurofibrillary tangles and plaques. On the other hand, COX-2 immunoreactivity co-localizes and correlates with ppRb immunoreactivity in pyramidal neurons. COX-2 and ppRb do not co-localize with AT8 and decrease with increasing pathology. These results suggest that p38 MAPK does not mediate COX-2 expression and pRb inactivation, which are involved in cellular changes in pyramidal neurons early in AD pathogenesis.  相似文献   

8.
Protein kinase C (PKC) has been implicated in the pathophysiology of Alzheimer's disease (AD). The levels of particular isoforms and the activation of PKC are reduced in postmortem brain cortex of AD subjects. Receptors for activated C kinase (RACK) are a family of proteins involved in anchoring activated PKCs to relevant subcellular compartments. Recent evidence has indicated that the impaired activation (translocation) of PKC in the aging brain is associated with a deficit in RACK1, the most well-characterized member of this family. The present study was conducted to determine whether alterations in RACK1 occurred in cortical areas where an impaired translocation of PKC has been demonstrated in AD. Here we report the presence of RACK1 immunoreactivity in human brain frontal cortex for the first time and demonstrate a decrease in RACK1 content in cytosol and membrane extracts in AD when compared with non-AD controls. By comparison, the levels of the RACK1-related PKCbetaII were not modified in the same membrane extracts. These observations add a new perspective in understanding the disease-associated defective PKC signal transduction and indicate that a decrease in an anchoring protein for PKC is an additional determinant of this deficit.  相似文献   

9.
The 70‐kDa ribosomal protein S6 kinase (S6K), a serine/threonine kinase that modulates the phosphorylation of the 40S ribosomal protein S6, regulates cell cycle progression and is known as a tau kinase in Alzheimer's disease (AD). In AD brains, neurofibrillary tangles (NFTs) have been shown to be positively stained with antibodies against S6K proteins phosphorylated at T389 (pT389‐S6K) or T421/S424 (pT421/S424‐S6K) by the mammalian target of rapamycin and mitogen‐activated protein kinase pathways, respectively. However, there is little information available about S6K proteins directly phosphorylated at T229 (pT229‐S6K) by the PI3K‐PDK1 pathway. In the present study, we investigated the distribution of pT229‐S6K in post mortem human brain tissues from elderly (control) and patients with AD using immnunoblotting and immunohistochemistry. pT229‐S6K immunoreactivity was localized to small granular structures in neurons and endothelial cells in control and AD brains. In AD brains, intense pT229‐S6K immunoreactivity was detected in 16.3% of AT8‐positive NFTs, neuropil threads, and dystrophic neurites in the hippocampus and other vulnerable brain areas. In addition, Hirano bodies were also positive for pT229‐S6K but were negative for pT389‐S6K or pT421/S424‐S6K. The present results indicate that S6K phosphorylation via the PI3K‐PD1 pathway is involved in tau pathology in NFTs and abnormal neurites as well as actin pathology in Hirano bodies.  相似文献   

10.
BACKGROUND: Progressive supranuclear palsy (PSP) is characterized by a pure neurofibrillary tau pathology involving mainly basal ganglia and brainstem nuclei. In addition to a haplotype of the tau gene potentially favoring tau aggregation, lipoperoxidation has been shown to be associated with PSP tau pathology. OBJECTIVE: To analyze cdk5/p35 complex, a kinase that regulates neurite outgrowth, as a potential cellular mechanism underlying tau phosphorylation in brain tissues from PSP and control cases and comparatively in cerebral cortex from subjects with AD. METHODS: Cdk5/p35 protein levels and distribution were evaluated by immunoblotting and immunocytochemistry in brain regions from seven PSP, six AD, and seven control cases, with similar postmortem intervals. RESULTS: Total cdk5 protein levels were significantly increased by more than threefold in PSP tissue and were augmented in PSP neurons, codistributed with tau immunoreactivity. P35, the regulatory subunit of cdk5, was degraded by postmortem proteolysis to the same extent in PSP, AD, and control tissues. CONCLUSIONS: The proteolysis in vivo of p35, the regulatory subunit of the kinase, is not ascertainable because it is masked by its postmortem degradation. The study, however, indicates that in PSP, the alteration of cdk5 is different from that described in AD and suggests that the absence of amyloid beta protein deposition may account for the different pathways responsible for the same kinase activation.  相似文献   

11.
Previous in vitro studies have suggested that amyloid precursor protein (APP) could be involved in cell surface adhesion, neuritic growth and survival of hippocampal neurons. In the present study, involvement of APP in aberrant sprouting in Alzheimer's disease (AD) was studied by comparing immunolabeling patterns of anti-APP and anti-growth-associated protein 43 (anti-GAP43). Confocal laser imaging of frontal cortex sections double-immunolabeled for APP and GAP43 showed an increase, in AD, of presynaptic boutons immunostained with anti-GAP43 that contained anti-APP immunoreactivity. The neuritic plaques in AD cases presented intense anti-GAP43 immunoreactive abnormal neurites colocalized with anti-APP. Three-dimensional reconstruction of the plaques showed that anti-APP was colocalized with anti-GAP43 in 57.5% of the aberrant sprouting neurites. We conclude that co-expression of APP with GAP43 in the plaque might be involved in the aberrant sprouting response observed in AD.  相似文献   

12.
This study demonstrates that combined dopaminergic and cholinergic denervation of the hippocampus results in the appearance of morphologically altered, Tau reactive, apical dendrites of granule cells in the rat dentate gyrus. The denervated granule cells and their apical dendrites also display immunoreactivity to a mitogen-activated protein kinase, ERK-1, and also evidence of abnormal phosphorylation of these dendrites as revealed by SMI-31 immunoreactivity. Dopaminergic denervation alone also causes mitogen activated protein kinase reactivity without the Tau-reactive apical dendrites. These results suggest an analogy to synaptophysin loss and the appearance of dendritic threads described in Alzheimer's disease (AD), as an early stage in the formation of neurofibrillary tangles (NFT). This is the first animal model in which abnormal phosphorylation of Tau has been shown to be produced experimentally in vivo.  相似文献   

13.
Accumulation of phosphorylated isoforms of the microtubule-associated protein tau is one hallmark of affected neurons in Alzheimer's disease (AD). This increase has been attributed to increased kinase or decreased phosphatase activity. Prior studies indicate that one of the kinases that phosphorylates tau (mitogen-activated protein kinase, or MAP kinase) does so at least in part indirectly within intact neuronal cells by phosphorylating and activating the L-voltage-sensitive calcium channel. Resultant calcium influx then fosters tau phosphorylation via one or more calcium-activated kinases. We demonstrate herein that treatment of differentiated SH-SY-5Y human neuroblastoma with the phosphatase inhibitor okadaic acid (OA) similarly may increase tau phosphorylation via sustained activation of the L-voltage-sensitive calcium channel. OA increased phospho-tau as indicated by increased immunoreactivity towards an antibody (PHF-1) directed against paired helical filaments from AD brain. This increase was blocked by co-treatment with the channel antagonist nimodipine. OA treatment increased channel phosphorylation. The increases in calcium influx, PHF-1 immunoreactivity and channel phosphorylation were all attenuated by co-treatment with PD98059, which inhibits MAP kinase activity, suggesting that OA mediates these effects at least in part via sustained activation of MAP kinase. These findings underscore that divergent and convergent kinase and phosphatase activities regulate tau phosphorylation.  相似文献   

14.
A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.  相似文献   

15.
Phosphorylated c-Myc (c-Myc-P) expression has been examined by immunohistochemistry, using an antibody that recognizes phosphorylated c-Myc at Thr58 and Ser62, in the brains of Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and age-matched control cases, as well as in human medulloblastomas and central neuroblastomas. Strong c-Myc-P immunoreactivity was seen in dystrophic neurites and neurones with neurofibrillary tangles in AD, and in neurones and glial cells bearing abnormal tau deposits in PiD, PSP and CBD. Previous studies have shown active Ras and increased mitogen-activated protein kinase (MAPK/ERK) expression in neurones and glial cells with abnormal tau deposition in AD and other tauopathies. Since MAPKs phosphorylate c-Myc at Thr58 and Ser62, these observations implicate the Ras/MAP kinase pathway in c-Myc phosphorylation and accumulation in AD and other tauopathies. Previous studies have also shown activation of cell cycle associated proteins in neuronal death. The present results have shown colocalization of nuclear c-Myc-P and active, cleaved caspase-3, a major executioner of apoptosis, in medulloblastomas and central neuroblastomas, thus suggesting phosphorylated c-Myc expression in caspase-3-dependent apoptosis of tumour cells. However, no evidence of caspase-3 activation has been observed in neurones and glial cells with strong phosphorylated c-Myc immunoreactivity in AD, PiD, PSP and CBD. Therefore, it is not clear that the activation of the Ras/MAPK/c-Myc subprogramme leads to neuronal death in AD and other tauopathies.  相似文献   

16.
Homogenates prepared from the temporal cortex and hippocampus of individuals who had histopathologically confirmed Alzheimer's disease exhibited reduced in vitro cyclic AMP-dependent phosphorylation of synapsin I, neuronal phosphoprotein. One specific phosphorylation site (site 1) was affected while two other sites, which are phosphorylated by calcium/calmodulin kinase II, exhibited no such differences. Other phosphoproteins such as pyruvate dehydrogenase, did not show these differences. The reductions were not observed in either cerebellum or thalamus of Alzheimer's disease brain. Analysis by immunoblots indicated that the reductions were not caused by a decrease in absolute amounts of the protein. The reduced AD synapsin I phosphorylation was not overcome by the addition of purified cyclic AMP-dependent protein kinase. No differences were detected in total cyclic AMP-dependent protein kinase activity between the control and Alzheimer samples. However, dephosphorylation of the synapsin I prior to the in vitro phosphorylation reversed the differences observed between the control and AD homogenates. Thus, the reduced in vitro phosphorylation of the synapsin I in the Alzheimer homogenate reflects a reduced phosphorylatability of the protein due to either an increased phosphate content or some other alteration of the phosphorylation site.  相似文献   

17.
Chang RC  Wong AK  Ng HK  Hugon J 《Neuroreport》2002,13(18):2429-2432
Inhibition of protein translation is a mode of inducing neuronal apoptosis and neurodegeneration in Alzheimer's disease (AD). Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) terminates global protein translation and induces apoptosis. We examined whether this signaling pathway occurs in degenerating neurons of AD. Brain sections from young individuals, age-matched control individuals and AD patients were examined for immunoreactivity of phosphorylated eIF2alpha by immunohistochemical analysis. While young brain sections did not display and age-matched brain sections have mild immunoreactive positive cells, AD brain sections revealed intense immunoreactivity for phosphorylated eIF2alpha. Most of the phosphorylated eIF2alpha immunoreactive positive neurons have high immunoreactivity for phosphorylated tau using AT8 antibody. Also, intense staining of phosphorylated eIF2alpha is associated vacuoles in degenerating neurons. This phenomenon was also observed for the immunohistochemical staining of phosphorylated PKR (double-stranded RNA-dependent protein kinase), the upstream kinase for eIF2alpha. Activation of PKR-eIF2alpha pathway is considered to be pro-apoptotic. In addition, formation of autophagy is regulated by eIF2alpha kinase. Therefore, it is concluded that phosphorylation of eIF2alpha is associated with the degeneration of neurons in AD.  相似文献   

18.
The neuron-specific protein B-50 (GAP-43) is a major presynaptic substrate for protein kinase C (PKC). Phosphorylation of B-50 by PKC at serine-41 is functionally related to signal transduction in association with process outgrowth and neurotransmitter release. Thus, it is important to characterize the factors which modulate phosphorylation of B-50 by PKC. Phosphoinositide (PI)-coupled muscarinic acetylcholine receptor (mAchR) activation would be expected to increase PKC activity through production of the second messenger, diacylglycerol. To test the hypothesis that activation of mAchR also increases phosphorylation of B-50, protein phosphorylation has been examined in cerebral cortical slices in response to the cholinergic agonist, carbachol (Cch) in comparison to the phorbol ester, 4beta-phorbol 12, 13-dibutyrate (PDB), a known activator of PKC. At short times of incubation with 1 mM Cch, a concentration which maximally activates PI metabolism, increased phosphorylation of a group of synaptosomal proteins, including B-50 and myristoylated, alanine-rich C kinase substrate (MARCKS), was observed. This increase was approximately half of that obtained in response to 1 microM PDB. Differing patterns of protein phosphorylation were observed in neonatal and adult slices: neonatal samples contained more MARCKS and a PKC substrate with a Mr of 46 kDa. Phosphorylation of B-50 and MARCKS was sensitive to Cch in both cases. Immunoblotting demonstrated less m1 acetylcholine receptor (the predominant mAchR subtype coupled to PI metabolism in the cortex) in neonatal, as compared to adult, synaptosomal fractions. These results are consistent with a coupling between mAchR-stimulated PI metabolism and PKC-mediated protein phosphorylation that is developmentally regulated.  相似文献   

19.
20.
We introduce a new procedure to study kinase substrates in postmortem human brain. By adding purified exogenous protein kinase C (PKC) and the phospholipid phosphatidylserine to brain homogenates in vitro we are able to analyze PKC substrates. A human 53-kDa phosphoprotein is described that appears to be homologous to rat and monkey protein F1 (GAP-43). This identity is based on molecular weight, isoelectric point, phosphorylation by exogenous protein kinase C, enhancement of its phosphorylation by three activators (phospholipids, calcium and phorbol esters), phosphopeptide maps, and cross-reactivity with an antibody raised against rat protein F1. Protein F1 is a PKC substrate associated with synaptic plasticity and nerve growth. Its phosphorylation in rat brain has been correlated with long-term potentiation, an electrophysiological model of memory. In the present study of normal brain, human protein F1 shows an occipitotemporal in vitro phosphorylation gradient. This is consistent with previous observations in nonhuman primates. This gradient is less pronounced in Alzheimer's disease (AD). Changes in the in vitro phosphorylation pattern of three other non-PKC substrates in Alzheimer's disease, including one with characteristics similar to microtubule-associated protein tau, are also reported. These results suggest that protein phosphorylation can be studied in postmortem human brain and that PKC-mediated phosphorylation of protein F1, already linked to synaptic plasticity and memory, may be altered in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号