首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischaemia-reperfusion injury causes cell death by both necrosis and apoptosis. Caspase activation is a major event in apoptosis. We therefore examined the effect of caspase inhibitors during reperfusion upon myocardial infarction. Rat isolated hearts were subjected to 35 min coronary occlusion and 120 min reperfusion. Treatment groups were perfused with caspase inhibitors during early reperfusion. We assessed a non-selective caspase inhibitor (Z-VAD. fmk, 0.1 microM), a caspase-8 inhibitor (Z-IETD.fmk, 0.07 microM), a caspase-9 inhibitor (Z-LEHD.fmk, 0.07 microM) and a caspase-3 inhibitor (Ac-DEVD.cmk, 0.07 microM). All caspase inhibitors limited infarct size (infarct-risk ratio per cent: control 38.5+/-2.6; Z-VAD. fmk 24.6+/-3.4; Z-LEHD.fmk 19.3+/-2.4; Z-IETD.fmk 23.0+/-5.4; Ac-DEVD.cmk 27.8+/-3.3; P<0.05 when compared with control value, 1-way ANOVA). We conclude that caspase inhibition during early reperfusion protects myocardium against lethal reperfusion injury.  相似文献   

2.
1. After a period of myocardial ischaemia, reperfusion of the myocardium can elicit cardiac arrhythmias. Susceptibility to these arrhythmias declines with time, such that a preceding period of more than approximately 40 min ischaemia is associated with few reperfusion-induced arrhythmias. We have tested the hypothesis that this decline in susceptibility occurs, in part, because of protection by endogenous guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Rat isolated hearts were subjected to 60 min left regional ischaemia followed by reperfusion (n = 10 per group). Methylene blue (20 microM), a soluble guanylate cyclase inhibitor, raised the incidence of reperfusion-induced ventricular fibrillation (VF) from 10% in control hearts to 80% (P < 0.05). This effect of methylene blue was abolished by co-perfusion with zaprinast (100 microM), a phosphodiesterase inhibitor which, in the rat heart, is cyclic GMP-specific (specific for the type-V phosphodiesterase isozyme). 3. Methylene blue reduced cyclic GMP levels in the ischaemic, non-ischaemic and reperfused myocardium (P < 0.05) to 50 +/- 10, 52 +/- 12 and 70 +/- 7 fmol mg-1 tissue wet weight, respectively from control values of 143 +/- 38, 147 +/- 43 and 156 +/- 15 fmol mg-1. Co-perfusion with zaprinast prevented this effect, and cyclic GMP levels were actually elevated (P < 0.05) to 366 +/- 102, 396 +/- 130 and 293 +/- 22 fmol mg-1 in ischaemic, non-ischaemic and reperfused myocardium, respectively. Zaprinast by itself also elevated cyclic GMP content. Cyclic AMP levels were not affected by zaprinast or methylene blue. 4. In conclusion, when endogenous cardiac cyclic GMP synthesis is reduced, susceptibility to reperfusion-induced VF after sustained ischaemia is substantially increased. The effect is prevented by inhibiting cyclic GMP degradation. Therefore cyclic GMP appears to be an endogenous intracellular cardioprotectant, and its actions may account for the low susceptibility to VF normally encountered in hearts reperfused after sustained ischaemia.  相似文献   

3.
BACKGROUND AND PURPOSE: Na+/Ca2+ exchanger (NCX) inhibitors are known to attenuate myocardial reperfusion injury. However, the exact mechanisms for the cardioprotection remain unclear. The present study was undertaken to examine the mechanism underlying the cardioprotection by NCX inhibitors against ischaemia/reperfusion injury. EXPERIMENTAL APPROACH: Isolated rat hearts were subjected to 35-min ischaemia/60-min reperfusion or 20-min ischaemia/60-min reperfusion. NCX inhibitors (3-30 microM KB-R7943 (KBR) or 0.3-1 microM SEA0400 (SEA)) were given for 5 min prior to ischaemia (pre-ischaemic treatment) or for 10 min after the onset of reperfusion (post-ischaemic treatment). KEY RESULTS: With 35-min ischaemia/60-min reperfusion, pre- or post-ischaemic treatment with KBR or SEA neither enhanced post-ischaemic contractile recovery nor attenuated ischaemia- or reperfusion-induced Na+ accumulation and damage to mitochondrial respiratory function. With the milder model (20-min ischaemia/reperfusion), pre- or post-ischaemic treatment with 10 microM KBR or 1 microM SEA significantly enhanced the post-ischaemic contractile recovery, associated with reductions in reperfusion-induced Ca2+ accumulation, damage to mitochondrial function, and decrease in myocardial high-energy phosphates. Furthermore, Na+ influx to mitochondria in vitro was enhanced by increased concentrations of NaCl. KBR (10 microM) and 1 microM SEA partially decreased the Na+ influx. CONCLUSIONS AND IMPLICATIONS: The NCX inhibitors exerted cardioprotective effects during relatively mild ischaemia. The mechanism may be attributable to prevention of mitochondrial damage, possibly mediated by attenuation of Na+ overload in cardiac mitochondria during ischaemia and/or Ca2+ overload via the reverse mode of NCX during reperfusion.  相似文献   

4.
In this study, we investigated the effect of noradrenaline depletion on contractile recovery in rat isolated heart following myocardial ischaemia. Groups tested included control tissues and hearts from reserpinised rats. Reserpine 1 mg/kg s.c. was injected into rats 18 to 24 h prior to experiments. Hearts underwent 15 min global normothermic ischaemia followed by 30 min reperfusion.Functional data (end diastolic pressure (EDP), heart rate (HR), left ventricular developed pressure (LVDP), dP/dt(max), dP/dt(min)) showed that contractile function following ischaemia-reperfusion is unaffected by reserpinisation. However, pre- and post-ischaemic coronary flow rates (CFR) were increased by 16 to 38% in hearts from reserpinised rats versus control hearts. Pre-ischaemic CFRs in control hearts (11.17+/-0.67 ml/in(-1) x g tissue(-1), n=9) were significantly lower then CFRs derived from reserpinised rat hearts (14.57+/-0.72 ml/min(-1)/g tissue(-1), n=10). Post-ischaemic reactive hyperaemia was evident in all groups. CFRs in reserpinised hearts remained elevated when compared to pre-ischaemic values through reperfusion (P<0.05). Reserpine treatment did not significantly alter pre- or post-ischaemic adenosine efflux. The A(2B) adenosine receptor antagonist alloxazine (10 microM) attenuated pre- and post-ischaemic CFRs in both control and reserpinised hearts (P<0.05) without altering the hyperaemic response while the A(2A) adenosine receptor antagonist 8-(3-chlorostyryl) caffeine (1 microM) did not alter CFRs in both groups. The A(3) adenosine receptor antagonist MRS1191 (0.1 microM) increased CFR in control and reserpinised hearts (P<0.05).Catecholamine depletion with reserpinisation enhances the responsiveness of the coronary resistance vessels to endogenous adenosine through activation of the A(2B) adenosine receptor.  相似文献   

5.
甲基黄酮醇胺的抗心律失常与抗脂质过氧化作用   总被引:4,自引:0,他引:4  
  相似文献   

6.
1. A possible mechanism for the action of the K(ATP) channel opener diazoxide on the improvement of energy metabolism of ischaemic/reperfused hearts was examined. 2. Isolated, perfused rat hearts were subjected to 40 min ischaemia followed by 60 min reperfusion. Diazoxide at concentrations of 3 to 30 microM was present in the perfusion buffer for the last 15 min of pre-ischaemia. 3. Treatment of the perfused heart with diazoxide enhanced the post-ischaemic recovery of rate-pressure product, attenuated the post-ischaemic rise in left ventricular end-diastolic pressure, and suppressed the release of creatine kinase and purine nucleosides and bases from the reperfused heart. Treatment of the heart with diazoxide also restored myocardial ATP and creatine phosphate and attenuated the decrease in mitochondrial oxygen consumption rate after reperfusion. This attenuation was maintained at the end of ischaemia as well as at the end of reperfusion. 4. In another set of experiments, myocardial skinned bundles were incubated for 30 min under hypoxic conditions in the presence and absence of diazoxide, and then the mitochondrial oxygen consumption rate was determined. Hypoxia induced a decrease in the mitochondrial oxygen consumption rate of the skinned bundles to approximately 40% of the pre-hypoxic value. In contrast, treatment of the bundles with 30 microM diazoxide preserved the normal mitochondrial oxygen consumption rate during hypoxia. This effect was abolished concentration-dependently by the combined treatment with either the K(ATP) channel blocker glibenclamide or 5-hydroxydecanoate. 5. These results suggest that diazoxide is capable of attenuating ischaemia/reperfusion injury of isolated perfused hearts due to preservation of mitochondrial function during ischaemia.  相似文献   

7.
In the present study, interaction of the ATP-sensitive K+-channel blocker glibenclamide with enantiomers of the antihypertensive drug, cicletanine, was studied on ischaemic myocardial function, lactate-dehydrogenase (LDH) release, and early reperfusion-induced ventricular fibrillation (VF). Isolated working rat hearts subjected to 10-min coronary artery occlusion followed by 2-min reperfusion were perfused with 1.5x10(-5)-6.0x10(-5)M D-cicletanine[+] (BN50417) and L-cicletanine[-] (BN50418), respectively. Their interaction with 10(-7) M glibenclamide was also studied. The most effective concentration of BN50418 (3x10(-5) M) increased ischaemic aortic flow (AF) from its non-treated control value of 20.3+/-1.16 to 30.3+/-2.6 ml min-1(P<0.01), decreased left ventricular end-diastolic pressure (LVEDP) from 1.81+/-0.05 to 0.97+/-0.08 kPa (P<0.001), attenuated ischaemia-induced increase in LDH leakage from 164+/-41 to 14.8+/-20 mU min-1g-1 wet wt. (P<0.01) at the 10th-min of coronary occlusion, and reduced VF upon reperfusion. Glibenclamide did not considerably affect cardiac performance, however, it inhibited the anti-ischaemic but not the antiarrhythmic effect of BN50418. BN50417 (3x10(-5) M) tended to improve ischaemic AF to 24.2+/-1.1 ml min-1, and significantly attenuated ischaemia-induced increase in LVEDP to 1.3+/-0.08 kPa (P<0.01), relative increase in LDH release to 29.4+/-44 mU min-1g-1(P<0.05), and alleviated reperfusion-induced VF. Glibenclamide abolished the anti-ischaemic and antiarrhythmic effect of BN50417. The cardioprotective effect of both enantiomers of cicletanine involves a glibenclamide-sensitive mechanism, however, the antiarrhythmic effect of BN50418 is not glibenclamide sensitive. BN50418 is the more potent enantiomer of cicletanine in terms of its cardioprotective effect.  相似文献   

8.
The abilities of 2-(2-methylphenyl)-5,7-dimethoxy-4-quinolyl carbonylguanidine dihydrochloride (CAS 181048-29-3, MS-31-050) and 2-phenyl-8-(2-methoxyethoxy)-4-quinolyl carbonylguanidine bismethanesulfonate (CAS 181048-36-2, MS-31-038) in inhibiting Na(+)-H+ exchange, ischemia- and reperfusion-induced injury were determined and compared with those of 4-isopropyl-3-methylsulfonylbenzoyl guanidine methanesulfonate (CAS 159138-81-5, IMGM), a selective inhibitor of Na(+)-H+ exchange. MS-31-050 and IMGM exhibited comparable inhibitory effects on Na(+)-dependent pH recovery and antiarrhythmic effects during ischemia in anesthetized rats. In rats subjected to ischemia and reperfusion, MS-31-050 (10 mg/kg i.v.) significantly reduced the infarct size when given prior to the onset of ischemia. However, postischemic treatment with either MS-31-050 or IMGM failed to protect reperfused hearts. In contrast, MS-31-038 reduced the infarct size dramatically from 65.4 +/- 7.4% in control to 29.9 +/- 11.6% at 3 mg/kg and 9.8 +/- 3.4% at 10 mg/kg even when administered before the onset of reperfusion. These results suggest the beneficial effects of Na(+)-H+ exchange inhibitors on myocardial ischemia/reperfusion injury.  相似文献   

9.
The cardioprotective properties of inhibition of poly (ADP-ribose) synthetase (PARS) were investigated in the isolated perfused heart of the rat. Hearts were perfused in the Langendorff mode and subjected to 23 min total global ischaemia and reperfused for 60 min. Left ventricular function was assessed by means of an intra-ventricular balloon. High energy phosphates were measured by 31P-NMR spectroscopy. Intracellular levels of NAD were measured by capillary electrophoresis of perchloric acid extracts of hearts at the end of reperfusion. Reperfusion in the presence of the PARS inhibitor 1,5 didroxyisoquinoline (ISO, 100 microM) attenuated the mechanical dysfunction observed following 1 h of reperfusion; 27+/-13 and 65+/-8% recovery of preischaemic rate pressure product for control and 100 microM ISO, respectively. This cardioprotection was accompanied by a preservation of intracellular high-energy phosphates during reperfusion; 38+/-2 vs 58+/-4% (P<0.05) of preischaemic levels of phosphocreatine (PCr) for control and 100 microM ISO respectively and 23+/-1 vs 31+/-3% (P < 0.05) of preischaemic levels of ATP for control and 100 microM ISO respectively. Cellular levels of NAD were higher in ISO treated hearts at the end of reperfusion; 2.56+/-0.45 vs 4.76+/-1.12 micromoles g(-1) dry weight (P<0.05) for control and ISO treated. These results demonstrate that the cardioprotection afforded by inhibition of PARS activity with ISO is accompanied by a preservation of high-energy phosphates and cellular NAD levels and suggest that the mechanism responsible for this cardioprotection may involve prevention of intracellular ATP depletion.  相似文献   

10.
ATP-dependent potassium channels (K(ATP)) have been implicated in cardioprotection both during myocardial ischemia and reperfusion. We compared the effect of a non-selective K(ATP) inhibitor glibenclamide, a selective mitochondrial K(ATP) inhibitor 5-hydroxy-decanoate (5-HD) and a selective sarcolemmal K(ATP) blocker HMR 1883, on survival and incidence of arrhythmias during myocardial ischemia in conscious, and during ischemia-reperfusion in pentobarbitone anesthetized rats. Glibenclamide (5 mg/kg i.p.) or HMR 1883 (3 mg/kg i.v.) reduced ischemia-induced irreversible ventricular fibrillation and improved survival during myocardial ischemia (64% and 61% vs. 23% in controls, respectively). 5-HD (5 mg/kg i.v.) did not influence survival and the incidence of ventricular arrhythmias. The incidence of reperfusion-induced arrhythmias was reduced by both glibenclamide and HMR 1883 (3 or 10 mg/kg) resulting in improved survival during reperfusion (81%, 82% and 96% vs. 24% in controls, respectively) in anesthetized rats. 5-HD did not reduce the incidence of lethal reperfusion arrhythmias. Glibenclamide and HMR 1883 prolonged (89+/-4.6 and 89+/-4.9 ms vs. 60+/-2.4 ms in controls), while 5-HD did not change the QT interval. In conclusion, inhibition of sarcolemmal K(ATP) reduces the incidence of lethal ventricular arrhythmias and improves survival both during acute myocardial ischemia and reperfusion in rats. This beneficial effect correlates with the prolongation of repolarization. Inhibition of mitochondrial K(ATP) does not improve survival or reduce the occurrence of ischemia and/or reperfusion-induced arrhythmias and does not prolong the QT interval. The present results also suggest that the antiarrhythmic effect of K(ATP) inhibitors is not influenced by pentobarbitone anesthesia.  相似文献   

11.
Inhibition of Na(+)/H(+) (NHE) and Na(+)/Ca(2+) (NCE) exchangers prevents myocardial ischemia/reperfusion injury by preventing cardiomyocyte Ca(2+) overload. We hypothesized that it may influence ischemic/reperfused myocardium also indirectly by preventing endothelial Ca(2+) accumulation, and thereby by attenuating reperfusion-induced formation of nitric oxide (NO) and/or oxygen free radicals. Langendorff-perfused rat hearts were subjected to 30-min ischemia and 30-min reperfusion. Myocardial outflow of NO (nitrite+nitrate) and hydroxyl radical (*OH, salicylate method), and functional recoveries were followed during reperfusion. In all groups, there was a transient rise in NO and *OH outflow upon reperfusion. An inhibitor of NHE, cariporide (10 microM) [(4-Isopropyl-3-methylsulfonyl-benzoyl)-quanidine methanesulfonate], and an inhibitor of the reverse mode of NCE, KB-R7943 (5 microM) (2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate), decreased NO and *OH formation, reduced contracture, and improved the recovery of mechanical function during reperfusion, compared to the untreated hearts. The formation of NO was reduced by 40% by 100 microM N(G)-methyl-L-arginine acetate salt (L-NMMA, NO synthase inhibitor), and not affected by 50 microM L-NMMA. *OH formation, contracture, and the functional recoveries were affected neither by 50 nor by 100 microM L-NMMA. Also, the effects of cariporide and KB-R7943 were unaffected by 100 microM L-NMMA. This study shows for the first time that the inhibition of NHE and NCE attenuates post-ischemic myocardial formation of NO and *OH, suggesting that prevention of Ca(2+) overload is cardioprotective via these mechanisms. The results indicate, however, that NO synthase pathway did not interfere with the protection afforded by NHE or NCE in our model.  相似文献   

12.
The expression of P-selectin on postischemic endothelium after reperfusion has been shown to trigger neutrophil attachment and the subsequent inflammatory responses. Extensive studies have demonstrated that P-selectin is involved in the progression of neutrophil-mediated myocardial infarction and no-reflow phenomenon. In the present study, we examined the effects of selectin inhibitors, sialyl Lewis X-oligosaccharide and anti-P-selectin monoclonal antibody, PB1.3 on neutrophil-dependent left ventricular dysfunction in isolated rat heart. The hearts were subjected to global ischemia for 20 min and then reperfused for 45 min with rat plasma in the presence of human neutrophils during the first 5 min of the reperfusion. Left ventricular developed pressure and other parameters of the left ventricular function deteriorated throughout the reperfusion period in a neutrophil-dependent manner. In contrast, the coronary flow was reduced early on (< 15 min) but recovered to the level in the hearts reperfused with no neutrophils 45 min after the reperfusion. We examined the effects of selectin inhibitors under experimental conditions in which the hearts were perfused with 30 million neutrophils. The treatment with sialyl Lewis X-oligosaccharide at a dose of 0.3 mg/min resulted in amelioration of left ventricular developed pressure to 57.2 +/- 14%, compared to 26.1 +/- 4.3% in the saline-treated group (P < 0.05). Similarly, the treatment with mouse anti-human P-selectin monoclonal antibody (IgG1) PB1.3 at a dose of 0.6 mg/min resulted in the prominent recovery of left ventricular developed pressure after 45 min of reperfusion (59.9 +/- 9.3% vs. 26.1 +/- 4.3% in the saline-treated group, P < 0.05). PB1.3 also attenuated the elevation of left ventricular end-diastolic pressure compared to that of the saline-treated group during the reperfusion period. Moreover, the treatment with PB1.3 ameliorated the recovery of coronary flow until 10 min after the reperfusion and the recovery of coronary flow 10 min after the reperfusion was 55.2 +/- 9.2%, as compared to 28.2 +/- 7.7% in saline-treated hearts (P < 0.05). To our knowledge, this is the first direct demonstration that the specific inhibition of P-selectin results in the inhibition of neutrophil-mediated left ventricular dysfunction or myocardial stunning.  相似文献   

13.
1. The release of bradykinin (BK) and its metabolite, des-Arg9-bradykinin (des-Arg9-BK), was studied following reperfusion of a globally ischaemic rat heart. 2. BK-like immunoreactivity increased from 13 +/- 3 (preischaemic value) to 48 +/- 12 fmol min-1 g-1 (P < 0.05, n = 14) 30 s after reperfusion. No difference in BK release was found between control hearts and hearts pretreated with the angiotensin converting enzyme (ACE or kininase II) inhibitor, enalaprilat (50 ng ml-1). 3. No significant change in des-Arg9-BK-like immunoreactivity during reperfusion was observed in control hearts. In contrast, des-Arg9-BK-like immunoreactivity rose from 44 +/- 15 to 177 +/- 61 fmol min-1 g-1 (P < 0.05, n = 7) 30 s after reperfusion in enalaprilat-treated hearts. 4. In conclusion, BK is released upon reperfusion of the globally ischaemic rat heart. ACE inhibitors, through the inhibition of kininase II, increase the formation of the active metabolite, des-Arg9-BK.  相似文献   

14.
BACKGROUND AND PURPOSE: The type-5 PDE inhibitor vardenafil reduces myocardial infarct size in situ, following ischemia/reperfusion, when applied at reperfusion in animal models. Little is known about the underlying protective signaling. Here, we test whether vardenafil is protective in rat isolated hearts and in a cell model of calcium stress. EXPERIMENTAL APPROACH: Infarct size in rat isolated hearts was measured after a 30 min regional ischemia and 120 min reperfusion. Vardenafil (1 nM-1 microM) was infused during reperfusion. HL-1 cardiomyocytes were loaded with tetramethylrhodamine ethyl ester (TMRE), a fluorescent marker of mitochondrial membrane potential (psi m). KEY RESULTS: Vardenafil at reperfusion reduced infarct size as percentage of the ischemic zone from 45.8+/-2.0% in control hearts to 26.2+/-2.7% (P<0.001) only at 10 nM, whereas higher or lower dosages failed to protect. This protective effect was blocked by co-administration of either the GC inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or the PKG inhibitor, KT-5823. HL-1 cardiomyocytes, loaded with TMRE, were treated for 80 min with the calcium ionophore, calcimycin, to induce calcium stress. This reduced the mean cell fluorescence to 63.3 +/- 3.8% of baseline values and vardenafil protected against this fall (78.6 +/- 3.6%, P<0.01). The vardenafil-induced protection of HL-1 cells was blocked by ODQ, KT-5823 or the PKG-inhibiting peptides DT-2 and DT-3, confirming a role for GC and PKG. CONCLUSIONS AND IMPLICATIONS: These results further support the hypothesis that PDE-5 inhibitors are protective in ischemic hearts, in addition to their known clinical effects in the treatment of erectile dysfunction in men.  相似文献   

15.
The contribution of alpha-melanocyte-stimulating hormone (alpha-MSH) treatment, an active fragment of adrenocorticotropic hormone (ACTH), to the recovery of postischemic cardiac function, infarct size, the incidence of reperfusion-induced ventricular fibrillation and apoptotic cell death was studied in ischemic/reperfused isolated rat hearts. Rats were subcutaneously injected with 40, 200 and 400 microg/kg of alpha-MSH, and 12 h later, hearts were isolated, perfused and subjected to 30 min of ischemia followed by 120 min of reperfusion. Thus, after 120 min of reperfusion, with the concentration of 200 microg/kg alpha-MSH, coronary flow, aortic flow and left ventricular developed pressure were significantly improved from their control values of 14.6+/-0.6 ml/min, 7.5+/-0.5 ml/min and 9.1+/-0.4 kPa to 20.2+/-0.4 ml/min (p<0.05), 31.5+/-0.9 ml/min (p<0.05) and 15.9+/-0.6 (p<0.05) kPa, respectively. With the doses of 40, 200 and 400 microg/kg of alpha-MSH, infarct size was reduced from its control value of 38+/-5% to 33+/-6% (NS), 17+/-3% (p<0.05) and 19+/-4% (p<0.05), respectively. The reduction in the incidence of reperfusion-induced ventricular fibrillation followed the same pattern. It is reasonable to assume that a reduction in infarct size, in the alpha-MSH-treated myocardium, resulted in a reduction as well in apoptotic cell death. Although we did not specifically study the exact mechanism(s) of alpha-MSH-afforded postischemic protection, we assume that this protection may be related to alpha-MSH-induced corticosterone release and corticosterone-induced de novo protein synthesis, which reflected in the recovery of postischemic cardiac function in isolated hearts. Thus, interventions that are able to increase plasma corticosterone or glucocorticoid release may prevent the development of ischemia/reperfusion-induced damage.  相似文献   

16.
We recently demonstrated that exogenous nitric oxide (NO) acts as a trigger for preconditioning in the isolated rat heart model. There is however little data concerning the effects of elevated cardiac endothelial nitric oxide synthase (eNOS) expression on myocardial tolerance to ischaemia. Similarly, the effects of gender and eNOS overexpression on ischaemic preconditioning is unknown. We hypothesized that: 1) eNOS overexpression increases myocardial tolerance to ischaemia, and, 2) eNOS overexpressed hearts cannot be preconditioned, since the hearts are already maximally protected. Male and female wild-type and transgenic mice that overexpress eNOS exclusively in cardiac myocytes were perfused in the working heart mode with a modified Krebs-Henseleit buffer at a pre-load of 12.5 mm Hg and afterload of 50 mm Hg. Cardiac output, coronary flow, peak aortic systolic pressure and total work were determined before hearts were preconditioned by 4x5 min cycles of ischaemia/reperfusion, and then subjected to 20 min total global ischaemia, followed by reperfusion. Reperfusion function and myocardial infarct size were used as endpoints. Pre-ischaemic mechanical function (rate pressure product and cardiac output) was similar for wild-type and transgenic mice of both sexes. The eNOS overexpressed hearts had smaller infarcts than the hearts from their wild-type littermates (26.9+/-1.4% vs. 37.0+/-2.1% for controls, P<0.05). Preconditioning the eNOS overexpressed hearts resulted in infarct sizes comparable with control non-preconditioned hearts (27.5+/-2.0% vs. 26.9+/-1.4% for controls). Myocardial cGMP levels were elevated during sustained ischaemia in the transgenic hearts when compared with wild-type hearts (22.43+/-1.63 pmol/g ww vs 16.54+/-1.48 pmol/g ww, P<0.05). Preconditioning also elevated myocardial cGMP levels during sustained ischaemia in the wild-type hearts (26.77+/-2.81 pmol/g ww, P<0.05). We conclude that: 1) basal mechanical function is similar for both wild-type and transgenic mice of both sexes, 2) reperfusion function and infarct size was also similar for both sexes under both control conditions and after preconditioning, 3) the transgenic mice are more tolerant of ischaemia as reflected by their smaller myocardial infarcts, and, 4) the eNOS overexpressed mouse heart cannot be preconditioned regardless of whether mechanical function or infarct size is used as an end-point. These hearts may be maximally protected against ischaemia/reperfusion injury by their elevated endogenous NO levels.  相似文献   

17.
Low concentrations of certain K(ATP) channel openers have been reported to exert a moderate inhibitory effect on arrhythmias during post-ischaemic early myocardial reperfusion, but the accompanying effects on the time course of changes in action potentials in intact hearts have not yet been studied. We report that in rat isolated hearts, reperfusion following 10 min of regional no-flow ischaemia was associated with both an acute, marked, but transient, shortening of ventricular repolarisation (by 63%) during reperfusion, and a high incidence (90%) of ventricular tachyarrhythmias. The K(ATP) channel opener Ro 31-6930 [2-(6-cyano-2,2-dimethyl-2H-1-benzopyran-4-yl)-pyridine 1-oxide], delivered prior to ischaemia at a relatively low concentration (0.5 microM), significantly reduced the incidence and duration of reperfusion arrhythmias, and prevented the associated acute action potential shortening during reperfusion, each in a glibenclamide (1 microM)-sensitive manner (P<0.05, n=10-15 hearts). This was associated with a moderate and non-arrhythmogenic action potential shortening during ischaemia (a potentially "cardioprotective" effect). However, these data highlight the potential harm these drugs may cause, since a higher concentration of Ro 31-6930 caused marked shortening of action potentials and significant pro-arrhythmia during ischaemia.  相似文献   

18.
We studied the effects of urate, a peroxynitrite scavenger, on ischaemia- and peroxynitrite-induced preconditioning in rat isolated hearts. Isolated hearts perfused with Krebs-Henseleit solution were preconditioned either by 3 min of coronary artery occlusion or by peroxynitrite administration (1 microM) for 3 min, followed by 10 min of reperfusion and 30 min of coronary artery occlusion. Both ischaemia and peroxynitrite produced a marked reduction in arrhythmias. Urate (1 mM) added to the perfusate 10 min prior to ischaemic preconditioning or peroxynitrite infusion and maintained until coronary artery occlusion, markedly reversed the beneficial effects in the ischaemic and peroxynitrite-treated groups. Urate administration in the peroxynitrite-treated group increased the incidence of ventricular tachycardia from 57% (n = 11) to 100% (n = 6) and total ventricular fibrillation from 0% (n=0) to 44% (n=4). Similarly, urate augmented the incidence of ventricular tachycardia from 47% (n=8) to 85% (n = 6) in the ischaemic preconditioning group. On its own, urate did not affect the severity of cardiac arrhythmias. Peroxynitrite infusion caused a marked increase in the effluent nitrate levels, from 0.05 +/- 0.1 microM (n = 5) to 0.4 +/- 0.2 microM (n = 6), and urate significantly decreased these levels to 0.08 +/- 0.03 microM (n = 9). These results suggest that peroxynitrite at low concentrations contributes to the beneficial effects of preconditioning on ischaemia-induced arrhythmias in rat isolated hearts.  相似文献   

19.
The Langendorff-perfused rabbit heart preparation has been used to study the interaction of isolated rabbit neutrophils with regionally ischaemic myocardium. Short durations of regional ischaemia (10-60 min) and subsequent reperfusion (30 min) of the hearts with neutrophils resulted in a significant time-dependent accumulation of neutrophils (as assessed by myeloperoxidase activity) in the area at risk. Pre-activation of neutrophils with zymosan-activated serum prior to their infusion into the myocardium potentiated neutrophil accumulation in the area at risk. Pretreatment of the myocardium with a lipoxygenase inhibitor, PF-5901 (10 microM), or a de novo protein synthesis inhibitor, cycloheximide (10 microM), significantly reduced the accumulation of neutrophils in the ischaemic/reperfused myocardium. In contrast, pretreatment of neutrophils with cycloheximide (10 microM, for 15 min) prior to their infusion had no significant effect on neutrophil accumulation in the area at risk. The cyclooxygenase inhibitor, indomethacin (10 microM), had no effect on neutrophil accumulation in the area at risk following ischaemia and reperfusion. These results suggest the involvement of de novo protein synthesis and the lipoxygenase products in the infiltration of neutrophils following ischaemia and reperfusion in vitro.  相似文献   

20.
We tested the hypothesis that combined use of trophic factors and caspase inhibitors increases brain resistance to ischaemia in mice. Intracerebroventricular administration of bFGF (>10 ng) 30 min after MCA occlusion decreased infarct size and neurological deficit in a dose-dependent manner following 2 h ischemia and reperfusion (20 h). Combined administration of the subthreshold doses of bFGF (3 ng) and caspase inhibitors (z-VAD.FMK, 27 ng or z-DEVD.FMK, 80 mg) reduced infarct volume by 60%, and reduced neurological deficit. Treatment with a subthreshold dose of bFGF (3 ng) extended the therapeutic window for z-DEVD.FMK (480 ng) from 1 to 3 h after reperfusion. Caspase-3 activity in the ischaemic brain was increased 30 min and 2 h after reperfusion but, was significantly reduced in bFGF-treated animals by 29 and 16%, respectively. Caspase-3 activity was not reduced by a direct bFGF effect because addition of bFGF (10 nM - 2 microM) did not decrease recombinant caspase-3 activity, in vitro. Our data show that combining caspase inhibitors and bFGF lengthens the treatment window for the second treatment, plus lowers the dosage requirements for neuroprotection. These findings are important because low doses of caspase inhibitors or bFGF reduce the possibility of side effects plus extend the short treatment window for ischaemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号