首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was designed to examine the effects of dietary conjugated linoleic acid (CLA) on serum concentrations of insulin-like growth factor-I (IGF-I) and IGF binding proteins (IGFBP) and the relationship of these factors to bone metabolism. Weanling male rats were fed AIN-93G diet containing 70 g/kg of added fat for 42 days. Treatments included 0 g/kg or 10 g/kg of CLA and soybean oil (SBO) or menhaden oil + safflower oil (MSO) following a 2 x 2 factorial design. Serum IGFBP was influenced by dietary polyunsaturated fatty acid (PUFA) type ((n-6) and (n-3)) and CLA (p = 0.01 for 38-43 kDa bands corresponding to IGFBP-3). CLA increased IGFBP level in rats fed SBO (p = 0.05) but reduced it in those fed MSO (p = 0.01). Rats fed MSO had the highest serum IGFBP-3 level. Both (n-3) fatty acids and CLA lowered ex vivo prostaglandin E2 production in bone organ culture. In tibia, rats given CLA had reduced mineral apposition rate (3.69 vs. 2.79 microm/day) and bone formation rate (BFR) (0.96 vs. 0.65 microm3/microm2/day); however, the BFR tended to be higher with MSO. Dietary lipid treatments did not affect serum intact osteocalcin or bone mineral content. These results showed that dietary PUFA type and CLA modulate local factors that regulate bone metabolism.  相似文献   

2.
Dietary n-3 polyunsaturated fatty acids (PUFAs) have been reported to improve clinical outcome in a number of inflammatory diseases including burns and sepsis. One mechanism contributing to the anti-inflammatory effect is the incorporation of n-3 PUFAs into membrane phospholipids which decreases macrophage eicosanoid production. We hypothesize that an additional mechanism for their effects is an alteration of membrane signal transduction that decreases macrophage responsiveness to inflammatory stimuli. Kupffer cells, the fixed macrophages of the liver, were obtained from rats pair fed diets for 6 weeks with 15% of calories supplied as menhaden (high n-3), corn (control), or safflower (high n-6) oils. The effects of the dietary oils on Kupffer cell membrane signal transduction and eicosanoid production were assessed by measuring inositol phospholipid (PI) metabolism, intracellular calcium responses, and prostaglandin E2 (PGE2) production to the inflammatory signals endotoxin (LPS) and platelet activating factor (PAF). The menhaden oil diet resulted in significant incorporation of n-3 PUFAs into total cellular PUFAs compared to corn and safflower oil. (total n-3 PUFAs, 28.1% menhaden vs 2.1% corn vs 1.2% safflower, P less than 0.03). This incorporation altered signal transduction of PAF as both PI turnover (65% +/- 10% of corn oil) and calcium response (0.6-fold vs 5.0-fold for corn oil) were significantly reduced in the menhaden oil group. (P less than 0.05) The menhaden oil diet also reduced significantly PGE2 production in response to PAF and LPS (corn, 348 +/- 23 pg/ml; menhaden, 48 +/- 6 pg/ml, P less than 0.01). We conclude that, in addition to modulating eicosanoid production, n-3 PUFAs can also alter macrophage membrane signal transduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Recent studies show that green tea polyphenols (GTPs) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. This study evaluated the efficacy of GTPs at mitigating bone loss and microstructure deterioration along with related mechanisms in androgen-deficient aged rats, a model of male osteoporosis. A 2 (sham vs. orchidectomy) × 2 (no GTP and 0.5% GTP in drinking water) factorial design was studied for 16 weeks using 40 aged male rats. An additional 10 rats (baseline group) were killed at the beginning of study to provide baseline parameters. There was no difference in femoral mineral density between baseline and the sham only group. Orchidectomy suppressed serum testosterone and tartrate-resistant acid phosphatase concentrations, liver glutathione peroxidase activity, bone mineral density, and bone strength. Orchidectomy also decreased trabecular bone volume, number, and thickness in the distal femur and proximal tibia and bone-formation rate in trabecular bone of proximal tibia but increased serum osteocalcin concentrations and bone-formation rates in the endocortical tibial shaft. GTP supplementation resulted in increased serum osteocalcin concentrations, bone mineral density, and trabecular volume, number, and strength of femur; increased trabecular volume and thickness and bone formation in both the proximal tibia and periosteal tibial shaft; decreased eroded surface in the proximal tibia and endocortical tibial shaft; and increased liver glutathione peroxidase activity. We conclude that GTP supplementation attenuates trabecular and cortical bone loss through increasing bone formation while suppressing bone resorption due to its antioxidant capacity.  相似文献   

4.
Isocaloric dietary protein deficiency is associated with decreased BMD and bone strength as well as depressed somatotroph and gonadotroph axis. Inhibition of increased bone resorption by the bisphosphonate pamidronate in rats fed an isocaloric low-protein diet fully prevents bone loss and alteration of bone strength. INTRODUCTION: Isocaloric dietary protein deficiency is associated with decreased BMD and bone strength as well as depressed somatotroph and gonadotroph axis. This negative bone balance is the consequence of increased bone resorption and decreased bone formation. Whether inhibition of bone resorption could prevent low-protein diet-induced bone loss and alteration of biomechanics is not known. MATERIALS AND METHODS: The effect of the bisphosphonate pamidronate was studied in 5.5-month-old female or 6-month-old male rats pair-fed a control (15% casein) or an isocaloric low-protein (2.5% casein) diet for 19 and 26 weeks, respectively. Pamidronate (0.6 mg/kg) was given subcutaneously 5 days/month for 4 months in female rats or for 5 months in male rats. BMD, microarchitecture, and bone strength were measured at the level of the proximal and midshaft tibia. Urinary deoxypyridinoline excretion, serum osteocalcin, and IGF-I were also measured. RESULTS: The increase in bone resorption in female rats (+100%) and in male rats (+33%) fed a low-protein diet was prevented by pamidronate treatment. The reduced osteocalcin levels observed in rats fed a low-protein diet were further decreased in both female (-34%) and male (-30%) rats treated with pamidronate. The bone turnover decrease induced by pamidronate prevented bone strength reduction, trabecular bone loss, microarchitecture, and BMD alterations induced by the isocaloric low-protein diet. Similar effects were observed at the level of the midshaft tibia. Significant decrease of plasma IGF-I was observed in rats fed a low-protein diet independently of the pamidronate treatment. CONCLUSION: In conclusion, inhibition of increased bone resorption in rats fed an isocaloric low-protein diet fully prevents bone loss and alteration of bone strength.  相似文献   

5.
Zhang Y  Dong XL  Leung PC  Wong MS 《BONE》2009,44(1):46-52
Both ovariectomized animals and animals fed with Ca-depleted diets are commonly used in vivo models for the investigation of osteoporosis-related bone loss. The present study aimed to study the genomic responses of bone in aged female rats to ovariectomy and dietary Ca deficiency in these models. Aged (11 months old) Sprague-Dawley rats were subjected to bilateral ovariectomy or sham-operation and fed with diets containing different dietary Ca content (LCD, 0.1% Ca or HCD, 1.2% Ca) for 12 weeks. Serum and urine were collected for biochemical marker measurement, and tibias were collected for bone mineral density (BMD) analysis by pQCT as well as for gene expression analysis by real-time PCR. Ovariectomy increased serum N-telopeptides of bone type I collagen (NTx) levels in aged rats fed with HCD (P<0.05). In addition, ovariectomy reduced BMD and predicted bone strength of tibial proximal metaphysis in aged rats fed with either LCD or HCD. Dietary Ca deficiency did not alter serum bone-specific alkaline phosphatase (BAP) or NTx levels, but induced a loss of BMD at tibia proximal metaphysis in aged rats. Ovariectomy promoted the mRNA expression of alpha-1 type I collagen (COL), osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL); and inhibited the mRNA expression of cathepsin K and matrix metalloproteinase-9 (MMP-9) in the proximal tibia of aged rats. Low-Ca diet significantly up-regulated the mRNA expression of COL, core binding factor I (Cbfa1), OPG and carbonic anhydrase II (CAII) in proximal tibia of aged rats. Our study revealed that the genomic responses of bone in proximal tibia to ovariectomy and dietary Ca deficiency were different. The bone loss induced by ovariectomy appears to be mediated primarily by an increase in RANKL mRNA expression; whereas the induction by dietary Ca restriction might be mediated by the induction of carbonic anhydrase II expression.  相似文献   

6.
We previously reported that renal injury in hyperlipidemic, obese Zucker rats was associated with a relative deficiency of tissue polyunsaturated fatty acids (PUFA). In the present study 10-week-old obese Zucker rats were pair fed regular chow or chow containing either 20% sunflower oil rich in n-6 PUFA, fish oil rich in n-3 PUFA, coconut oil medium-chain saturated fatty acid, or beef tallow long-chain saturated fatty acid. At 34 weeks of age there were comparable reductions in albuminuria, mesangial matrix expansion, and glomerulosclerosis in the fish oil and sunflower oil groups. While both fish oil and sunflower oil reduced serum triglycerides, and improved the composition of triglyceride-enriched lipoproteins, only fish oil decreased serum cholesterol. The effect of the dietary fatty acid supplementation on fatty acid profiles were similar in isolated glomeruli and cortical tissue. In general, the amelioration in injury in the fish oil and sunflower oil fed rats was most closely linked to glomerular levels of PUFA, either n-6 or n-3. These data suggest that hyperlipidemia and abnormalities in tissue FA are closely linked, and that dietary supplementation with PUFA may ameliorate chronic, progressive renal injury.  相似文献   

7.
Fish oils, containing omega-3 fatty acids (omega 3FAs), favorably influence plasma lipoproteins in nondiabetic humans and prevent the development of insulin resistance induced by fat feeding in rats. We studied the effects of fish oils in 10 subjects (aged 42-65 yr) with mild non-insulin-dependent diabetes mellitus (NIDDM). Subjects were fed a standard diabetic diet plus 1) no supplementation (baseline), 2) 10 g fish oil concentrate (30% omega 3FAs) daily, and 3) 10 g safflower oil daily over separate 3-wk periods, the latter two supplements being given in radom order by use of a double-blind crossover design. At the end of each diet period, fasting blood glucose (FBG), insulin, and lipids were measured, and insulin sensitivity was assessed with a hyperinsulinemic-euglycemic clamp performed with [3-3H]glucose. FBG increased 14% during fish oil and 11% during safflower oil supplementation compared with baseline (P less than .05), whereas body weight, fasting serum insulin levels, and insulin sensitivity were unchanged. The absolute increase in FBG during each supplementation period correlated with the baseline FBG (fish oil, r = .83, P less than .005); safflower oil, r = .75, P = .012). Fasting plasma triglyceride levels decreased during fish oil supplementation in the 4 subjects with baseline hypertriglyceridemia (greater than 2 mM) but were not significantly reduced overall. There was no significant change in fasting plasma total, high-density lipoprotein, and low-density lipoprotein cholesterol levels. In summary, dietary fish oil supplementation adversely affected glycemic control in NIDDM subjects without producing significant beneficial effects on plasma lipids. The effect of safflower oil supplementation was not significantly different from fish oil, suggesting that the negative effects on glucose metabolism may be related to the extra energy or fat intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Lukas R  Gigliotti JC  Smith BJ  Altman S  Tou JC 《BONE》2011,49(3):455-462
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.  相似文献   

9.
We examined the effect of vitamin K2 on cortical and cancellous bones in orchidectomized and/or sciatic neurectomized rats. Ninety male Sprague-Dawley rats, 3 months of age, were randomized by stratified weight method into nine groups with 10 rats in each group: baseline control (BLC), age-matched intact control (IN), IN+vitamin K2 administration (K), orchidectomy (ORX), ORX+K, unilateral sciatic neurectomy (NX), NX+K, ORX+NX (ONX), and ONX+K. Vitamin K2 (menatetrenone) was administered orally twice a week at a dose of 30 mg/kg each. After 10 weeks of feeding, the tibial shaft and proximal tibia were processed for cortical and cancellous bone histomorphometric analyses, respectively. An ORX-induced reduction in maturation-related cortical bone gain and ORX-induced cancellous bone loss were attributable to increased endocortical and trabecular bone turnover, respectively. NX- and ONX-induced reductions in maturation-related cortical bone gain were attributable to decreased periosteal bone formation and increased endocortical bone turnover, while NX- and ONX-induced cancellous bone loss was attributable to increased bone resorption and decreased bone formation. ORX-induced cancellous bone loss was more pronounced when combined with immobilization. Vitamin K2 administration did not significantly alter any parameters in IN rats. Vitamin K2 administration in ORX rats suppressed endocortical bone resorption and trabecular bone turnover, retarding a reduction in maturation-related cortical bone gain and cancellous bone loss. This effect on cancellous bone loss was primarily because of prevention of a reduction of trabecular thickness. Vitamin K2 administration in NX and ONX rats suppressed bone resorption and stimulated bone formation (mineralization), with retardation of a reduction of trabecular thickness without any significant effect on cancellous bone mass, and suppressed endocortical bone resorption, retarding a reduction in maturation-related cortical bone gain. The present study provides evidence indicating that vitamin K2 has the potential to suppress bone resorption or bone turnover and/or stimulate bone formation in vivo in ORX and/or NX rats.  相似文献   

10.
R G Barton  C L Wells  A Carlson  R Singh  J J Sullivan  F B Cerra 《The Journal of trauma》1991,31(6):768-73; discussion 773-4
We tested the hypothesis that substitution of omega-3 fat for dietary omega-6 fat would reduce mortality and decrease Kupffer cell prostaglandin E2 (PGE2) production in a rat model of chronic sepsis. Rats were fed via gastrostomy for 12 days with isonitrogenous, isocaloric diets containing 15% of calories as either safflower oil (omega-6) or a 10:1 mixture of menhaden oil (omega-3) and safflower oil. After five days of feeding, animals received an intra-abdominal abscess of defined bacterial content. Survivors were killed on post-laparotomy day 6 in conjunction with liver perfusion and protease liver digestion for Kupffer cell isolation. Kupffer cell PGE2 production was measured by radioimmunoassay after 18 hours of cell culture and again after stimulation with 0 LPS, 10 ng/ml LPS, and 10 micrograms/LPS. Mortality was decreased in menhaden oil-fed animals compared with safflower oil-fed animals (16% vs. 35%). Kupffer cell PGE2 production was decreased in menhaden oil-fed animals at 18 hours (354 +/- 54 vs. 570 +/- 95 pg/0.1 ml; p = 0.09) and after stimulation with 10 micrograms/ml LPS (140 +/- 41 vs. 288 +/- 45 pg/0.1 ml; p = 0.03) compared with safflower oil-fed animals.  相似文献   

11.
Bone-protecting effect of safflower seeds in ovariectomized rats   总被引:5,自引:0,他引:5  
Safflower (Carthamus tinctorius L.) seeds have long been clinically used in Korea to promote bone formation and prevent osteoporosis. However, the beneficial effect has not been scientifically evaluated. Thus, in the present study we investigated whether phytoestrogen rich safflower seeds reduce bone loss in ovariectomized rats. Female Sprague-Dawley rats were subjected to bilateral ovariectomy or sham surgery. One week after the operation, ovariectomized rats were either fed a diet containing defatted safflower seeds or injected with 17b-estradiol (E2) for 4 weeks. As expected, ovariectomy resulted in a dramatic reduction in trabecular bone mass of the proximal tibia, increase in deposition of marrow fat, and in uterine atrophy. E2 treatment almost completely prevented bone loss as well as marrow adiposity, as examined by scanning electron microscopy and histomorphometry. Safflower seeds partially prevented ovariectomy-induced bone loss and slightly reduced marrow adiposity. Safflower seeds, in contrast to E2, exerted very weak uterotrophic action. In an attempt to elucidate the underlying mechanisms, effect of polyphenolic compounds extracted from safflower seeds on proliferation of osteoblast-like cells was also assessed in vitro. The mixed polyphenolic compounds stimulated growth of ROS 17/2.8 osteoblast-like cells in a dose-dependent manner (5-100 mg/ml), as potently as E2 and genistein. The present data provide the first direct in vivo evidence that safflower seeds have a protecting effect on bone loss caused by estrogen deficiency, without substantial effect on the uterus. The beneficial effect of safflower seeds may be mediated, at least in part, by the stimulating effect of polyphenolic compounds on proliferation of osteoblasts.  相似文献   

12.
Unweighting the hindlimbs of a rat by tail suspension leads to a decrease in bone in the unweighted hindlimbs, but not in the normally weighted forelimbs. We evaluated whether increments in dietary calcium could prevent this. Growing rats were fed diets ranging in calcium content from 0.1% to 2.4%. After the rats were suspended for two weeks, we found no differences between suspended and control animals fed the same diet with respect to calcium transport or serum levels of calcium, phosphorus, 1,25-dihydroxyvitamin D, and parathyroid hormone. In both groups, increasing dietary calcium reduced active intestinal calcium transport and serum 1,25-dihydroxyvitamin D levels. The calcium content of the tibia and lumbar vertebra (but not the humerus) was reduced in suspended rats compared to control rats fed the same diet. However, increasing dietary calcium increased the calcium content of all bones in both suspended and control animals. The bone formation rate at the tibiofibular junction (measured by double-label tetracycline) was reduced in the suspended animals compared to controls and was not altered by dietary calcium. However, the marrow area of the tibia, an indication of bone resorption, did not differ between suspended and control animals and was equally reduced in both groups when dietary calcium was increased. Our data suggest that the deleterious effects of skeletal unweighting on bone formation cannot be explained by changes in the calciotropic hormones and are not reversed by increments in dietary calcium. However, increasing dietary calcium can increase bone calcium, even in unweighted limbs, by decreasing bone resorption.  相似文献   

13.
Over 16 months, we evaluated the effects of ovariectomy (OVX) and bisphosphonate clodronate (CLO) on bone in 48 cynomolgus monkeys (9-15 years old) fed a normal calcium diet. We established three OVX groups (oral CLO at 0 [OVX control], 12, or 60 mg/kg per day) and one sham-operated (SHAM) group. At 16 months, the bone mineral density (BMD) values (percentage of group baseline; OVX control vs. SHAM) for lumbar bone (L3-L5), proximal femur, midfemur, radius, and tibia were -2.6% versus 11.2%, -3.5% versus 8.9%, -3.0% versus 9.0%, -5.5% versus 15.7%, and -6.7% versus 13.9%, respectively. In OVX control (i) tibia showed significant loss of bone mineral content (BMC; vs. baseline), (ii) urinary deoxypyridinoline (DPD) and serum osteocalcin (OC) levels increased (peak = 182% and 168%, respectively, of SHAM), (iii) in lumbar bone and midfemur, ultimate load (UL) was reduced (vs. SHAM), (iv) in lumbar bone, trabecular bone-formation rates (BFRs) were not changed significantly, but tibial endocortical and intracortical bone formation rates were significantly raised (vs. SHAM), (v) the volumetric BMD (vBMD) and geometry of the tibial cortex (measured by peripheral quantitative computed tomography [pQCT]) were significantly reduced (vs. SHAM). CLO, 60 mg/kg per day but not 12 mg/kg per day, significantly inhibited OVX-induced changes, age-dependent increases in bone mass, and ability to maintain structure. Thus, in OVX mature cynomolgus monkeys (possibly, a unique model of the cortical bone loss secondary to estrogen deficiency), the post-OVX increases in systemic bone markers were slight, but stimulation of local turnover in the cortical envelope was enough to cause bone loss (more so in tibia than in lumbar trabecular bone). High-dose CLO prevented these changes.  相似文献   

14.
This study was designed to investigate whether the administration of dietary essential amino acid supplements in adult rats made osteoporotic by estrogen deficiency and reduced protein intake could reverse the deleterious effects caused by these maneuvers. This animal model was selected to mimic the situation observed in elderly women in whom estrogen deficiency and/or low-protein intake (but also calcium and vitamin D deficiency) are known to contribute to the pathogenesis of osteoporosis. Six-month-old rats were ovariectomized (OVX) and fed an isocaloric 2.5% casein diet for 10 weeks or sham-operated (SHAM) and fed an isocaloric 15% casein diet. The animals fed the 2.5% casein diet were given isocaloric supplements of essential amino acids in similar relative proportion to that of casein at doses of 2.5% or 5% of total diet for an additional 16 weeks. Vertebrae, femur, and tibia bone mineral density (BMD); ultimate strength; and microtomographic histomorphometry were evaluated before and after dietary essential amino acid supplements. Essential amino acid supplements increased vertebrae, femur, and tibia bone strength in OVX rats fed a low-protein diet. The mechanical changes induced by this dietary isocaloric supplement were associated with the prevention of a further BMD decrease or even with some increases and changes in microarchitecture such as from a rod to a plate trabecular spacial configuration and increased cortical thickness. Higher insulin-like growth factor (IGF) I levels, as well as greater bone formation and reduced bone resorption as assessed by biochemical markers of bone remodeling, were found in rats receiving essential amino acid supplements. In conclusion, dietary essential amino acid supplements increased bone strength through modifications of BMD, trabecular architecture, and cortical thickness possibly by an IGF-I-mediated process.  相似文献   

15.
Prostaglandins mediate adaptive bone formation induced by mechanical loading. Inhibition of cyclooxygenase-2 (COX-2) with NS-398 effectively blocks loading-induced osteogenesis on the endocortical bone surface of the tibia. In this study, we compared the effects of selective inhibition of COX-2 with NS-398 on mechanically induced osteogenesis at the endocortical surface (tibia) with that on the periosteal surface (ulna). We further tested the effect of NS-398 administered at different times before (3 hrs or 30 min) or after (30 min) mechanical loading. Mechanical loading induced lamellar bone formation on the endocortical surface of the tibia and the periosteal surface of the ulna. Oral administration of either indomethacin or NS-398 3 hrs before loading significantly decreased loading-induced bone formation rate (BFR) and mineralizing surface (MS/BS), but not mineral apposition rate (MAR), at the endocortical surface of the tibia and the periosteal surface of the ulna. NS-398 reduced loading-induced MS/BS by 96% on the endocortical surface of the tibia, but only by 37% on the periosteal surface of the ulna (significantly different from endocortical, P <0.05). Indomethacin reduced MS/BS and BFR to a lesser extent than NS-398 and did not have different effects on the periosteal and endocortical surfaces. These data suggest that the endocortical bone adaptive response to mechanical loading is more dependent upon COX-2 activity than is the periosteal bone response. Intraperitoneal injection of NS-398 3 hrs before loading suppressed load-induced bone formation rate at the endocortical surface of the tibia significantly more (27%) than when administered 30 min before loading. When NS-398 was given 30 min after loading, bone formation was not significantly suppressed. These data suggest that a primary cellular mechanism of bone formation following brief bouts of mechanical loading involves release of prostaglandins from cells at the time mechanical loading is applied, rather than new prostaglandin synthesis associated with a mechanically induced COX-2 expression.  相似文献   

16.
Most studies that have investigated the anabolic effects of parathyroid hormone (1-84) (PTH) or PTH fragments on the skeleton of ovariectomized (OVX) rats have evaluated the short-term effects of high-dose PTH(1-34) in young animals. This study used densitometry, histomorphometry, and biomechanical testing to evaluate the effects of 12-month daily treatment with low-dose PTH (15 or 30 μg/kg) in rats that were 10 months old at baseline, 4 months after OVX. Bone mineral density (BMD) and bone strength were reduced substantially in control OVX rats. The 15 μg/kg dose of PTH restored BMD to levels similar to those in sham animals within 6 months at the lumbar spine, distal and central femur, and whole body and maintained the BMD gain from 6 to 12 months. The 30 μg/kg dose produced greater effects. Both PTH doses normalized the trabecular bone volume-to-total volume ratio (BV/TV) at lumbar vertebra 3 but not at the proximal tibia (where baseline BV/TV was very low), solely by increasing trabecular thickness. PTH dose-dependently increased bone formation by increasing the mineralizing surface, but only the 30 μg/kg dose increased resorption. PTH increased cortical BMD, area, and thickness, primarily by increasing endocortical bone formation, and restored all measures of bone strength to levels similar to those in sham animals at all skeletal sites. PTH increased bone mass safely; there was no osteoid accumulation, mineralization defect, or marrow fibrosis and there were no abnormal cells. Thus, long-term PTH therapy normalized bone strength in the aged OVX rat, a model of postmenopausal osteoporosis, through increased bone turnover and enhanced formation of both trabecular and cortical bone.  相似文献   

17.
Iwamoto J  Seki A  Sato Y  Matsumoto H  Takeda T  Yeh JK 《BONE》2011,48(5):1015-1021
The present study examined changes of cancellous and cortical bone in rats with combined methionine-choline deficiency (MCD). In addition, the effects of vitamin K2 on cortical and cancellous bone mass and hepatic lipids were investigated in rats with MCD. Six-week-old male Sprague-Dawley rats were randomized into three groups of ten, including an age-matched control (standard diet) group, an MCD diet group, and an MCD diet+vitamin K2 (menatetrenone at 30mg/kg/d orally, 5 times a week) group. After the one-month experimental period, histomorphometric analysis was performed on cortical and cancellous bone from the tibial diaphysis and proximal metaphysis, respectively, while histological examination of the liver was performed after staining with hematoxylin and eosin and Oil Red O. MCD rats displayed weight loss, diffuse and centrilobular fatty changes of the liver, and a decrease of the cancellous bone volume per tissue volume (BV/TV) and percent cortical area (Ct Ar) as a result of decreased trabecular, periosteal, and endocortical bone formation along with increased trabecular and endocortical bone resorption. Administration of vitamin K2 to rats with MCD attenuated weight loss, accelerated the decrease of cancellous BV/TV due to an increase of bone remodeling, and ameliorated the decrease of percent Ct Ar by increasing periosteal and endocortical bone formation. Vitamin K2 administration also prevented MCD-induced diffuse fatty change of the liver. These findings suggest a beneficial effect of vitamin K2 on cortical bone mass and hepatic lipid metabolism in rats with MCD. The loss of cancellous bone mass could possibly have been due to re-distribution of minerals to cortical bone.  相似文献   

18.
The effect of moderate running exercise on tibial and lumbar vertebral bone mass was examined in mature osteopenic rats by bone histomorphometry. Ten 37-week-old female Wistar rats, with bone loss resulting from being fed a relatively low-calcium diet for 14 weeks after ovariectomy at the age of 23 weeks, were randomly divided into two groups of five animals each; control and exercise groups. The exercise consisted of treadmill running at 12 m/min for 1 h per day on 5 days per week for 12 weeks. During the exercise period, all animals were fed a standard calcium diet. After 12 weeks of exercise, bone histomorphometry was evaluated for cancellous bone (secondary spongiosa) of the proximal tibia and the fourth lumbar vertebra and for cortical bone of the tibial shaft. The findings suggested that in the mature osteopenic rat, there was a beneficial effect of moderate running exercise with adequate calcium intake on bone mass only in a weight-bearing long bone, the tibia. The mechanism for increased bone mass appeared to be both decreased bone resorption and increased bone formation in cancellous bone and increased bone formation in cortical bone. Received for publication on Dec. 18, 1997; accepted on April 2, 1998  相似文献   

19.
A single 3-minute bout of mechanical loading increases bone formation in the rat tibia. We hypothesized that more frequent, shorter loading bouts would elicit a greater osteogenic response than a single 3-minute bout. The right tibias of 36 adult female Sprague-Dawley rats were subjected to 360 bending cycles per day of a 54 N force delivered in 1, 2, 4, or 6 bouts on each of the 3 loading days. Rats in the 6-bouts/day group received 60 bending cycles per bout (60 x 6); rats in the 4-bouts/day group received 90 bending cycles per bout (90 x 4); the 2- and 1-bouts/day groups received 180 and 360 bending cycles per bout, respectively (180 x 2 and 360 x 1). A nonloaded, age-matched control group (0 x 0) and two sham-bending groups (60 x 6 and 360 x 1) also were included. Fluorochrome labeling revealed a 10-fold increase in endocortical lamellar bone formation rate (BFR/bone surface [BS]) in the right tibia versus the left (nonloaded) side in the 60 x 6 bending group. Endocortical BFR/BS in the right tibia of the 4-, 2-, and 1-bout bending groups exhibited 8-, 4-, and 4-fold increases, respectively, over the control side. Relative (right minus left) values for endocortical BFR/BS, mineralizing surface (MS/BS), and mineral apposition rate (MAR) were 65-94% greater in the 90 x 4 and 60 x 6 bending groups compared to the 360 x 1 bending group. Sham-bending tibias exhibited relative endocortical bone formation values similar to those collected from the control (0 x 0) group. The data show that 360 daily loading cycles applied at intervals of 60 x 6 or 90 x 4 represent a more osteogenic stimulus than 360 cycles applied all at once, and that mechanical loading is more osteogenic when divided into discrete loading bouts. Presumably, bone cells become increasingly "deaf" to the mechanical stimulus as loading cycles persist uninterrupted, and by allowing a rest period between loading bouts, the osteogenic effectiveness of subsequent cycles can be increased.  相似文献   

20.
Oxlund H  Andreassen TT 《BONE》2004,34(4):609-618
Statins are commonly prescribed drugs that inhibit hepatic cholesterol synthesis and thereby reduce serum cholesterol concentrations. Some of the statins are thought to possess bone anabolic properties. Effects of statin on tibia, femur, and vertebral cortical and cancellous bone were studied in ovariectomized (OVX) rats. Sixty Wistar female rats, 4 months old, were allocated into four groups: baseline control, sham + placebo group, OVX + placebo, OVX + simvastatin. Simvastatin, 20 mg/kg, or placebo was given twice daily by a gastric tube for 3 months. The rats were labeled with tetracycline at day 11 and calcein at day 4 before sacrifice. Concerning cortical bone, the tibial diaphysis bending strength was increased by 8% and the periosteal bone formation rate (BFR) at the mid-diaphysis increased by twofold in the OVX + simvastatin group compared with the OVX + placebo group, in harmony with increased serum osteocalcin concentrations. Simvastatin did not affect the endocortical bone formation. Concerning cancellous bone, the cancellous bone volumes in the proximal tibia and vertebral body were reduced in both OVX groups, but the reduction was less in the OVX + simvastatin group compared with the OVX + placebo group. This reduction in cancellous bone loss is in agreement with the 36% decreased activity of serum tartrate-resistant-acid-phosphatase 5b (TRAP-5b), indicating decreased osteoclast activity in the OVX + simvastatin group compared with the OVX + placebo group. In conclusion, simvastatin induces a moderate increase in cortical bone formation at the periosteal bone surface. The new cortical bone exhibits a normal lamellar structure, and simvastatin seems to respect the regional pattern of bone formation, bone resorption, and drift; for example, no periosteal bone formation is observed in the vertebral canal. Furthermore, simvastatin reduces the loss of cancellous bone induced by ovariectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号