首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Medical Dosimetry》2020,45(3):271-277
Purpose: To compare the dosimetric characteristics of helical tomotherapy (HT), volumetric-modulated arc therapy (VMAT), intensity-modulated radiotherapy (IMRT), and tangential field-in-field technique (FIF) for the treatment of synchronous bilateral breast cancer (SBBC). Methods and Materials: Ten patients with early-stage unilateral breast cancer were selected for simulating the patients with SBBC in this retrospective analysis. Treatment plans with HT, VMAT, IMRT, and FIF were generated for each patient with a total dose of 50.4 Gy in 28 fractions to the target. Plan quality, namely conformity index (CI), homogeneity index (HI), dose-volume statistics of organs at risk (OARs), and beam-on time (BOT), were evaluated. Results: HT plans showed a lower mean heart dose (3.53 ± 0.31Gy) compared with the other plans (VMAT = 5.6 ± 1.36 Gy, IMRT = 3.80 ± 0.76 Gy, and FIF = 4.84 ± 2.13 Gy). Moreover, HT plans showed a significantly lower mean lung dose (p < 0.01) compared with the other plans: mean right lung doses were 6.81 ± 0.67, 10.32 ± 1.04, 9.07 ± 1.21, and 10.03 ± 1.22 Gy and mean left lung doses were 6.33 ± 0.87, 8.82 ± 0.91, 7.84 ± 1.07, and 8.64 ± 0.99 Gy for HT, VMAT, IMRT, and FIF plans, respectively. The mean dose to the left anterior descending artery was significantly lower in HT plans (p < 0.01) than in the other plans: HT = 19.41 ± 0.51 Gy, VMAT = 25.77 ± 7.23 Gy, IMRT = 27.87 ± 6.48 Gy, and FIF = 30.95 ± 10.17 Gy. FIF plans showed a worse CI and HI compared with the other plans. VMAT plans showed shorter BOT (average, 3.9 ± 0.2 minutes) than did HT (average, 11.0 ± 3.0 minutes), IMRT (average, 6.1 ± 0.5 minutes), and FIF (average, 4.6 ± 0.7 minutes) plans. Conclusions: In a dosimetric comparison for SBBC, HT provided the most favorable dose sparing of OARs. However, HT with longer BOT may increase patient discomfort and treatment uncertainty. VMAT enabled shorter BOT with acceptable doses to OARs and had a better CI than did FIF and IMRT.  相似文献   

2.

Purpose

To compare dosimetric data for the planning target volume (PTV) and organs at risk (OARs) between 3-dimensional conformal radiotherapy (3DCRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy [1].

Materials and methods

The dosimetric data for 15 gastric cancer patients treated with 3DCRT, VMAT, or HT techniques were used. Cumulative dosimetric parameters, homogeneity index (HI), and conformal index (CI) were compared for the PTV and OARs.

Results

The average maximum doses of PTV were significantly higher in VMAT plans than in 3DCRT (p = 0.04) and HT (p = 0.02) plans, whereas minimum dose values were significantly lower in 3DCRT plans compared with VMAT (p < 0.001) and HT (p = 0.02) plans. Liver mean dose (D mean) and D mean values for both kidneys were significantly lower in HT plans than in 3DCRT and VMAT plans. The doses in high dose regions (V30–V45) using 3DCRT plans were significantly higher compared to both VMAT and HT plans. The bowel V5–V30 and V45 was significantly less in HT plans compared to VMAT plans. There were no significant differences in dose sparing of the spinal cord.

Conclusions

The HT plans reduced the maximum dose applied to the target and improved the conformality and homogeneity of radiation, while providing sufficient PTV coverage.
  相似文献   

3.
The present study aimed to compare 4 techniques in the planning of locoregional irradiation including internal mammary nodal region for left-sided breast cancer. Ten patients with left-sided breast cancer undergoing breast conservation surgery were enrolled. For each patient, 4 treatment plans were performed: a helical tomotherapy (HT) plan, a volumetric modulated arc therapy (VMAT) plan, a static intensity modulated radiation therapy (IMRT) plan, and a hybrid IMRT plan, designed to encompass the whole breast, internal mammary, and supraclavicular nodal regions. The prescribed dose of radiation was 50 Gy in 25 fractions. The dosimetric parameters of the target and organs at risk, as well as the dose delivery time, were evaluated and compared using an independent-samples t-test. The HT and VMAT plans had the best conformity and homogeneity. For the HT, VMAT, IMRT, and hybrid IMRT plans, the mean conformity index (CI) and homogeneity index (HI) were 0.83, 0.82, 0.8, and 0.77 (p < 0.001); and 1.07, 1.11, 1.14, and 1.14 (p < 0.001), respectively. The corresponding V55 values were 0.3%, 11.4%, 27.02%, and 23.29% (p < 0.001). The Dmean and V20 of the left lung obtained using the HT plan were significantly lower than those of VMAT, IMRT, and hybrid IMRT plans (p = 0.002, p = 0.004). There were no significant differences in D max of LAD descending coronary artery, or the Dmean of the heart among the 4 types of plans. The HT and VMAT plans had a lower dose to other organ at risk (OARs) compared with the IMRT and hybrid IMRT plans. The mean delivery times were 1042 ± 33 seconds, 136 ± 12 seconds, 450 ± 65 seconds, and 451 ± 70 seconds for the HT, VMAT, IMRT, and hybrid IMRT plans, respectively (p < 0.001). For whole breast plus supraclavicular and internal mammary nodal irradiation in left-sided breast cancer, the VMAT technique is recommended considering both the dose distribution and the delivery time. Under circumstances in which dose distribution is a priority, the HT technique is a valid option.  相似文献   

4.
BackgroundThe new TomoDirect (TD) modality offers a nonrotational option with discrete beam angles. We aim to compare dosimetric parameters of TD, helical tomotherapy (HT), volumetric-modulated arc therapy (VMAT), and fixed-field intensity-modulated radiotherapy (ff-IMRT) for upper thoracic esophageal carcinoma (EC).MethodsTwenty patients with cT2-4N0-1M0 upper thoracic esophageal squamous cell carcinoma (ESCC) were enrolled. Four plans were generated using the same dose objectives for each patient: TD, HT, VMAT with a single arc, and ff-IMRT with 5 fields (5F). The prescribed doses were used to deliver 50.4 Gy/28F to the planning target volume (PTV50.4) and then provided a 9 Gy/5F boost to PTV59.4. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans.ResultsFor PTV59.4, the D2, D98, Dmean, and V100% values in HT were significantly lower than other plans (all p < 0.05), and those in TD were significantly lower than VMAT and ff-IMRT (all p < 0.05). However, there was no significant difference in the D2 and Dmean values between VMAT and ff-IMRT techniques (p > 0.05). The homogeneity index (HI) differed significantly for the 4 techniques of TD, HT, VMAT, and ff-IMRT (0.03 ± 0.01, 0.02 ± 0.01, 0.06 ± 0.02, and 0.05 ± 0.01, respectively; p < 0.001). The HI for TD was similar to HT (p = 0.166), and had statistically significant improvement compared to VMAT (p < 0.001) and ff-IMRT (p = 0.003). In comparison with the 4 conformity indices (CIs), there was no significant difference (p > 0.05). For PTV50.4, the D2 and Dmean values in HT were significantly lower than other plans (all p < 0.05), and those in TD were significantly lower than VMAT and ff-IMRT (all p < 0.05). However, there was no significant difference in the D2 and Dmean values between VMAT and ff-IMRT techniques (p > 0.05). No D98 and V100% parameters differed significantly among the 4 treatment types (p > 0.05). HT plans were provided for statistically significant improvement in HI (0.03 ± 0.01) compared to TD plans (0.05 ± 0.01, p = 0.003), VMAT (0.08 ± 0.03, p < 0.001), ff-IMRT (0.08 ± 0.01, p < 0.001). The HI revealed that TD was superior to VMAT and ff-IMRT (p < 0.05). The CI differed significantly for the 4 techniques of TD, HT, VMAT, and ff-IMRT (0.59 ± 0.10, 0.69 ± 0.11, 0.64 ± 0.09, and 0.64 ± 0.11, respectively; p = 0.035). The best CI was yielded by HT. We found no significant difference for the V5, V10, V15, V30, and the mean lung dose (MLD) among the 4 techniques (all p > 0.05). However, the V20 differed significantly among TD, HT, VMAT, and ff-IMRT (21.50 ± 7.20%, 19.50 ± 5.55%, 17.65 ± 5.45%, and 16.35 ± 5.70%, respectively; p = 0.047). Average V20 for the lungs was significantly improved by the TD plans compared to VMAT (p = 0.047), and ff-IMRT (p = 0.008). The V5 value of the lung in TD was 49.30 ± 13.01%, lower than other plans, but there was no significant difference (p > 0.05). The D1 of the spinal cord showed no significant difference among the 4 techniques (p = 0.056).ConclusionsAll techniques are able to provide a homogeneous and highly conformal dose distribution. The TD technique is a good option for treating upper thoracic EC involvement. It could achieve optimal low dose to the lungs and spinal cord with acceptable PTV coverage. HT is a good option as it could achieve quality dose conformality and uniformity, while TD generated superior conformality.  相似文献   

5.
《Medical Dosimetry》2019,44(2):102-106
Research demonstrates that instructing patients to have a full bladder for pelvic radiotherapy results in highly variable bladder volumes at daily treatment. We aimed to determine bladder volume variation in patients with intact cervical cancer treated with intensity-modulated radiotherapy (IMRT) on an empty bladder and estimate the difference in radiation dose to the small bowel compared to treating on a full bladder. We identified 29 patients treated with IMRT from 2010 to 2013 who underwent 2 planning computed tomography (CT) scans, 1 with a full bladder followed by 1 with an empty bladder. Interfractional variation in bladder volume was measured using 782 daily cone beam computed tomography (CBCT) scans. To estimate dose to small bowel, radiation plans were created on both empty and full bladder CT scans using an automated knowledge-based planning modeling program. Mean bladder volume with empty bladder instructions was 67 ± 26 cc compared to 91 ± 43 cc for no bladder instructions and 154 ± 54 cc for full bladder instructions (p < 0.001). There was a significant reduction in the absolute bladder volume variation in patients given empty bladder instructions compared to full bladder instructions (p < 0.05) The intraclass correlation coefficient showed low reliability of bladder filling across all groups (p = 0.6). The average bowel V45 for the empty bladder plans was 188 cc, compared to 139 cc for the full bladder plans (p < 0.05). More plans created on an empty bladder exceeded Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines but this was not significant (31% vs 14%, p = 0.12). Reliability of bladder volume at the time of radiation treatment is low, regardless of bladder filling instructions, although an empty bladder reduces absolute variation in bladder volume. Radiation planning on an empty bladder predicts a larger volume of small bowel receiving 45 Gy compared to a full bladder, although bowel dose on average is still within QUANTEC guidelines (V45 < 195 cc).  相似文献   

6.
We investigated the possible treatment and dosimetric advantage of volumetric modulated arc therapy (VMAT) over step-and-shoot intensity-modulated radiation therapy (step-and-hhoot IMRT) and helical tomotherapy (HT). Twelve prostate cancer patients undergoing VMAT to the prostate were included. Three treatment plans (VMAT, step-and-shoot IMRT, HT) were generated for each patient. The doses to clinical target volume and 95% of planning target volume were both ≥78 Gy. Target coverage, conformity index, dose to rectum/bladder, monitor units (MU), treatment time, equivalent uniform dose (EUD), normal tissue complication probability (NTCP) of targets, and rectum/bladder were compared between techniques. HT provided superior conformity and significantly less rectal volume exposed to 65 Gy and 40 Gy, as well as EUD/NTCP of rectum than step-and-shoot IMRT, whereas VMAT had a slight dosimetric advantage over step-and-shoot IMRT. Notably, significantly lower MUs were needed for VMAT (309.7 ± 35.4) and step-and-shoot IMRT (336.1 ± 16.8) than for HT (3368 ± 638.7) (p < 0.001). The treatment time (minutes) was significantly shorter for VMAT (2.6 ± 0.5) than step-and-shoot IMRT (3.8 ± 0.3) and HT (3.8 ± 0.6) (p < 0.001). Dose verification of VMAT using point dose and film dosimetry met the accepted criteria. VMAT and step-and-shoot IMRT have comparable dosimetry, but treatment efficiency is significantly higher for VMAT than for step-and-shoot IMRT and HT.  相似文献   

7.
《Medical Dosimetry》2023,48(3):197-201
This study aimed to compare dosimetric parameters for targets and organs at risk (OARs) between volumetric modulated arc therapy (VMAT) and automated VMAT (HyperArc, HA) plans in stereotactic radiotherapy for patients with cervical metastatic spine tumors. VMAT plans were generated for 11 metastases using the simultaneous integrated boost technique to deliver 35 to 40 and 20 to 25 Gy for high dose and elective dose planning target volume (PTVHD and PTVED), respectively. The HA plans were retrospectively generated using 1 coplanar and 2 noncoplanar arcs. Subsequently, the doses to the targets and OARs were compared. The HA plans provided significantly higher (p < 0.05) Dmin (77.4 ± 13.1%), D99% (89.3 ± 8.9%), and D98% (92.5 ± 7.7%) for gross tumor volume (GTV) than those of the VMAT plans (73.4 ± 12.2%, 84.2 ± 9.6 and 87.3 ± 8.8% for Dmin, D99% and D98%, respectively). In addition, D99% and D98% for PTVHD were significantly higher in the HA plans, whereas dosimetric parameters were comparable between the HA and VMAT plans for PTVED. The Dmax values for the brachial plexus, esophagus, and spinal cord were comparable, and no significant difference was observed in the Dmean for the larynx, pharyngeal constrictor, thyroid, parotid grand (left and right), and Submandibular gland (left and right). The HA plans provided significantly higher target coverage of GTV and PTVHD, with a comparable dose for OARs with VMAT plans. The results of this study may contribute to the improvement of local control in clinical practice.  相似文献   

8.
Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification.  相似文献   

9.
We performed this dosimetric study to compare a nonstandard volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) techniques with high-dose rate (HDR) brachytherapy (BRT) plan of vaginal vault in patients with postoperative endometrial cancer (EC). Twelve postoperative patients with early stage EC were included in this study. Three plans were performed for each patient; dosimetric and radiobiological comparisons were made using dose-volume histograms and equivalent dose for determining the planning target volume (PTV) coverages in brachytherapy and external beam radiotherapy, and organs-at-risk (OARs) doses between three different delivery techniques. All the plans achieved adequate dose coverage for PTV; however, the VMAT plan yielded better dose conformity, and the HT plan showed better homogeneity for target volume. With respect to the OARs, the bladder D2cc was significantly lower in the BRT plan than in the VMAT and HT plans, with the highest bladder D2cc value being observed in the HT plan. However, no difference was observed in the rectum D2cc of the three plans. Other major advantages of the BRT plan over the VMAT and HT plans were the relatively lower body integral doses and femoral head doses as well as the fact that the integral doses were significantly lower in the BRT plan than in the VMAT and HT plans. This is the first dosimetric comparison of vaginal vault treatment for EC with BRT, VMAT, and HT plans. Our analyses showed the feasibility of stereotactic body radiotherapy technique as an alternative to HDR-BRT for postoperative management of EC patients.  相似文献   

10.
11.
《Medical Dosimetry》2023,48(2):67-72
To compare dosimetric parameters for the hippocampus, organs at risk (OARs), and targets of volumetric modulated arc therapy (VMAT), noncoplanar VMAT (NC-VMAT), and HyperArc (HA) plans in patients undergoing postoperative radiotherapy for primary brain tumors. For 20 patients, HA plans were generated to deliver 40.05 to 60 Gy for the planning target volume (PTV). In addition, doses for the hippocampus and OARs were minimized. The VMAT and NC-VMAT plans were retrospectively generated using the same optimization parameters as those in the HA plans. For the hippocampus, the equivalent dose to be administered in 2 Gy fractions (EQD2) was calculated assuming α/β = 2. Dosimetric parameters for the PTV, hippocampus, and OARs in the VMAT, NC-VMAT, and HA plans were compared. For PTV, the HA plans provided significantly lower Dmax and D1% than the VMAT and NC-VMAT plans (p < 0.05), whereas the D99% and Dmin were significantly higher (p < 0.05). For the contralateral hippocampus, the dosimetric parameters in the HA plans (8.1 ± 9.6, 6.5 ± 7.2, 5.6 ± 5.8, and 4.8 ± 4.7 Gy for D20%, D40%, D60% and D80%, respectively) were significantly smaller (p < 0.05) than those in the VMAT and NC-VMAT plans. Except for the optic chiasm, the Dmax in the HA plans (brainstem, lens, optic nerves, and retinas) was the smallest (p < 0.05). In addition, the doses in the HA plans for the brain and skin were the smallest (p < 0.05) among the 3 plans. HA planning, instead of coplanar and noncoplanar VMAT, significantly reduces the dosage to which the contralateral hippocampus as well as other OARs are exposed without compromising on target coverage.  相似文献   

12.
Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V25 (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V15 (53.4 Gy vs. 45.9 Gy, p = 0.035), V20 (32.2 Gy vs. 25.5 Gy, p = 0.016), and V25 (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.  相似文献   

13.
14.
The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.  相似文献   

15.
《Medical Dosimetry》2014,39(4):309-313
Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.  相似文献   

16.
17.
We compared normal tissue radiation dose for the treatment of prostate cancer using 2 different radiation therapy delivery methods: volumetric modulated arc therapy (VMAT) vs. fixed-field intensity-modulated radiation therapy (IMRT). Radiotherapy plans for 292 prostate cancer patients treated with VMAT to a total dose of 7740 cGy were analyzed retrospectively. Fixed-angle, 7-field IMRT plans were created using the same computed tomography datasets and contours. Radiation doses to the planning target volume (PTV) and organs at risk (bladder, rectum, penile bulb, and femoral heads) were measured, means were calculated for both treatment methods, and dose-volume comparisons were made with 2-tailed, paired t-tests. The mean dose to the bladder was lower with VMAT at all measured volumes: 5, 10, 15, 25, 35, and 50% (p < 0.05). The mean doses to 5 and 10% of the rectum, the high-dose regions, were lower with VMAT (p < 0.05). The mean dose to 15% of the rectal volume was not significantly different (p = 0.95). VMAT exposed larger rectal volumes (25, 35, and 50%) to more radiation than fixed-field IMRT (p < 0.05). Average mean dose to the penile bulb (p < 0.05) and mean dose to 10% of the femoral heads (p < 0.05) were lower with VMAT. VMAT therapy for prostate cancer has dosimetric advantages for critical structures, notably for high-dose regions compared with fixed-field IMRT, without compromising PTV coverage. This may translate into reduced acute and chronic toxicity.  相似文献   

18.
鼻咽癌三种调强放疗计划剂量学对比研究   总被引:2,自引:0,他引:2       下载免费PDF全文
目的 对比鼻咽癌常规固定野调强(IMRT)、容积旋转调强(VMAT)以及断层调强(HT)3种不同调强放疗计划的剂量学差异。方法 选择18例接受VMAT治疗的鼻咽癌患者,以相同处方剂量和目标条件分别重新进行IMRT和HT计划设计。比较3种计划靶区的均匀度(HI)、适形度(CI)、最大剂量以及平均剂量。危及器官的最大量和平均量以及感兴趣区的剂量体积、计划执行时间和机器跳数(MU)。结果 3种计划在靶区的覆盖率满足临床要求。IMRT计划在靶区的HI和CI方面结果最差,HT计划结果最优。危及器官方面,IMRT计划受量最高,HT计划的脊髓、脑干和腮腺受量最低;但对于视神经、晶状体以及视交叉HT计划的受量最高而VMAT计划的受量最低。IMRT的治疗时间(8.0±0.5) min高于VMAT(3.9±0.1)min和HT(7.4±0.9)min。与VMAT相比,IMRT每次治疗为(711.4±78.7)MU,高于VMAT的(596.4±33.7)MU。结论 鼻咽癌IMRT、VMAT以及HT计划在靶区覆盖和危及器官保护上都可以达到临床要求,在靶区的适形度和均匀性上HT计划优于VMAT和IMRT,但在治疗时间和加速器的机器跳数上VMAT较有优势。  相似文献   

19.
《Medical Dosimetry》2021,46(4):404-410
The prevalence of hip prostheses is increasing. Prostate radiation delivery in the setting of hip prostheses is complicated by both imaging artifacts that interfere with volume delineation and dosimetric effects that must be addressed in the planning process. We hypothesized that with specialized planning, any photon-based definitive prostate radiotherapy approach may be utilized in patients with bilateral hip prostheses. Imaging data from sequential patients with prostate cancer and bilateral hip prostheses treated definitively with radiation were retrospectively reviewed. Bimodality imaging was used to define targets and organs at risk (OARs) along with specialized MRI sequences and/or orthopedic metal artifact reduction (OMAR) for MRI and CT artifact suppression, respectively. Multiple VMAT plans were generated for each set of patient images to include three fractionation schemes (conventional, hypofractionated, and SBRT), each with hip avoidance and with simulated normal hip. The ability to meet standard dose constraints was assessed for each plan type. Differences in target and OAR dosing between plans accounting for prosthetic hips via avoidance vs plans with simulated absence of prosthetic hip were also assessed. T-tests were used to compare dosimetric parameters. Ten patients with bilateral hip prostheses were identified, and 6 plans were created for each patient for a total of 60 radiation plans. Prosthetic hip avoidance did not result in failure to meet dose constraints for any patient. Hip avoidance resulted in minimal increases in high dose to the rectum and bladder (increases in mean V80%, V90%, and V95% ranged from 0.1% to 2.4%). Larger increases were seen at lower dose levels, with rectal V50% significantly increased in all three plan types with hip avoidance (conventional: 26.0% [standard deviation, SD 13.9] vs 16.9% [SD 10.2, p = 0.003]; hypofractionation: 26.4% [SD 13.3] vs 17.1% [SD 10.1, p = 0.002]; SBRT: 18.3% [SD 10.7] vs 10.5% [SD 6.9, p = 0.008]). Similarly, hip avoidance resulted in increases in bladder V50% to 31.7% (SD 16.8) vs 23.3% (SD 14.0, p = 0.001), 31.3% (SD 17.0) vs 23.3% (SD 13.8, p = 0.002), and 22.7% (SD 12.3) vs 16.5% (SD 12.6, p < 0.001) for conventional, hypofractionated, and SBRT plans, respectively. Hydrogel spacer resulted in reductions in rectal dose. For example, V70% for hip avoidance plans decreased with spacer presence to 8.3% (SD 6.7) vs 21.1% (SD 5.8, p = 0.021), 8.6% (SD 6.5) vs 21% (SD 5.7, p = 0.022), and 3.7% (SD 3.2) vs 15% (SD 8.2, p = 0.010) for conventional, hypofractionated, and SBRT plans, respectively. Any photon-based definitive prostate radiotherapy approach can be used with bimodality imaging for target and OAR definition and planning techniques to avoid dose attenuation effects of hip prostheses. Hydrogel spacer is a useful adjunct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号