首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background and Purpose

Abdominal aortic aneurysm (AAA) is a degenerative vascular disease associated with angiogenesis. Bexarotene is a retinoid X receptor (RXR) ligand with anti-angiogenic activity. Statins also exert anti-angiogenic activity and activate PPARs. Because RXR ligands form permissive heterodimers with PPARs and a single anti-angiogenic drug may not be sufficient to combat the wide array of angiogenic factors produced during AAA, we evaluated the effect of combined low doses of bexarotene and rosuvastatin in a mouse model of AAA.

Experimental Approach

The effect of the combined treatment was investigated in a murine model of angiotensin II-induced AAA in apoE−/− mice. This combination therapy was also evaluated in in vivo (Matrigel plug assay) and in vitro (endothelial cell differentiation assay) models of angiogenesis as well as the underlying mechanisms involved.

Key Results

Co-treatment with bexarotene plus rosuvastatin reduced aneurysm formation, inflammation and neovascularization compared with each single treatment. In HUVEC, the combination of suboptimal concentrations of bexarotene and rosuvastatin inhibited angiotensin II-induced morphogenesis, proliferation and migration. These effects were accompanied by diminished production of pro-angiogenic chemokines (CXCL1, CCL2 or CCL5) and VEGF, and seemed to be mediated by RXRα/PPARα and RXRα/PPARγ activation. This combined therapy reduced the activation of members of the downstream PI3K pathway (Akt/mTOR and p70S6K1) in vivo and in vitro.

Conclusions and Implications

The combination of RXR agonists with statins at low doses synergistically interferes with the signalling pathways that modulate inflammation and angiogenesis and may constitute a new and safer therapeutic treatment for the control of AAA.  相似文献   

2.
Aim: To investigate whether human multiple myeloma (MM) cells secrete microvesicles (MVs) and whether the MVs secreted from MM cells (MM-MVs) promote angiogenesis. Methods: RPMI8226 human MM cells and EA.hy926 human umbilical vein cells were used. MVs isolated from RPMI 8226 cells were characterized under laser confocal microscopy, electron microscopy and with flow cytometry. The fusion of MM-MVs and EA.hy926 cells was studied under confocal microscopy, and the transfer of CD138 to EA.hy926 cells was demonstrated with flow cytometry. The proliferation, invasion and tube formation of EA.hy926 cells in vitro were evaluated using M]-r, transwell migration and tube formation assays, respectively. The vasculization of EA.hy926 cells in vivo was studied using Matrigel plug assay. The expression of IL-6 and VEGF was analyzed with PCR and ELISA. Results: MM-MVs from the RPMI 8226 cells had the characteristic cup-shape with diameter of 100-1000 nm. Most of the MM-MVs expressed phosphatidylserine and the myeloma cell marker CD138, confirming that they were derived from myeloma cells. After added to EA.hy926 cells, the MM-MVs transferred CD138 to the endothelial cells and significantly stimulated the endothelial cells to proliferate, invade, secrete IL-6 and VEGF, two key angiogenic factors of myeloma, and form tubes in vitro and in vivo. Conclusion: Our results confirm the presence of MVs in MM cells and support the idea that MM-MVs are newfound mediators for myeloma angiogenesis and may serve as a therapeutic target to treat MM.  相似文献   

3.

BACKGROUND AND PURPOSE

Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis.

EXPERIMENTAL APPROACH

Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice.

KEY RESULTS

CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules.

CONCLUSIONS AND IMPLICATIONS

This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy.  相似文献   

4.
5.

BACKGROUND AND PURPOSE

Anti-angiogenic agents have recently become one of the major adjuvants for cancer therapy. A cyclopeptide, RA-V, has been shown to have anti-tumour activities. Its in vitro anti-angiogenic activities were evaluated in the present study, and the underlying mechanisms were also assessed.

EXPERIMENTAL APPROACH

Two endothelial cell lines, human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1), were used. The effects of RA-V on the proliferation, cell cycle phase distribution, migration, tube formation and adhesion were assessed. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant molecules.

KEY RESULTS

RA-V inhibited HUVEC and HMEC-1 proliferation dose-dependently with IC50 values of 1.42 and 4.0 nM respectively. RA-V inhibited migration and tube formation of endothelial cells as well as adhesion to extracellular matrix proteins. RA-V treatment down-regulated the protein and mRNA expression of matrix metalloproteinase-2. Regarding intracellular signal transduction, RA-V interfered with the activation of ERK1/2 in both cell lines. Furthermore, RA-V significantly decreased the phosphorylation of JNK in HUVEC whereas, in HMEC-1, p38 MAPK was decreased.

CONCLUSIONS AND IMPLICATIONS

RA-V exhibited anti-angiogenic activities in HUVEC and HMEC-1 cell lines with changes in function of these endothelial cells. The underlying mechanisms of action involved the ERK1/2 signalling pathway. However, RA-V may regulate different signalling pathways in different endothelial cells. These findings suggest that RA-V has the potential to be further developed as an anti-angiogenic agent.  相似文献   

6.

Background and purpose:

The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK1) receptor. We investigated whether ECE-1 regulates NK1 receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium.

Experimental approach:

We examined ECE-1 expression, SP trafficking and NK1 receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats.

Key results:

HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK1 receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization.

Conclusions and implications:

By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK1 receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.  相似文献   

7.

Aim:

Trans-3,4,5,4′-tetramethoxystilbene (DMU-212) has shown strong antiproliferative activities against a variety of cancer cells. The aim of this study was to investigate the anti-angiogenic effects of DMU-212 in vitro and in vivo.

Methods:

Human umbilical vein endothelial cells (HUVECs) were used in this study. Cell viability was studied with MTT assay, and cell apoptosis was evaluated using TUNEL assay and morphological observation. The expression of the related genes and proteins was analyzed with qRT-PCR and Western blot, respectively. Angiogenesis of HUVECs were studied using cell migration and capillary-like tube formation assays in vitro, and mouse Matrigel plug assay and chick chorioallantoic membrane (CAM) assay in vivo. The tyrosine kinase activities of VEGFR1 and VEGFR2 were measured using commercial kits.

Results:

DMU-212 (5–80 μmol/L) significantly inhibited VEGF-stimulated proliferation of HUVECs (IC50 value was approximately 20 μmol/L), and induced apoptosis. Furthermore, DMU-212 concentration-dependently inhibited VEGF-induced migration of HUVECs and capillary-like structure formation in vitro. DMU-212 also inhibited VEGF-induced generation of new vasculature in Matrigel plugs in vivo with significantly decreased area of infiltrating CD31-positive endothelial cells, and inhibited newly formed microvessels in chick CAMs. Moreover, DMU-212 concentration-dependently suppressed VEGF-induced phosphorylation of VEGFR2, and inhibited phosphorylation of multiple downstream signaling components in the VEGFR2 pathway, including c-Src, FAK, Erk1/2, Akt, mTOR, and p70S6K in HUVECs. DMU-212 had no effect on VEGF-induced phosphorylation of VEGFR1.

Conclusion:

DMU-212 is a potent inhibitor of angiogenesis that exerts anti-angiogenic activity at least in part through the VEGFR2 signaling pathway.  相似文献   

8.

Background and purpose:

The critical role of blood supply in the growth of solid tumours makes blood vessels an ideal target for anti-tumour drug discovery. The anti-angiogenic and vascular disrupting activities of C9, a newly synthesized microtubule-depolymerizing agent, were investigated with several in vitro and in vivo models. Possible mechanisms involved in its activity were also assessed.

Experimental approach:

Microtubule-depolymerizing actions were assessed by surface plasmon resonance binding, competitive inhibition and cytoskeleton immunofluorescence. Anti-angiogenic and vascular disrupting activities were tested on proliferation, migration, tube formation with human umbilical vein endothelial cells, and in rat aortic ring, chick chorioallantoic membrane and Matrigel plug assays. Western blots and Rho activation assays were employed to examine the role of Raf-MEK-ERK (mitogen-activated ERK kinase, extracellular signal-regulated kinase) and Rho/Rho kinase signalling.

Key results:

C9 inhibited proliferation, migration and tube formation of endothelial cells and inhibited angiogenesis in aortic ring and chick chorioallantoic membrane assays. C9 induced disassembly of microtubules in endothelial cells and down-regulated Raf-MEK-ERK signalling activated by pro-angiogenic factors. In addition, C9 disrupted capillary-like networks and newly formed vessels in vitro and rapidly decreased perfusion of neovasculature in vivo. Endothelial cell contraction and membrane blebbing induced by C9 in neovasculature was dependent on the Rho/Rho kinase pathway.

Conclusions and implications:

Anti-angiogenic and vascular disruption by C9 was associated with changes in morphology and function of endothelial cells, involving the Raf-MEK-ERK and Rho/Rho kinase signalling pathways. These findings strongly suggest that C9 is a new microtubule-binding agent that could effectively target tumour vasculature.  相似文献   

9.

AIMS

GS-101 (GeneSignal, Epalinges, Switzerland) is an antisense oligonucleotide that inhibits the expression of the scaffold protein insulin receptor substrate-1 (IRS-1). Inhibition of IRS-1 results in the prevention of neovascular growth and was shown to prevent the angiogenic process in preclinical in vitro and in vivo experiments. There is therefore a strong therapeutic rational for targeting angiogenesis in pathological neovascularization. We aimed to investigate the safety, tolerability and bioavailability of GS-101 eye drops.

METHODS

This was a Phase I open-label study. The investigation was performed in two steps. Local ocular tolerability was first assessed with the application of one single low dose in one eye. After no signs of intolerance were observed in the subjects, the dose escalation phase of the study was initiated, and the remaining subjects received three times daily escalating doses of GS-101 in one eye for 14 days.

RESULTS

The 14 healthy volunteers tolerated well 14 days'' continued use of escalating doses of GS-101 from 43 to 430 µg per day. Other than itching, experienced also in the control eye by one subject and determined to be unrelated to the study treatment, no signs of intolerance were observed.

CONCLUSIONS

The tolerability profile obtained from this study suggests that GS-101 is safe for human use. Further clinical evaluations in diseases related to abnormal angiogenesis are being targeted. In particular, the neovascularization-related orphan indications of corneal graft rejection, retinopathy of pre-maturity and neovascular glaucoma are currently under Phase II clinical investigation and are showing promising results.  相似文献   

10.

Aim:

To investigate whether sphingosine-1-phosphate (S1P), a potent angiogenic factor, induced vascular endothelial growth factor-C (VEGF-C) expression in endothelial cells in vitro and to examine its underlying mechanisms.

Methods:

Human umbilical vein endothelial cells (HUVECs) were examined. VEGF-C mRNA expression in the cells was assessed using real-time PCR. VEGF-C protein and FGFR-1 phosphorylation in the cells were measured with ELISA. RNA interference was used to downregulate the expression of matrix metalloproteinase-2 (MMP-2), fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1).

Results:

Incubation of HUVECs with S1P (1, 5, and 10 μmol/L) significantly increased VEGF-C expression. The effect was blocked by pretreatment with the MMP inhibitor GM6001 or the FGFR inhibitor SU5402, but not the EGFR inhibitor AG1478. The effect was also blocked in HUVECs that were transfected with FGFR-1 or MMP-2 siRNA. Furthermore, incubation of HUVECs with S1P (5 μmol/L) significantly increased FGFR-1 phosphorylation, which was blocked by GM6001. Moreover, knockdown of FGF-1, not FGF-2, in HUVECs with siRNAs, blocked S1P-induced VEGF-C expression.

Conclusion:

S1P induces VEGF-C expression through a MMP-2/ FGF-1/FGFR-1-dependent pathway in HUVECs.  相似文献   

11.

BACKGROUND AND PURPOSE

Cystine-knot miniproteins are characterized by a similar molecular structure. Some cystine-knot miniproteins display therapeutically useful biological activities, as antithrombotic agents or tumour growth inhibitors. A critical event in the progression of tumours is the formation of new blood vessels. The aim of this work was to test two tomato cystine-knot miniproteins for their effects on endothelial cell proliferation and angiogenesis in vitro.

EXPERIMENTAL APPROACH

Two tomato cystine-knot miniproteins (TCMPs) were expressed and purified either as recombinant or as native proteins from tomato fruits. The Matrigel assay was used to investigate the effects of TCMPs on in vitro angiogenesis. Viability and proliferation of endothelial cells were tested. Extracellular signal-regulated kinase (ERK)1/2 phosphorylation was assayed in either HUVEC or A431 epidermal growth factor receptor (EGFR)-overexpressing cells treated with TCMPs. EGFR phosphorylation was tested in A431 cells.

KEY RESULTS

Both recombinant and native TCMPs inhibited in vitro angiogenesis of HUVEC cells at concentrations of 15–100 nM. The anti-angiogenic effect of TCMPs was associated with the inhibition of ERK phosphorylation. The two miniproteins did not alter the viability and proliferation of the endothelial cells.

CONCLUSIONS AND IMPLICATIONS

The anti-angiogenetic properties of TCMPs are of potential pharmacological interest because they are common and natural components of the human diet, they possess low toxicity, they are active at submicromolar concentrations, they share a common molecular structure that can be used as a molecular platform for the design of molecules with enhanced biological activity.  相似文献   

12.

Background and purpose:

Sphingosine kinases (SKs) convert sphingosine to sphingosine 1-phosphate (S1P), which is a bioactive lipid that regulates a variety of cellular processes including proliferation, differentiation and migration.

Experimental approach:

We used the human endothelial cell line EA.hy926 to investigate the effect of nitric oxide (NO) donors on SK-1 expression, and on cell migration and tube formation.

Key results:

We showed that exposure of EA.hy926 cells to Deta-NO (125–1000 µM) resulted in a time- and concentration-dependent up-regulation of SK-1 mRNA and protein expression, and activity with a first significant effect at 250 µM of Deta-NO. The increased SK-1 mRNA expression resulted from an enhanced SK-1 promoter activity. A similar effect was also seen with various other NO donors. In mechanistic terms, the NO-triggered effect occurred independently of cGMP, but involved the classical mitogen-activated protein kinase cascade because the MEK inhibitor U0126 abolished the NO-induced SK-1 expression. The effect of NO was also markedly reduced by the thiol-reducing agent N-acetylcysteine, suggesting a redox-dependent mechanism. Functionally, Deta-NO triggered an increase in the migration of endothelial cells in an adapted Boyden chamber assay, and also increased endothelial tube formation in a Matrigel assay. These responses were both abolished in cells depleted of SK-1.

Conclusions and implications:

These data show that NO donors up-regulate specifically SK-1 expression and activity in human endothelial cells, and SK-1 in turn critically contributes to the migratory capability and tube formation of endothelial cells. Thus, SK-1 may be considered an attractive novel target to interfere with pathological processes involving angiogenesis.  相似文献   

13.

BACKGROUND AND PURPOSE

Pathological angiogenesis is associated with various human diseases, such as cancer, autoimmune diseases and retinopathy. The angiopoietin (Ang)–Tie2 system plays critical roles in several steps of angiogenic remodelling. Here, we have investigated the anti-angiogenic effect of a novel angiopoietin-derived peptide.

EXPERIMENTAL APPROACH

Using computational methods, we identified peptides from helical segments within angiopoietins, which were predicted to inhibit their activity. These peptides were tested using biochemical methods and models of angiogenesis. The peptide with best efficacy, A11, was selected for further characterization as an anti-angiogenic compound.

KEY RESULTS

The potent anti-angiogenic activity of A11 was demonstrated in a multicellular assay of angiogenesis and in the chorioallantoic membrane model. A11 bound to angiopoietins and reduced the binding of Ang-2 to Tie2. A11 was also significantly reduced vascular density in a model of tumour-induced angiogenesis. Its ability to inhibit Ang-2 but not Ang-1-induced endothelial cell migration, and to down-regulate Tie2 levels in tumour microvessels, suggests that A11 targets the Ang–Tie2 pathway. In a rat model of oxygen-induced retinopathy, A11 strongly inhibited retinal angiogenesis. Moreover, combination of A11 with an anti-VEGF antibody showed a trend for further inhibition of angiogenesis, suggesting an additive effect.

CONCLUSIONS AND IMPLICATIONS

Our results indicate that A11 is a potent anti-angiogenic compound, through modulation of the Ang–Tie2 system, underlining its potential as a therapeutic agent for the treatment of ocular and tumour neovascularization, as well as other pathological conditions that are dependent on angiogenesis.  相似文献   

14.

Background

Cynodon dactylon, a valuable medicinal plant, is widely used in Iranian folk medicine for the treatment of various cardiovascular diseases such as heart failure and atherosclerosis. Moreover, its anti-diabetic, anti-cancer and anti-microbial properties have been also reported. Concerning the critical role of angiogenesis in the incidence and progression of tumors and also its protective role in cardiovascular diseases, we investigated the effects of the aqueous extract prepared from the rhizomes of C. dactylon on vascular endothelial growth factor (VEGF) expressions in Human Umbilical Vein Endothelial Cells (HUVECs) and also on angiogenesis in carrageenan induced air-pouch model in rats.

Methods

In the air-pouch model, carrageenan was injected into an air-pouch on the back of the rats and following an IV injection of carmine red dye on day 6, granulation tissue was processed for the assessment of the dye content. Furthermore, in an in vitro study, angiogenic property of the extract was assessed through its effect on VEGF expression in HUVECs.

Results

Oral administration of 400 mg/kg/day of the extract significantly increased angiogenesis (p < 0.05) and markedly decreased neutrophil (p < 0.05) and total leukocyte infiltration (p < 0.001) into the granulation tissues. Moreover, the extract increased the expression of total VEGF in HUVECs at a concentration of (100 μl/ml).

Conclusion

The present study showed that the aqueous extract of C. dactylon promotes angiogenesis probably through stimulating VEGF expression.  相似文献   

15.

Background and Purpose

Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis.

Experimental Approach

Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed.

Key Results

Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase.

Conclusions and Implications

We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.  相似文献   

16.

Aim:

To evaluate the effects of angiopoietin-1 (Ang-1) on myocardial endothelial cell function under high glucose (HG) condition.

Methods:

Mouse heart myocardial endothelial cells (MHMECs) were cultured and incubated under HG (25 mmol/L) or normal glucose (NG, 5 mmol/L) conditions for 72 h. MTT was used to determine cellular viability, and TUNEL assay and caspase-3 enzyme linked immunosorbent assays were used to assay endothelial apoptosis induced by serum starvation. Immunoprecipitation and Western blot analysis were used to analyze protein phosphorylation and expression. Endothelial tube formation was used as an in vitro assay for angiogenesis.

Results:

Exposure of MHMECs to HG resulted in dramatic decreases in phosphorylation of the Tie-2 receptor and its downstream signaling partners, Akt/eNOS, compared to that under NG conditions. Ang-1 (250 ng/mL) increased Tie-2 activation, inhibited cell apoptosis, and promoted angiogenesis. Ang-1-mediated protection of endothelial function was blunted by Ang-2 (25 ng/mL).

Conclusion:

Ang-1 activates the Tie-2 pathway and restores hyperglycemia-induced myocardial microvascular endothelial dysfunction. This suggests a protective role of Ang-1 in the ischemic myocardium, particularly in hearts affected by hyperglycemia or diabetes.  相似文献   

17.

BACKGROUND AND PURPOSE

We have tested the hypothesis that calcitonin gene-related peptide (CGRP) is a mediator of capsaicin-induced angiogenesis in vivo.

EXPERIMENTAL APPROACH

In a series of experiments, the knee joints of rats were injected with CGRP, capsaicin or vehicle control. Groups of animals (n = 6) were treated with the CGRP receptor antagonist BIBN4096BS and/or the NK1 receptor antagonist SR140333. Endothelium, proliferating endothelial cell nuclei and macrophages were identified 24 h later in the synovium by immunohistochemistry and quantified by image analysis. mRNA for the receptors for CGRP and adrenomedullin were sought in normal and inflamed rat and human synovia using RT-PCR.

KEY RESULTS

Intra-articular CGRP injection increased the endothelial cell proliferation index, whereas macrophage infiltration and knee joint diameters were similar to saline-injected controls. CGRP-induced endothelial cell proliferation was dose-dependently inhibited by BIBN4096BS. mRNA for adrenomedullin and the CGRP receptor subunits were detected in normal and inflamed human and rat synovia. In capsaicin-induced synovitis, the increased endothelial cell proliferation index was partially blocked by administration of NK1 or CGRP antagonists individually and was reduced to the level of saline controls by coadministration of both receptor antagonists.

CONCLUSIONS AND IMPLICATIONS

These data support the hypothesis that CGRP stimulates angiogenesis in vivo directly by activating CGRP receptors. Capsaicin-induced endothelial cell proliferation was completely blocked by coadministration of CGRP and NK1 receptor antagonists, indicating that both CGRP and substance P may contribute to angiogenesis in this model of synovitis.  相似文献   

18.

Background and purpose:

Nitric oxide (NO) promotes angiogenesis by activating endothelial cells. Thalidomide arrests angiogenesis by interacting with the NO pathway, but its putative targets are not known. Here, we have attempted to identify these targets.

Experimental approach:

Cell-based angiogenesis assays (wound healing of monolayers and tube formation in ECV304, EAhy926 and bovine arterial endothelial cells), along with ex vivo and in vivo angiogenesis assays, were used to explore interactions between thalidomide and NO. We also carried out in silico homology modelling and docking studies to elucidate possible molecular interactions of thalidomide and soluble guanylyl cyclase (sGC).

Key results:

Thalidomide inhibited pro-angiogenic functions in endothelial cell cultures, whereas 8-bromo-cGMP, sildenafil (a phosphodiesterase inhibitor) or a NO donor [sodium nitroprusside (SNP)] increased these functions. The inhibitory effects of thalidomide were reversed by adding 8-bromo-cGMP or sildenafil, but not by SNP. Immunoassays showed a concentration-dependent decrease of cGMP in endothelial cells with thalidomide, without affecting the expression level of sGC protein. These results suggested that thalidomide inhibited the activity of sGC. Molecular modelling and docking experiments revealed that thalidomide could interact with the catalytic domain of sGC, which would explain the inhibitory effects of thalidomide on NO-dependent angiogenesis.

Conclusion and implications:

Our results showed that thalidomide interacted with sGC, suppressing cGMP levels in endothelial cells, thus exerting its anti-angiogenic effects. These results could lead to the formulation of thalidomide-based drugs to curb angiogenesis by targeting sGC.  相似文献   

19.

AIM

To determine whether the SNP rs4149056 in SLCO1B1 alters the pharmacodynamics of pravastatin.

METHODS

rs4149056 was genotyped in 626 pravastatin-treated participants in the WOSCOPS trial and the response after 1 year of treatment was compared between the different genotypes.

RESULTS

Pravastatin reduced serum LDL cholesterol by 22.2% in TT homozygotes, by 22.2% in TC heterozygotes and by 17.7% in CC homozygotes (TT + TC vs. CC P value 0.33). There were no significant differences in the response of total cholesterol, LDL, HDL, triglycerides or CRP to pravastatin between the genotypes.

CONCLUSION

The rs4149056 SNP did not significantly affect the pharmacodynamics of pravastatin.  相似文献   

20.

Aim:

To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms.

Methods:

The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays.

Results:

Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis.

Conclusion:

DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号