首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core–shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core–shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.  相似文献   

2.
BSA-PLGA缓释微球的制备及优化条件的探索   总被引:1,自引:0,他引:1  
目的以牛血清白蛋白(BSA)为模型蛋白、聚乳酸-聚乙二醇酸(PLGA)为包裹材料,探索微球的制备方法并优化制备工艺。方法采用复乳-溶剂挥发法制备BSA-PLGA微球,显微测量微球粒径,以微量BCA法测定微球的蛋白含量并计算包封率,进行体外释放,测定微球的累积释放量。探索BSA投药量、PLGA用量、PVA浓度、超声功率等因素对微球包封率、突释量的影响。结果通过正交实验设计,优化了微球的制备工艺,其优化条件是BSA投药量为10mg、PLGA用量为250mg、PVA浓度为1.5%、超声乳化功率为60周。结论通过控制不同的因素,可以得到较高包封率、较小突释、适当载药量和粒径的BSA-PLGA微球。  相似文献   

3.
Wei G  Pettway GJ  McCauley LK  Ma PX 《Biomaterials》2004,25(2):345-352
Poly(lactic-co-glycolic acid) (PLGA) microspheres containing bovine serum albumin (BSA) or human parathyroid hormone (PTH)(1-34) were prepared using a double emulsion method with high encapsulation efficiency and controlled particle sizes. The microspheres were characterized with regard to their surface morphology, size, protein loading, degradation and release kinetics, and in vitro and in vivo assessments of biological activity of released PTH. PLGA5050 microspheres degraded rapidly after a 3-week lag time and were degraded completely within 4 months. In vitro BSA release kinetics from PLGA5050 microspheres were characterized by a burst effect followed by a slow release phase within 1-7 weeks and a second burst release at 8 weeks, which was consistent with the degradation study. The PTH incorporated PLGA5050 microspheres released detectable PTH in the initial 24h, and the released PTH was biologically active as evidenced by the stimulated release of cAMP from ROS 17/2.8 osteosarcoma cells as well as increased serum calcium levels when injected subcutaneously into mice. Both in vitro and in vivo assays demonstrated that the bioactivity of PTH was maintained largely during the fabrication of PLGA microspheres and upon release. These studies illustrate the feasibility of achieving local delivery of PTH to induce a biologically active response in bone by a microsphere encapsulation technique.  相似文献   

4.
影响微球药物释放因素的研究   总被引:4,自引:0,他引:4  
目的 观察影响微球药物释放的因素,为其应用提供理论基础。方法 以可生物降解的聚乳酸—聚乙醇酸共聚物(PLGA)和聚L—乳酸(PLIA)为载体,采用乳化—溶剂挥发法制备含细胞松弛素B(cytoB)微球,以HPLC测定cy-toB含量。结果 制备了不同球径的微球,其球径分别为150nm、500nm、1μm、5μm、10μm和20μm。体外释放实验证明,球径越小,药物释放速度越快;球径相同时,以PLIA为基材的微球比PLGA的释放慢。结论 可通过选择适当的微球大小和基质材料达到所期望的药物释放过程。  相似文献   

5.
Lactic/glycolic acid polymers (PLGA) are widely used for drug delivery systems. The microsphere formulation is the most interesting dosage form of the PLGA-based controlled release devices. In this study, the previously reported PLGA were used to prepare drug-containing microspheres. Progesterone was used as a model drug. The progesterone microspheres were prepared from PLGA having varied compositions and varied molecular weight. The microscopic characterization shows that the microspheres are spherical, nonaggregated particles. The progesterone-containing PLGA microspheres possess a Gaussian size distribution, having average size from 70-134 microm. A solvent extraction method was employed to prepare the microspheres. The microencapsulation method used in this study has high drug encapsulation efficiency. The progesterone release from the PLGA microspheres and the factors affecting the drug release were studied. The release of progesterone from the PLGA microspheres is affected by the properties of the polymer used. The drug release is more rapid from the microspheres prepared using the PLGA having higher fraction of glycolic acid moiety. The drug release from the microspheres composed of higher molecular weight PLGA is faster. The drug content in microspheres also has an effect on the drug release. Higher progesterone content in microspheres yields a quicker initial burst release of the drug.  相似文献   

6.
背景:乳酸-羟基乙酸共聚物是一种生物可降解高分子材料,以乳酸-羟基乙酸共聚物为原料制备的载药微球和纳米粒既可提高药物的稳定性,又能实现缓释、控释和靶向释放。 目的:分析乳酸-羟基乙酸共聚物缓控释微球的制备方法以及突释的成因、影响因素和改进方法。 方法:应用计算机检索1990/2010中国期刊全文数据库和PubMed数据库与乳酸-羟基乙酸共聚物缓控释微球的制备及突释联系紧密的文章。 结果与结论:目前乳酸-羟基乙酸共聚物缓释微球制备方法主要有单凝聚法、乳化-固化法、喷雾干燥法。造成其突释的原因首先是药物分子和聚合物分子之间的相互作用太弱,导致药物很容易从微球进入释放递质中,其次是在微球释放初期,药物从微球中的孔洞和缝隙中释放出来导致突释。影响突释程度的具体因素有乳酸-羟基乙酸共聚物的相对分子质量、浓度、微球载药量、主药理化性质、微球制备方法及制备参数等。虽然国内外对突释机制以及控制突释措施的研究都还处于初步阶段,通过对各影响因素加以适当优化与控制,可在一定程度上减少微球的突释率,突释问题应该能够得到解决和控制。  相似文献   

7.
The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery for bone tissue engineering.  相似文献   

8.
Schnieders J  Gbureck U  Thull R  Kissel T 《Biomaterials》2006,27(23):4239-4249
Modification of a self setting bone cement with biodegradable microspheres to achieve controlled local release of antibiotics without compromising mechanical properties was investigated. Different biodegradable microsphere batches were prepared from poly(lactic-co-glycolic acid) (PLGA) using a spray-drying technique to encapsulate gentamicin crobefate varying PLGA composition and drug loading. Microsphere properties such as surface morphology, particle size and antibiotic drug release profiles were characterized. Microspheres were mixed with an apatitic calcium phosphate bone cement to generate an antibiotic drug delivery system for treatment of bone defects. All batches of cement/microsphere composites showed an unchanged compressive strength of 60 MPa and no increase in setting time. Antibiotic release increased with increasing drug loading of the microspheres up to 30% (w/w). Drug burst of gentamicin crobefate in the microspheres was abolished in cement/microsphere composites yielding nearly zero order release profiles. Modification of calcium phosphate cements using biodegradable microspheres proved to be an efficient drug delivery system allowing a broad range of 10-30% drug loading with uncompromised mechanical properties.  相似文献   

9.
采用冷冻干燥制备壳聚糖支架,以牛血清白蛋白(BSA)和碱性成纤维细胞生长因子(bFGF)为模型药物,制备乳酸-乙醇酸共聚物(PLGA)微球,并将其包埋于壳聚糖支架中,考察药物在支架上的体外释放。以MTT法考察了缓慢释放的bFGF对L929细胞的影响。用扫描电镜观察包埋微球支架的形态和生长了细胞的支架。结果表明单用壳聚糖支架,药物释放得比较快,制成PLGA微球后,再包埋于壳聚糖支架中,则药物释放明显缓慢。缓慢释放的bFGF促进了细胞的生长。  相似文献   

10.
This article describes the effects of six processing parameters on the release kinetics of a model drug Texas red dextran (TRD) from poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres as well as the degradation of these microspheres. The microspheres were fabricated using a double emulsion-solvent extraction technique in which the following six parameters were varied: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) in the internal aqueous phase, and poly(vinyl alcohol) concentration in the external aqueous phase. We have previously characterized these microspheres in terms of microsphere morphology, size distribution, and TRD entrapment efficiency. In this work, the TRD release profiles in phosphate-buffered saline were determined and all formulations showed an initial burst release in the first 2 days followed by a decreased sustained release over a 38-day period. The initial burst release varied from 5.1 (+/-1.1) to 67.7 (+/-3.4)% of the entrapped TRD, and was affected most by the viscosity of the polymer solution used for microsphere fabrication. The sustained release between day 2 and day 38 ranged from 7.9 (+/-0.8) to 27.2 (+/-3.1)% of the entrapped TRD. During 11 weeks of in vitro degradation, the mass of the microspheres remained relatively constant for the first 3 weeks after which it decreased dramatically, whereas the molecular weight of the polymers decreased immediately upon placement in phosphate-buffered saline. Increasing the PPF content in the PPF/PLGA blend resulted in slower microsphere degradation. Overall, this study provides further understanding of the effects of various processing parameters on the release kinetics from PPF/PLGA blend microspheres thus allowing modulation of drug release to achieve a wide spectrum of release profiles.  相似文献   

11.
Bone cements with biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres have already been proven to provide a macroporous calcium phosphate cement (CPC) during in situ microsphere degradation. Furthermore, in vitro/in vivo release studies with these PLGA microsphere/CPC composites (PLGA/CPCs) showed a sustained release of osteo-inductive growth factor when drug was distributed inside/onto the microspheres. The goal of this study was to elucidate the mechanism behind drug release from PLGA/CPC. For this, in vitro release and degradation characteristics of a low-molecular-weight PLGA/CPC (M(w) = 5 kg/mol) were determined using bovine serum albumin (BSA) as a model protein. Two loading mechanisms were applied; BSA was either adsorbed onto the microspheres or incorporated inside the microspheres during double-emulsion. BSA release from PLGA microspheres and CPC was also measured and used as reference. Results show fast degrading polymer microspheres which produced a macroporous scaffold within 4 weeks, but also showed a concomitant release of acidic degradation products. BSA release from the PLGA/CPC was similar to the CPC samples and showed a pattern consisting of a small initial release, followed by a period of almost no sustained release. Separate PLGA microspheres exhibited a high burst release and release efficiency that was higher with the adsorbed samples. Combining degradation and release data we can conclude that for the PLGA/CPC samples BSA re-adsorbed to the cement surface after being released from the microspheres, which was mediated by the pH decrease during microsphere degradation.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator. Controlled release of such stimulators may enhance and guide the vascularization process, and when applied in a nerve conduit may play a role in nerve regeneration. We report the fabrication and in vitro characterization of poly-lactic-co-glycolic acid (PLGA) microspheres encapsulating VEGF and the in vivo application of nerve conduits supplemented with VEGF-containing microspheres. PLGA microspheres containing VEGF were prepared by the double emulsion-solvent evaporation technique. This yielded 83.16% of microspheres with a diameter <53 μm. VEGF content measured by ELISA indicated 93.79±10.64% encapsulation efficiency. Release kinetics were characterized by an initial burst release of 67.6±8.25% within the first 24h, followed by consistent release of approximately 0.34% per day for 4 weeks. Bioactivity of the released VEGF was tested by human umbilical vein endothelial cell (HUVEC) proliferation assay. VEGF released at all time points enhanced HUVEC proliferation, confirming that VEGF retained its bioactivity throughout the 4 week time period. When the microsphere delivery system was placed in a biosynthetic nerve scaffold robust nerve regeneration was observed. This study established a novel system for controlled release of growth factors and enables in vivo studies of nerve conduits conditioned with this system.  相似文献   

13.
Spherical microspheres composed of polymer blends 80: 20 PEAD/PCL II and 40:40: 20 PEAD/P(HB-HV)/PCL II containing a range of BSA loadings have been fabricated using a single emulsion technique with solvent evaporation. 80: 20 PEAD/PCL II microspheres had smooth surfaces while 40:40:20 PEAD/P(HB-HV)/PCL II microspheres consisted of a mixture of smooth surfaced, microporous and macroporous microsphere fractions. Irrespective of fabrication polymer, microspheres were produced in high yield (> 75%) and BSA incorporation had no significant effect on microsphere size distribution which ranged from 0.6 to 5 μm and from 2.1 to 50 μm for 80: 20 PEAD/PCL II and 40:40: 20 PEAD/P(HB-HV)/PCL II microspheres, respectively. The loss of BSA by partitioning into the aqueous phase resulted in low encapsulation efficiencies (< 14.5%). BSA release increased significantly with theoretical percentage loading but the relationship could not be confirmed when the total cumulative release of BSA was expressed as a percentage of the actual total BSA incorporated. Significant BSA release could be detected for up to 26 days.  相似文献   

14.
背景:如何提高全反式维甲酸疗效、稳定性和降低毒副作用是临床治疗所面临的最大问题。近年来用可生物降解的聚合物为材料,通过乳化包囊等分散技术将药物制备成微粒分散体系,用作缓释、控释注射剂的研究日益增多。 目的:研制全反式维甲酸-聚酸酐长效缓释微球肿瘤治疗剂,观察其体内外全反式维甲酸经时缓释变化规律。 方法:采用乳剂-扩散溶剂挥发法制备全反式维甲酸-聚酸酐长效缓释微球肿瘤治疗剂,扫描电镜检测微球外观及微球粒径,高效液相色谱法检测微球载药量、包封率及体内外释药量。 结果与结论:所制微球治疗剂光滑圆整,大小均一,平均粒径(154.42±26.76) nm,载药率(16.5±1.45)%,包封率(87.84±4.79)%;体外释放实验证明该微球治疗剂可持续释放全反式维甲酸约50 d,将其肌肉注射到大耳白兔体内,可稳定缓释全反式维甲酸近45 d。结果表明该微球治疗剂载药量及包封率均较高,体内外释药平稳并且具有明显的长效缓释作用。  相似文献   

15.
Monodisperse PLGA–alginate core–shell microspheres with controlled size and homogeneous shells were first fabricated using capillary microfluidic devices for the purpose of controlling drug release kinetics. Sizes of PLGA cores were readily controlled by the geometries of microfluidic devices and the fluid flow rates. PLGA microspheres with sizes ranging from 15 to 50 μm were fabricated to investigate the influence of the core size on the release kinetics. Rifampicin was loaded into both monodisperse PLGA microspheres and PLGA–alginate core–shell microspheres as a model drug for the release kinetics studies. The in vitro release of rifampicin showed that the PLGA core of all sizes exhibited sigmoid release patterns, although smaller PLGA cores had a higher release rate and a shorter lag phase. The shell could modulate the drug release kinetics as a buffer layer and a near-zero-order release pattern was observed when the drug release rate of the PLGA core was high enough. The biocompatibility of PLGA–alginate core–shell microspheres was assessed by MTT assay on L929 mouse fibroblasts cell line and no obvious cytotoxicity was found. This technique provides a convenient method to control the drug release kinetics of the PLGA microsphere by delicately controlling the microstructures. The obtained monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells could be a promising device for controlled drug release.  相似文献   

16.
Abstract

Our study was initiated to challenge the preconception that nonporous PLGA microspheres with compact matrices should be used to develop long-acting depot injectables of hydrophobic drugs. A simple, new oil-in-water emulsion technique was utilized to produce porous PLGA microspheres with a sponge-like skeleton. Then, their applicability to developing sustained-release depots of hydrophobic drugs was explored in this study. As control, nonporous microspheres with a compact matrix were produced following a typical solvent evaporation process. Both microsphere manufacturing processes used non-halogenated isopropyl formate and progesterone as a dispersed solvent and a model hydrophobic drug, respectively. Various attempts were made to evaluate critical quality attributes of the porous microspheres and the nonporous ones. Surprisingly, the former displayed interesting features from the viewpoints of manufacturability and microsphere quality. For example, the spongy microspheres improved drug encapsulation efficiency and particle size uniformity, inhibited drug crystallization during microencapsulation, and minimized the residual solvent content in microspheres. Furthermore, the porous microspheres provided continual drug release kinetics without a lag time and much faster drug release than the non-porous microspheres did. In summary, the porous and sponge-like PLGA microspheres might find lucrative applications in developing sustained release dosage forms of hydrophobic drugs.  相似文献   

17.
Wang F  Lee T  Wang CH 《Biomaterials》2002,23(17):3555-3566
In this work, etanidazole (one type of hypoxic radiosensitizer) is encapsulated into spray dried poly(D),L-lactide-co-glycolide) (PLGA) microspheres and then compressed into discs for controlled release applications. Etanidazole is characterized by intracellular glutathione depletion and glutathione transferases inhibition, thereby enhancing sensitivity to radiation. It is also cytotoxic to tumor cells and can chemosensitize some alkylating agents by activating their tumor cell killing capabilities. We observed the release characteristics of etanidazole in the dosage forms of microspheres and discs, subjected to different preparation conditions. The release characteristics, morphology changes, particle size, and encapsulation efficiency of microspheres are also investigated. The release rate of etanidazole from implantable discs (13 mm in diameter, 1 mm in thickness, fabricated by a press) is much lower than microspheres due to the reduced specific surface. After the initial burst of 1% release for the first day, the cumulative release within the first week is less than 2% until a secondary burst of release (caused by polymer degradation) occurs after one month. Some key preparation conditions such as drug loadings, disc thickness and diameter, and compression pressure can affect the initial burst of etanidazole from the discs. However, none of them can significantly make the release more uniform. In contrast, the incorporation of polyethylene glycol (PEG) can greatly enhance the release rate of discs and also reduces the secondary burst effect, thereby achieving a sustained release for about 2 months.  相似文献   

18.
Mi FL  Lin YM  Wu YB  Shyu SS  Tsai YH 《Biomaterials》2002,23(15):3257-3267
A novel chitin-based microsphere was developed for anti-cancer drug-delivery purpose in the present study. These biodegradable microspheres were prepared by directly blending chitin with different contents of poly(D,L-lactide-co-glycolide 50:50) (PLGA 50/50) in dimethylacetamide-lithium chloride solution, and following it by coagulating in water via wet phase inversion. Scanning electron microscopy (SEM) micrography of the blend microsphere showed that there are numerous PLGA particulates homogeneously dispersed in chitin matrix, suggesting the occurrence of obvious phase separation from the blended chitin and PLGA 50/50 phase due to their thermodynamic incompatibility. Degradation of the chitin/PLGA 50/50 blend microsphere depends on the surface erosion of chitin phase and bulk hydrolysis of PLGA phase, according to the examinations of SEM and differential scanning calorimetry studies. Weight loss of the chitin/PLGA 50/50 blend microsphere increases with the increase of chitin content in the microsphere. A two-phase drug-release model is observed from the release of chlorambucil from chitin/PLGA 50/50 blend microspheres. The initial stage of drug-release rate increases with the increased chitin content due to the hydration and surface erosion of hydrophilic chitin phase; however, the following stage of slow release is sustained for several days, mainly contributed by the bulk hydrolysis of hydrophobic PLGA phase. In conclusion, such a chitin/PLGA 50/50 blend microsphere is novel and interesting, and may be used as a special drug-delivery system.  相似文献   

19.
Wang L  Chaw CS  Yang YY  Moochhala SM  Zhao B  Ng S  Heller J 《Biomaterials》2004,25(16):3275-3282
The physostigmine-loaded poly(ortho ester) (POE), poly(dl-lactide-co-glycolide) (PLGA) and POE/PLGA blend microspheres were fabricated by a spray drying technique. The in vitro degradation of, and physostigmine release from, the microspheres were investigated. SEM analysis showed that the POE and POE/PLGA blend particles were spherical. They were better dispersed when compared to the pure PLGA microspheres. Two glass transition temperature ( Tg ) values of the POE/PLGA blend microspheres were observed due to the phase separation of POE and PLGA in the blend system. XPS analysis proved that POE dominated the surfaces of POE/PLGA blend microspheres, indicating that the blend microspheres were coated with POE. The encapsulation efficiencies of all the microspheres were more than 95%. The incorporation of physostigmine reduced the Tg value of microspheres. The Tg value of the degrading microspheres increased with the release of physostigmine. For instance, POE blank microspheres and physostigmine-loaded POE microspheres had a Tg value of 67 degrees C and 48 degrees C, respectively. After 19 days in vitro incubation, Tg of the degrading POE microspheres increased to 55 degrees C. Weight loss studies showed that the degradation of the blend microspheres was accelerated with the presence of PLGA because its degradation products catalyzed the degradation of both POE and PLGA. The release rate of physostigmine increased with increase of PLGA content in the blend microspheres. The initial burst release of physostigmine was effectively suppressed by introducing POE to the blend microspheres. However, there was an optimized weight ratio of POE to PLGA (85:15 in weight), below which a high initial burst was induced. The POE/PLGA blend microspheres may make a good drug delivery system.  相似文献   

20.
The immune response induced in mice by beta-galactosidase (beta-gal) adsorbed or encapsulated on poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) microspheres was investigated. The encapsulated protein elicited higher antibody response than the protein adsorbed on the microspheres in the case of the PLA microspheres. However, the encapsulated protein elicited weaker antibody response than the adsorbed protein in the case of the PLGA (50:50) microspheres, probably because, in this case, the encapsulation process adversely affected protein immunogenicity. In the case of adsorbed beta-gal, higher antibody response was obtained with the PLA microspheres than with the PLGA (50:50) microspheres. This may be related to the lower rate of beta-gal desorption from the PLA microspheres. Based on the immunoglobulin G1/immunoglobulin G2a ratios and the stimulation indices for interferon-gamma and interleukin-4, beta-gal encapsulated or adsorbed on PLA microspheres induced a Th(1)-biased immune response whereas beta-gal encapsulated or adsorbed on PLGA (50:50) microspheres induced a Th(2)-biased immune response. The results obtained indicate that more potent immune responses are obtained when the protein is encapsulated than adsorbed on the microspheres, providing that the encapsulation process does not adversely affect protein immunogenicity. Also, the type of polymer used to prepare the microspheres, but not the method of protein association with the microspheres, may affect the type of immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号