首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunobiology of the blood-brain barrier   总被引:6,自引:0,他引:6  
The brain microvessel endothelial cells (BMVEC) that form the blood-brain barrier are uniquely positioned to influence immune responses within the central nervous system. As the biological interface separating the blood from the brain extracellular fluid, BMVEC regulate the entry of leukocytes into the brain. In addition, through the release of various soluble factors that affect immune responses, BMVEC may modulate immune responses in the brain. This review addresses the interplay between the immune system and the blood-brain barrier as it relates to the regulation of CNS defense and immunity.  相似文献   

2.
Neurodegenerative disorders represent a major medical challenge that is set to increase substantially in the decades ahead with the massive increase in the number of people in the world aged 65 or more. Neuroprotective therapeutics have the potential to play a key role in helping manage this growing global burden of long-term neurological care. However, neuropharmaceutical research is associated with significant challenges including: (1) the complexity of the brain (the cause of the majority of neurodegenerative disorders remains unknown); (2) the liability of central nervous system (CNS) drugs to cause CNS side effects (which limits their use); and (3) the requirement of neuropharmaceuticals to cross the blood-brain barrier (BBB). The BBB itself also plays a key role in most (if not all) neurodegenerative disorders since BBB dysfunction inevitably leads to inflammatory change including the movement of immune cells and immune mediators into the brain, which then contribute to the process of neurodegeneration. This review focuses on the role of the BBB in both neurodegenerative disorders and neuropharmaceutical research.  相似文献   

3.
The blood–brain barrier (BBB), a complex of endothelial and glial barriers, controls passage of cells and solutes between the blood and central nervous system (CNS). Blood–brain barrier breakdown refers to entry of cells and/or solutes. We were interested whether the renin–angiotensin system is involved during BBB breakdown. We studied the type 2 angiotensin receptor AT2 because of its suggested neuroprotective role. Two models of brain inflammation were used to distinguish solute versus cellular barrier functions. Both leukocytes and horseradish peroxidase (HRP) accumulated in the perivascular space of transgenic mice expressing the chemokine CCL2 in the CNS, indicating selective endothelial effects. Cellular infiltration and HRP leakage across the glia limitans to the parenchyma were induced by pertussis toxin (PTx) treatment. By contrast, there was no detectable HRP leakage in the hippocampus dentate gyrus after transection of axonal afferents, despite that leukocytes infiltrate to this site. Immunoreactivity for AT2 was increased on glia limitans astrocytes in PTx-treated CCL2 transgenics, whereas AT2 immunostaining was not induced in the lesion-reactive dentate gyrus. Our results suggest that AT2 induction correlates with solute leakage rather than cellular infiltration. This points to a role for AT2 in selective changes to the BBB.  相似文献   

4.
The blood–brain barrier (BBB), a highly regulated membranous barrier of brain capillaries, consists of an intricate network of tight junctions (TJs) that segregate the central nervous system (CNS) from systemic blood circulation and maintain a delicate homeostasis of the CNS environment. While endothelial cells (ECs) of brain capillaries are clearly the principal cellular element of BBB, the formation and regulation of intact BBB structure appear to require the interactions of endothelial cells with other cellular components. Astrocytes, one of the major non-neural cells in the brain, associate closely and interact with capillary endothelial cells during the angiogenesis and BBB development. Current in vitro cellular models for the study of BBB functions often incorporate astrocytes with endothelial cells. However, another foremost cell type, CNS pericyte, which intimately embraces brain capillary endothelium, attracts relatively little attention for its role in developing the in vitro BBB system. This review will analyze the critical functions of pericytes in angiogenesis in various systems and discuss the relevance of these functions in mediating the development, maintenance, and regulation of BBB. The author will also discuss the functional role of actin in both ECs and pericytes, and further elaborate the molecular mechanisms of BBB permeability regulation that involves the transduction pathway-mediated actin remodeling process. Finally, the rationale of incorporating pericytes for establishing a better in vitro BBB model will be emphasized.  相似文献   

5.
The blood-brain barrier (BBB) is a diffusion barrier, which impedes influx of most compounds from blood to brain. Three cellular elements of the brain microvasculature compose the BBB-endothelial cells, astrocyte end-feet, and pericytes (PCs). Tight junctions (TJs), present between the cerebral endothelial cells, form a diffusion barrier, which selectively excludes most blood-borne substances from entering the brain. Astrocytic end-feet tightly ensheath the vessel wall and appear to be critical for the induction and maintenance of the TJ barrier, but astrocytes are not believed to have a barrier function in the mammalian brain. Dysfunction of the BBB, for example, impairment of the TJ seal, complicates a number of neurologic diseases including stroke and neuroinflammatory disorders. We review here the recent developments in our understanding of the BBB and the role of the BBB dysfunction in CNS disease. We have focused on intraventricular hemorrhage (IVH) in premature infants, which may involve dysfunction of the TJ seal as well as immaturity of the BBB in the germinal matrix (GM). A paucity of TJs or PCs, coupled with incomplete coverage of blood vessels by astrocyte end-feet, may account for the fragility of blood vessels in the GM of premature infants. Finally, this review describes the pathogenesis of increased BBB permeability in hypoxia-ischemia and inflammatory mechanisms involving the BBB in septic encephalopathy, HIV-induced dementia, multiple sclerosis, and Alzheimer disease.  相似文献   

6.
AIDS encephalitis is a frequent consequence of CNS HIV infection, especially in children. One of its many characteristics is a leukocyte infiltrate that is believed to contribute to the production of cytokines, chemokines and neurotoxic factors resulting in CNS damage. Entry of such leukocytes into the CNS is mediated in part by the expression of adhesion molecules by blood - brain barrier (BBB) endothelial cells. Expression of these proteins by astrocytes, the other main component of the BBB, also serves to target leukocytes to the CNS parenchyma. We now demonstrate that HIV-1-derived Tat, a soluble protein secreted by infected cells, induced astrocyte VCAM-1 and ICAM-1 expression in a dose- and time-dependent manner. The functional role of Tat in monocyte binding in vitro was also demonstrated. These data suggest that the presence of extracellular Tat may be a significant factor in the trafficking of HIV-infected and inflammatory cells into the CNS via its effect on adhesion molecule expression by astrocytes.  相似文献   

7.
Bundgaard M  Abbott NJ 《Glia》2008,56(7):699-708
All extant vertebrates have a blood-brain barrier (BBB), a specialized layer of cells that controls molecular traffic between blood and brain, and contributes to the regulation (homeostasis) of the brain microenvironment. Such homeostasis is critical for the stable function of synapses and neural networks. The barrier is formed by vascular endothelial cells in most groups, but by perivascular glial cells (astrocytes) in elasmobranch fish (sharks, skates, and rays). It has been unclear which is the ancestral form, but this information is important, as it could offer insights into the roles of the endothelium and perivascular glia in the modern mammalian BBB. We have used electron microscopic techniques to examine three further ancient fish groups, with intravascular horseradish peroxidase as permeability tracer. We find that in bichir and lungfish the barrier is formed by brain endothelial cells, while in sturgeon it is formed by a complex perivascular glial sheath, but with no detectable tight junctions. From their BBB pattern, and position on the vertebrate family tree, we conclude that the ancestral vertebrate had a glial BBB. This means that an endothelial barrier would have arisen independently several times during evolution, and implies that an endothelial barrier gave strong selective advantage. The selective advantage may derive partly from greater separation of function between endothelium and astrocytic glia. There are important implications for the development, physiology, and pathology of the mammalian BBB, and for the roles of endothelium and glia in CNS barrier layers.  相似文献   

8.
The blood–brain barrier (BBB) is an important physiological barrier that separates the central nervous system (CNS) from the peripheral circulation, which contains inflammatory mediators and immune cells. The BBB regulates cellular and molecular exchange between the blood vessels and brain parenchyma. Normal functioning of the BBB is crucial for the homeostasis and proper function of the brain. It has been demonstrated that peripheral inflammation can disrupt the BBB by various pathways, resulting in different CNS diseases. Recently, clinical research also showed CNS complications following SARS-CoV-2 infection and chimeric antigen receptor (CAR)-T cell therapy, which both lead to a cytokine storm in the circulation. Therefore, elucidation of the mechanisms underlying the BBB disruption induced by peripheral inflammation will provide an important basis for protecting the CNS in the context of exacerbated peripheral inflammatory diseases. In the present review, we first summarize the physiological properties of the BBB that makes the CNS an immune-privileged organ. We then discuss the relevance of peripheral inflammation-induced BBB disruption to various CNS diseases. Finally, we elaborate various factors and mechanisms of peripheral inflammation that disrupt the BBB.  相似文献   

9.
The blood-brain barrier (BBB) provides both anatomical and physiological protection for the central nervous system (CNS), strictly regulating the entry of many substances and blood borne cells into the nervous tissue. Increased understanding of how the unique microenvironment in the CNS influences the BBB is crucial for developing novel therapeutic approaches to CNS diseases. In this review, we discuss those characteristics of the BBB that play an important role in maintaining immune privilege in the CNS, as well as factors that regulate immune cell invasion through the BBB and thereby modulate immune responses in the nervous tissue. In general, immune cell invasion across the BBB is highly restricted and carefully regulated. A florid invasion of activated white blood cells can create a predominantly proinflammatory local environment in the CNS, leading to immune-mediated diseases of the nervous tissue. Recent developments in cellular and molecular biological methods have allowed closer analysis of BBB function, and led to an improved understanding of the active role of the BBB in immune-mediated diseases of the CNS.  相似文献   

10.
DeSalvo MK  Mayer N  Mayer F  Bainton RJ 《Glia》2011,59(9):1322-1340
Central nervous system (CNS) physiology requires special chemical, metabolic, and cellular privileges for normal function, and blood-brain barrier (BBB) structures are the anatomic and physiologic constructs that arbitrate communication between the brain and body. In the vertebrate BBB, two primary cell types create CNS exclusion biology, a polarized vascular endothelium (VE), and a tightly associated single layer of astrocytic glia (AG). Examples of direct action by the BBB in CNS disease are constantly expanding, including key pathophysiologic roles in multiple sclerosis, stroke, and cancer. In addition, its role as a pharmacologic treatment obstacle to the brain is long standing; thus, molecular model systems that can parse BBB functions and understand the complex integration of sophisticated cellular anatomy and highly polarized chemical protection physiology are desperately needed. Compound barrier structures that use two primary cell types (i.e., functional bicellularity) are common to other humoral/CNS barrier structures. For example, invertebrates use two cell layers of glia, perineurial and subperineurial, to control chemical access to the brain, and analogous glial layers, fenestrated and pseudocartridge, to maintain the blood-eye barrier. In this article, we summarize our current understanding of brain-barrier glial anatomy in Drosophila, demonstrate the power of live imaging as a screening methodology for identifying physiologic characteristics of BBB glia, and compare the physiologies of Drosophila barrier layers to the VE/AG interface of vertebrates. We conclude that many unique BBB physiologies are conserved across phyla and suggest new methods for modeling CNS physiology and disease.  相似文献   

11.
The blood–brain barrier (BBB) is the monocellular interface that divides the peripheral circulation from direct contact with the central nervous system (CNS). This interface consists of several parallel barriers that include most notably the capillary bed of the CNS and the choroid plexus. These barriers at one level create the dichotomy between the circulating factors of the immune system and the components of the CNS only to regulate interactions between the immune and central nervous systems at other levels. The BBB is thus an integral part of the neuroimmune axis. Here, we will consider four aspects of BBB–neuroimmune interactions: BBB disruption as mediated by LPS and cytokines, cytokine transport across the BBB, immune cell trafficking, and effects of lipopolysaccharide (LPS) on various functions of the BBB.  相似文献   

12.
The blood-brain barrier (BBB) is recognized as a barrier to the trafficking of molecules and cellular elements into the central nervous system (CNS). Horseradish peroxidase (HRP) exclusion is used as a measure of BBB integrity. The BBB is altered and becomes permeable during the course of experimental allergic encephalomyelitis (EAE). Heterotopic brain transplantation into the anterior eye chamber is a technique for studying genetic influences and the role of individual cell types on the development of EAE. Prior to EAE induction, HRP is excluded from the central portion of the transplant, demonstrating an intact BBB. In contrast, HRP localization is found at the periphery of the transplant, suggesting an incomplete barrier. However, EAE lesions typically occur within the more central regions of the transplant, where the BBB is intact, and not at peripherally located "leaky" areas. This suggests that endothelial cells at intact BBB sites may direct trafficking of lymphocytes (gating) into the CNS during the development of EAE, rather than the passive entry of lymphocytes into the CNS through a leaky BBB.  相似文献   

13.
Ischemic stroke is one of the leading health issues and the major cause of permanent disability in adults worldwide. Energy depletion and hypoxia occurring after ischemic stroke result in cell death, which activates resident glia cells and promotes the peripheral immune cells breaching into brain performing various functions even contradictory effects. The infiltration of immune cells may mediate neuron apoptosis and escalate ischemic damage, while it enhances neuron repair, differentiation, and neuroregeneration. The central nervous system (CNS) is immune-privileged site as it is separated from the peripheral immune system by the blood-brain barrier (BBB). Pathologically, the diapedesis of peripheral immune cells to CNS is controlled by BBB and regulated by immune cells/endothelial interactions. As immune responses play a key role in modulating the progression of ischemic injury development, understanding the characteristics and the contribution on regulating inflammatory responses of glia cells and peripheral immune cells may provide novel approaches for potential therapies. This review summarizes the multistep process of periphery immune cell extravasation into brain parenchyma during immunosurveillance and chronic inflammation after ischemic stroke onset. Furthermore, the review highlights promising target intervention, which may promote the development of future therapeutics for ischemic stroke.  相似文献   

14.
Dendritic cells are the critical mediators of various immune responses and are the first line of defense against any infection including HIV. They play a major role in harboring HIV and the subsequent infection of T cells and passage of virus through the blood-brain barrier (BBB). The recently discovered DC-specific, CD4-independent HIV attachment receptor, DC-SIGN, and T-cell suppressing factor, indolamine 2,3-dioxygenase (IDO), are known to play a critical role in the immuno-neuropathogenesis of HIV infection. Since brain microvascular cells (BMVEC) express dendritic cell (DC)-specific C type ICAM-3 grabbing nonintegrin (DC-SIGN), it is possible that DC-SIGN may play a critical role in human immunodeficiency virus-type 1 (HIV-1) infection and migration of infected DC across BBB. Matrix metalloproteinases (MMPs) are proteolytic enzymes known to be responsible for maintenance, turnover and integrity of extracellular matrix. Our results show that cocaine upregulates IDO and DC-SIGN expression by DC. Further, cocaine upregulates DC-SIGN and MMPs in BMVEC supporting the hypothesis that cocaine causes membrane permeability facilitating endothelial transmigration of infected DC in to the CNS. Targeting DC-SIGN and IDO with specific monoclonal antibodies, inexpensive synthetic antagonists, antisense oligonucleotides and siRNA may lead to develop novel treatment strategies particularly in high-risk populations such as cocaine users.  相似文献   

15.
The blood brain barrier (BBB) is composed of endothelial cells, astrocytes, and pericytes and maintains functional homeostasis by regulating transport of ions, fluid and cells between blood and neural tissue. The cellular and molecular pathways that contribute to the formation of the BBB in the developing brain have not been fully deciphered. β1-integrin (β1-itg) within endothelial cells is known to play a critical role in vasculogenesis. However, the role of astrocytic β1-itg in BBB development is not known. Our study used a mouse glial fibrillary acidic protein (GFAP)-cre transgenic line to selectively ablate β1-itg within astrocytes. We found that deletion of astrocytic β1-itg had a striking effect on the different cell types that form the BBB. Mutant mice had a decreased density of aquaporin-4 immunoreactivity within the perivascular astrocytic end-feet. We also found decreases in immunoreactivity for vimentin and CD-31 within endothelial cells. These changes were not accompanied by functional changes in BBB under physiological conditions as assessed by extravasation of large and small molecular weight molecules. However, mutant mice had an increased incidence of severe cystic injury in response to neonatal hypoxia. Our findings show that astrocytic β1-itg has an important role in defining cellular properties of the blood brain barrier in the cerebral cortex.  相似文献   

16.
In the mammalian brain, perivascular astrocytes (PAs) closely juxtapose blood vessels and are postulated to have important roles in the control of vascular physiology, including regulation of the blood–brain barrier (BBB). Deciphering specific functions for PAs in BBB biology, however, has been limited by the ability to distinguish these cells from other astrocyte populations. In order to characterize selective roles for PAs in vivo, a new mouse model has been generated in which the endogenous megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) gene drives expression of Cre fused to a mutated estrogen ligand-binding domain (Mlc1-T2A-CreERT2). This knock-in mouse model, which we term MLCT, allows for selective identification and tracking of PAs in the postnatal brain. We also demonstrate that MLCT-mediated ablation of PAs causes severe defects in BBB integrity, resulting in premature death. PA loss results in aberrant localization of Claudin 5 and -VE-Cadherin in endothelial cell junctions as well as robust microgliosis. Collectively, these data reveal essential functions for Mlc1-expressing PAs in regulating endothelial barrier integrity in mice and indicate that primary defects in astrocytes that cause BBB breakdown may contribute to human neurologic disorders.SIGNIFICANCE STATEMENT Interlaced among the billions of neurons and glia in the mammalian brain is an elaborate network of blood vessels. Signals from the brain parenchyma control the unique permeability properties of cerebral blood vessels known as the blood–brain barrier (BBB). However, we understand very little about the relative contributions of different neural cell types in the regulation of BBB functions. Here, we show that a specific subpopulation of astrocyte is essential for control of BBB integrity, with ablation of these cells leading to defects in endothelial cell junctions, BBB breakdown, and resulting neurologic deficits.  相似文献   

17.
Blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Activation of matrix metalloproteinases (MMPs) and alteration of basement membrane (BM) associated with BBB injury was documented in stroke patients. While chronic alcoholism is a risk factor for developing stroke, underlying mechanisms are not well understood. We hypothesized that ethanol (EtOH)-induced protein tyrosine kinase (PTK) signaling resulted a loss of BBB integrity via MMPs activation and degradation of BM component, collagen IV. Treatment of BMVEC with EtOH or acetaldehyde (AA) for 2-48 h increased MMP-1, -2 and -9 activities or decreased the levels of tissue inhibitors of MMPs (TIMP-1, -2) in a PTK-dependent manner without affecting protein tyrosine phosphatase activity. Enhanced PTK activity after EtOH exposure correlated with increased phosphorylated proteins of selective receptor and nonreceptor PTKs. Up-regulation of MMPs activities and protein contents paralleled a decrease in collagen IV content, and inhibitors of EtOH metabolism, MMP-2 and -9, or PTK reversed all these effects. Using human BMVEC assembled into BBB models, we found that EtOH/AA diminished barrier tightness, augmented permeability, and monocyte migration across the BBB via activation of PTKs and MMPs. These findings suggest that alcohol associated BBB injury could be mediated by MMPs via BM protein degradation and could serve as a comorbidity factor for neurological disorders like stroke or neuroinflammation. Furthermore, our preliminary experiments indicated that human astrocytes secreted high levels of MMP-1 and -9 following exposure to EtOH, suggesting the role of BM protein degradation and BBB compromise as a result of glial activation by ethanol. These results provide better understanding of multifaceted effects of alcohol on the brain and could help develop new therapeutic interventions.  相似文献   

18.
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood–brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.  相似文献   

19.
Immune surveillance in the central nervous system (CNS) was considered impossible because: (i) the brain parenchyma is separated from the blood circulation by the blood-brain barrier (BBB); (ii) the brain lacks lymphatic drainage and (iii) the brain displays low major histocompatibility complex class II (MHCII) expression. In this context, the BBB prevents entry of immune molecules and effector cells to the CNS. The absence of lymphatic vessels avoids CNS antigens from reaching the lymph nodes for lymphocyte presentation and activation. Finally, the low MHCII expression hinders effective antigen presentation and re-activation of T cells for a competent immune response. All these factors limit the effectiveness of the afferent and efferent arms necessary to carry out immune surveillance. Nevertheless, recent evidence supports that CNS is monitored by the immune system through a modified surveillance circuit; this work reviews these findings.  相似文献   

20.
Astrocytes are the major cellular component of the blood-brain barrier glia limitans and act as regulators of leukocyte infiltration via chemokine expression. We have studied angiotensin-II receptor Type 1 (AT1) and related NF-κB signaling in astrocytes. Angiotensin II derives from cleavage of angiotensin I by angiotensin converting enzyme (ACE), angiotensin I deriving from angiotensinogen via cleavage by renin. Level of expression of ACE was slightly increased in transgenic mice that express dominant-negative IκBα in astrocytes (GFAP-IκBα-dn mice), whereas angiotensinogen and renin, also constitutively expressed in the CNS, were unaffected by NF-κB inhibition. Leukocytes infiltrate the hippocampus of mice after unilateral stereotactic lesion of afferent perforant path axons in the entorhinal cortex. Upregulation of the chemokine CXCL10 that normally occurs in response to synaptic degeneration in the dentate gyrus following axonal transection was totally abrogated in GFAP-IκBα-dn mice. Whereas angiotensin II was upregulated in microglia and astrocytes in the dentate gyrus post-lesion, AT1 was exclusively expressed on astrocytes. Blocking AT1 with Candesartan led to significant increase in numbers of infiltrating macrophages in the hippocampus 2 days post-lesion. Lesion-induced increases in T-cell infiltration and morphologic glial response were unaffected, and the blood-brain barrier remained intact to horseradish peroxidase. These findings show that angiotensin II signaling to astrocytes via AT1 plays an important role in regulation of leukocyte infiltration to the CNS in response to a neurodegenerative stimulus, and identify potential targets for therapies directed at adaptive immune responses in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号