首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Retinitis pigmentosa (RP) represents a group of inherited human retinal diseases which involve degeneration of photoreceptor cells resulting in visual loss and often leading to blindness. In order to identify candidate genes for the causes of these diseases, we have been studying a pool of photoreceptor-specific cDNAs isolated by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. One of these cDNAs was of interest because it mapped to proximal mouse chromosome 1 in a region homo-logous to human 8q11-q13, the locus of autosomal dominant RP1. Therefore, using the mouse cDNA as probe, we cloned the human cDNA (hG28) and its corresponding gene and mapped it near to D8S509, which lies in the RP1 locus. This gene consists of four exons with an open reading frame of 6468 nt encoding a protein of 2156 amino acids with a predicted mass of 240 kDa. Given its chromosomal localization, we screened this gene for mutations in a large family affected with autosomal dominant RP previously linked to the RP1 locus. We found an R677X mutation that co-segregated with disease in the family and is absent from unaffected members and 100 unrelated controls. This mutation is predicted to lead to rapid degradation of hG28 mRNA or to the synthesis of a truncated protein lacking approximately 70% of its original length. Our results suggest that R677X is responsible for disease in this family and that the gene corresponding to hG28 is the RP1 gene.  相似文献   

4.
Autosomal dominant inheritance is described in about 20% of all nonsyndromic hearing loss with currently 54 distinct loci (DFNA1-54), and >20 different genes identified. Seven different unconventional myosin genes are involved in ten different types of syndromic and nonsyndromic hearing loss with different patterns of inheritance: MYO7A in DFNA11/DFNB2/USH1B, MYH9 in DFNA17, MYH14 in DFNA4, MYO6 in DFNA22/DFNB37, MYO3A in DFNB30, MYO1A in DFNA48, and MYO15A in DFNB3. Two missense mutations in MYO6 (p.C442Y and p.H246R) have been characterized in families of Italian and American Caucasian extraction with autosomal dominant hearing loss, respectively, and the latter was associated with cardiomyopathy in some patients. Three Pakistani families had homozygosity for three MYO6 mutations (c.36insT, p.R1166X, and p.E216V, respectively), and was in one instance associated with retinal degeneration. In the present study, we linked autosomal dominant hearing loss in a large Danish family to a 38.9 Mb interval overlapping with the DFNA22/DFNB37 locus on chromosome 6q13. A novel nonsense mutation in MYO6 exon 25 (c.2545C > T; p.R849X) was identified in the family. The mutation co-segregated with the disease and the mutant allele is predicted to encode a truncated protein lacking the coiled-coil and globular tail domains. These domains are hypothesized to be essential for targeting myosin VI to its cellular compartments. No other system was involved indicating nonsyndromic loss. In conclusion, a novel nonsense MYO6 mutation causes post-lingual, slowly progressive autosomal dominant nonsyndromic moderate to severe hearing loss in a Danish family.  相似文献   

5.
Heterozygous, de novo mutations in the glial fibrillary acidic protein (GFAP) gene were recently found to be associated with Alexander disease. We examined the functional effect of such mutations, and observed a decrease in GFAP dimerization. This effect behaves in a dominant fashion and points towards a potential mechanism in pathogenesis.  相似文献   

6.
Here, we describe a nonsense haplotype in PRNP associated with clinical Alzheimer's disease. The patient presented an early-onset of cognitive decline with memory loss as the primary cognitive problem. Whole-exome sequencing revealed a nonsense mutation in PRNP (NM_000311, c.C478T; p.Q160*; rs80356711) associated with homozygosity for the V allele at position 129 of the protein, further highlighting how very similar genotypes in PRNP result in strikingly different phenotypes.  相似文献   

7.

Background  

Retinitis pigmentosa is the most important hereditary retinal degenerative disease, which has a high degree of clinical and genetic heterogeneity. More than half of all cases of retinitis pigmentosa are autosomal recessive (arRP), but the gene(s) causing arRP in most families has yet to be identified. The purpose of this study is to identify the genetic basis of severe arRP in a consanguineous Chinese family.  相似文献   

8.
Previous studies in our laboratory have shown that the neuropeptide, calcitonin gene-related peptide (CGRP) accumulates at a site of inferior alveolar nerve injury at the time when high levels of spontaneous activity and mechanical sensitivity are recorded electrophysiologically. The present study was undertaken to determine whether or not the CGRP could be playing a role in initiating or modulating the neuronal activity. In 18 anaesthetised adult ferrets the left inferior alveolar nerve was sectioned and ligated and recovery permitted for 3 days. Under a second anaesthetic recordings were made from a fine nerve filament, containing up to four active or silent units, dissected from the nerve proximal to the injury. After recording activity for a 30 min control period, CGRP and then the CGRP antagonist (CGRP 8-37) were applied either by close-arterial injection or topically (10(-4) M, 0.2 ml). After each application activity was recorded for a 30 min period. Recordings were made from 52 units, of which 26 (50%) were spontaneously active and 30 (58%) were mechanically sensitive. The spontaneous activity in five units was increased by the application of CGRP, and the CGRP antagonist subsequently reduced the activity in two of these units. Activity was induced by CGRP in three previously silent units. Overall, activity was affected in 19% of the units studied. We conclude that CGRP present within a neuroma may initiate or modulate the level of ectopic discharge from some damaged nerve fibres and therefore may contribute to the sensory disturbances which follow nerve injury.  相似文献   

9.
Alexander disease is a neurological genetic disorder characterized by progressive white-matter degeneration, with astrocytes containing cytoplasmic aggregates, called Rosenthal fibers, including the intermediate filament glial fibrillary acidic protein (GFAP). The age of onset of the disease defines three different forms, infantile, juvenile and adult, all due to heterozygous GFAP mutations and characterized by a progressive less severe phenotype from infantile to adult forms. In an Italian family with a recurrent mild adult onset of Alexander disease, we have identified two GFAP mutations, coupled on a same allele, leading to p.[R330G; E332K]. Functional studies on this complex allele revealed less severe aggregation patterns compared to those observed with p.R239C GFAP mutant, associated with a severe Alexander disease phenotype. Moreover, in addition to confirming the involvement of the ubiquitin-proteasome system in cleaning cells from aggregates and a dominant effect of the novel mutant protein, in cells expressing the mild p.[R330G; E332K] mutant we have observed that indirect alphaB-crystallin overexpression, induced by high extracellular potassium concentration, could completely rescue the correct filament organization while, under the same experimental conditions, in cells expressing the severe p.R239C mutant only a partial rescue effect could be achieved.  相似文献   

10.
11.
When a novel variant is found in a patient and not in a group of controls, it becomes a candidate for the disease-causing mutation in that patient. At present, no sampling theory exists for assessing the probability that the novel SNP might actually be a neutral variant. We have developed a population genetics-based method for calculating a P-value for a mutation-detection effort. Our method can be applied to a heterozygous patient, a homozygous patient, with or without inbreeding, or to a patient who is a compound heterozygote. Additionally, the method can be used to calculate the probability of finding a neutral variant at frequencies that differ between a group of patients and a group of controls, given some length of sequence examined. This method accounts for the multiple testing that is inherent in identification of variants through sequencing, to be used in subsequent case-control analyses. We show, for example, that for complete resequencing of 10 kb, the probability of finding a neutral variant in a patient and not in 50 controls is about 15%. Thus, discovery of a variant in a patient and not in a group of controls is, on its own, very weak evidence of involvement with disease.  相似文献   

12.
Leigh disease is a genetically heterogeneous, neurodegenerative disorder of childhood that is caused by defects of either the nuclear or mitochondrial genome. Here, we report the molecular genetic findings in a patient with neuropathological hallmarks of Leigh disease and complex I deficiency. Direct sequencing of the seven mitochondrial DNA (mtDNA)-encoded complex I (ND) genes revealed a novel missense mutation (T12706C) in the mitochondrial ND5 gene. The mutation is predicted to change an invariant amino acid in a highly conserved transmembrane helix of the mature polypeptide and was heteroplasmic in both skeletal muscle and cultured skin fibroblasts. The association of the T12706C ND5 mutation with a specific biochemical defect involving complex I is highly suggestive of a pathogenic role for this mutation.  相似文献   

13.
14.
Mutations in p53 gene exons 5-9 were studied in 44 non-Hodgkin's lymphomas (NHL) consisting of 35 B-NHL and 9 T-NHL. Missense mutations were found in two diffuse large B-cell lymphomas (DLBL) and one peripheral T-cell lymphoma (unspecified). Double transversion missense and nonsense mutations were detected in one DLBL and one adult T-cell leukemia/lymphoma. Silent mutations were found in two DLBL. Detailed histomorphological study showed that cases harboring p53 missense mutation with/without nonsense mutation tended to have larger nuclei with much more prominent nucleoli. Cytomorphometric analysis was therefore conducted by measuring the gross area of 100 lymphoma cell nuclei in 44 cases and the results were compared between lymphomas harboring p53 missense mutation with/without nonsense mutation and lymphomas harboring p53 silent mutation or lacking mutation. It was found that the lymphomas harboring p53 missense mutation with/without nonsense mutation had a highly significantly larger nuclear gross area than lymphomas with silent p53 mutation or lacking mutation (two-sample t-test, P < 0.00001; Exact Wilcoxon rank-sum test, P < 0.00001). This result suggests that p53 mutation might induce enlargement of neoplastic cell nuclei by some molecular mechanism.  相似文献   

15.
16.
Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA→TGA, Arg→STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg253→STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Am. J. Med. Genet. 87:69–71, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

17.
18.
A nonsense mutation at amino acid residue 184 in the human peptidase D (PEPD) gene caused the production of a truncated polypeptide. Characterizing molecular defects in patients provides clues to elucidate the relationship between the phenotype and the genotype. Received: November 8, 1999 / Accepted: November 24, 1999  相似文献   

19.
20.
In some myopathies of distal onset, the intermediate filament desmin is abnormally accumulated in skeletal and cardiac muscle. We report the first point mutation in desmin cosegregating with an autosomal dominant form of desmin-related myopathy. The L345P desmin missense mutation occurs in a large, six generation Ashkenazi Jewish family. The mutation is located in an evolutionarily highly conserved position of the desmin coiled-coil rod domain important for dimer formation. L345P desmin is incapable of forming filamentous networks in transfected HeLa and SW13 cells. We conclude that the L345P desmin missense mutation causes myopathy by interfering in a dominant-negative manner with the dimerization-polymerization process of intermediate filament assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号