首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahydrobiopterin (BH4) responsiveness in patients with mutations in the phenylalanine hydroxylase (PAH) gene is a recently recognized subtype of hyperphenylalaninemia characterized by a positive BH4 loading test. According to recent estimates, this phenotype may be quite common, suggesting that a large group of individuals may benefit from BH4 substitution, eliminating the need of life-long dietary restrictions. This underscores the importance of identifying BH4-responsive patients in each population, establishing the association with specific PAH mutations. In this work, we describe the results of a pilot study performed with 31 Spanish PAH-deficient patients subjected to a BH4 loading test. Overall, 11/31 (37%) showed a positive response with a 30% decrease in blood Phe levels 8 h after the BH4 challenge, and three additional patients, considered slow responders, showed this decrease only after 12-16 h. We report for the first time a patient homozygous for a splicing mutation with a slow response, suggesting an effect of BH4 supplementation on PAH gene expression. Most of the responsive patients belong to the mild hyperphenylalaninemia (MHP) or mild phenylketonuria phenotypic groups. In MHP patients we report for the first time the results of parallel single Phe doses confirming the utility of these analyses for a better evaluation of the response. Genotype analysis confirms the involvement in the response of specific mutations (D415N, S87R, R176L, E390G, and A309V) present in hemizygous patients, and provide relevant information for the discussion of the potential mechanisms underlying BH4 responsiveness.  相似文献   

2.
When analyzed in the context of the phenylalanine hydroxylase (PAH) three-dimensional structure, only a minority of the PKU mutations described world-wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co-expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10-11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes.  相似文献   

3.
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Caucasians. PKU is caused by mutations in the gene encoding phenylalanine hydroxylase (PAH) enzyme. Here, we report the spectrum and the frequency of mutations in the PAH gene and discuss genotype-phenotype correlation in 34 unrelated patients with PKU from Serbia and Montenegro. Using both polymerase chain reaction-restriction fragment length polymorphism and 'broad-range' denaturing-gradient gel electrophoresis/DNA sequencing analysis, 19 disease-causing mutations were identified, corresponding to mutation detection rate of 97%. The most frequent ones were L48S (21%), R408W (18%), P281L (9%), E390G (7%) and R261Q (6%), accounting for 60% of all mutant alleles. The genotype-phenotype correlation was studied in homozygous and functionally hemizygous patients. We found that the most frequent mutation, L48S, was exclusively associated with the classical (severe) PKU phenotype. The mutation E390G gave rise to mild PKU. For the mutation R261Q, patients had been recorded in two phenotype categories. Considering allele frequencies, PKU in Serbia and Montenegro is heterogeneous, reflecting numerous migrations over the Balkan Peninsula.  相似文献   

4.
5.
In the present study, 115 Brazilian families with phenylketonuria (PKU), mainly from the Southeast of the country, were studied using three laboratory methods (DGGE, SSCP, and sequencing). All 13 exons of the PAH gene were analyzed, including the splicing sites and the promoter region. We identified 50 distinct mutations and characterized 91% of the mutant alleles. The five most prevalent mutations of the 50 mutations identified (50% of the PKU alleles) were IVS10nt-11G-->A (17.4%), followed by R261Q (12.2%), V388M (9.1%), R252W (6.5%), and R270K (4.8%). The other mutations were rare. The mutation spectrum included 10 novel mutations (IVS5nt-54A-->G, IVS6nt17G-->T, E205A, F240S, K274E, I318T, L321L, C357G, IVS11nt17G-->A, and S411X). To characterize the origin and distribution of the PAH alleles we determined the association between the detected mutations and the PCR/RFLP haplotypes and VNTR alleles located on the PAH gene. For those patients whose mutant alleles were detected, we calculated the correlation with pretreatment phenylalanine levels, thus establishing a genotype/phenotype correlation. The present results confirm the marked heterogeneity observed at the PAH locus and contribute to the understanding of the distribution and frequency of PKU mutations in the Brazilian population.  相似文献   

6.
Since 1999 an increasing number of patients with phenylalanine hydroxylase (PAH) deficiency are reported to be able to decrease their plasma phenylalanine (Phe) concentrations after a 6R-tetrahydrobiopterin (BH(4)) challenge. The majority of these patients have mild PKU or MHP (mild hyperphenylalaninemia) and harbour at least one missense mutation in the PAH gene associated with this phenotype. The rate of decrease and the lowest achieved Phe level vary between patients with different genotypes but appears to be similar in patients with the same genotype. A number of the mutations associated with BH(4)-responsiveness have been studied in an 'in vitro' eukaryotic cell expression system leading to biosynthesis of a mutant PAH enzyme with some residual activity. Patients bearing mutations that cause severe structural distortion in the expressed protein (loss of function mutations), leading to undetectable PAH activity, are not responsive to BH(4). These observations suggest that residual PAH activity (in vitro) is a prerequisite for BH(4)-responsiveness. However, an in vitro residual PAH activity is not a guarantee for in vivo BH(4)-responsiveness. Mechanisms behind this responsiveness could be relieve of decreased binding affinity for BH(4), BH(4)-mediated increase of PAH gene expression or stabilization of the mutant enzyme protein by BH(4). BH(4)-responsive PAH-deficient patients have only been reported since 1999. For the western countries this is explained by the fact that the manufacturer changed the diastereoisomeric purity of the BH4 preparation from 69% of the natural 6R-BH4 (31% of 6S-BH4) to 99.5% 6R-BH4. The new findings on BH(4)-responsiveness may be of clinical relevance because these patients can be treated with BH(4) with concomitant relief or withdrawal of the burdensome PKU diet. These observations warrant further clinical studies to assess efficacy, optimal dosage, and safety of BH(4) treatment in this group. The data strongly emphasize the necessity of the BH(4) loading test in patients detected in the newborn PKU screening.  相似文献   

7.
The genetic defects responsible for most phenylketonuria (PKU) and hyperphenylalaninemia (HPA) cases are located in the phenylalanine hydroxylase (PAH) gene. Approximately 50-60 mutations have been reported in Caucasians and are reflected in a wide range of clinical severities. Most mutations are linked to specific haplotypes, as defined by eight polymorphic restriction sites in the PAH gene. We hypothesized that there is at least one mild mutation linked to haplotype 12 in the Swedish PKU/HPA population, since 7 of 8 patients carrying haplotype 12 had mild HPA. Sequence analysis revealed a C-to-G transversion at the second base of codon 322, resulting in a substitution of glycine for alanine, in four mutant haplotype 12 genes, and a G-to-A transition at the second base of codon 408, resulting in a substitution of glutamine for arginine, in another three mutant haplotype 12 genes. These mutations segregated with mutant haplotype 12 alleles in nuclear families but were not present on normal or other mutant alleles. Both mutations were tested in a eukaryotic expression system in which enzyme activities of different mutant PAH enzymes reflect the relative severities of the mutations, although these in vitro activities cannot be translated directly into in vivo hepatic activities. The A322G mutant PAH had about 75% and the R408Q mutant PAH about 55% of the wild-type PAH enzyme activity. These in vitro activities are the highest reported for mutant PAH enzymes produced in the same expression system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We identified 14 mutations in 15 Japanese subjects from 13 families with galactose-1-phosphate uridyltransferase (GALT) deficiency using denaturing gradient gel electrophoresis (DGGE) and direct sequence analysis. These mutations accounted for 22 (96%) of 23 mutant alleles in 15 Japanese subjects. The mutational spectrum included nine missense mutations (M142V, G179D, A199T, R231H, W249R, N314D, P325L, R333Q, and R333W), two deletions (L275fsdelT and Q317fsdelC), a nonsense mutation (W249X), and two splicing mutations (V85-N97fsdel38bp and IVS4nt+1). Ten of the 14 mutations have not been reported in Caucasians. Differences in frequency and spectrum of GALT mutations suggest that the mutations may have occurred after racial divergence of Caucasians and Asians. The Duarte variant in Japanese was associated with the N314D mutation, g.1105G > C, g.1323G > A, and g.1391G > A (SacI -) polymorphisms, as in Caucasians. The Duarte variant may have occurred before racial divergence, and was an ancient mutation. In vitro GALT activities of nine missense mutations were determined by a COS cell expression system, and indicated between 1.3% and 35% of wild-type control. Patients with R333Q (29% in vitro GALT activity) or A199T (35%) showed mild clinical phenotypes, i.e. no ovarian failure or neurological deterioration. Genotype determination is useful for predicting biochemical and clinical phenotypes in classic galactosaemia, and can be of further help in managing patients with this disorder.  相似文献   

9.
10.
The molecular basis of PAH deficiency in the Sicilian population is characterized by a marked heterogeneity, with 44 mutations at a single locus identified by a "gene-scanning" approach and accounting for a detection rate of 91%. The remaining 9% of PAH alleles does not bear mutations in any of the 13 exons and 24 exon/intron junctions. Three mutations IVS10nt-11 G > A, R261Q, and A300S accounted for 30.5%, whereas the remaining mutations were found at relative frequencies of less than 5% and 20 mutations were observed once only. Five mutations have been detected only in Sicilians so far. By studying the association of mutations with intragenic STR-VNTR haplotypes ("minihaplotypes"), "identity by descent" has been established for 24 mutations also detected in other populations. This finding supports the hypothesis of a multipolar origin for a large proportion of PAH mutant alleles currently detected in Sicilians. In order to improve our understanding of the clinical heterogeneity of PAH deficiency in this population, we have for the first time analyzed three missense mutations L41F, T92I, and P211T in vitro by the pCDNA3/COS-7 eukaryotic expression system and found an activity of 10, 76, and 72%, respectively, compared to normal PAH. In two HPA patients with mild PKU and mild hyperphenylalaninemia (MHP), harboring respectively L41F/R261Q and T92I/P281L genotypes, the predicted biochemical effect of these genotypes appeared to be consistent with the metabolic phenotypes. In contrast, discordant metabolic phenotypes (mild PKU and MHP) were observed in two unrelated patients bearing the same R261Q/P211T genotype, a finding which underscores the complex relationship linking genotype to phenotype in PAH deficiency. Hypotheses on the possible mechanisms responsible for the observed discordance are discussed. The spectrum of PAH gene mutations in Sicily reflects the complex demographic history of this island at the crossroad of prehistoric and historical migrations in the Mediterranean sea. The data presented in this study also add to the present knowledge on the relationship between PAH genotypes and HPA phenotype and are expected to improve PAH genotyping among individuals with hyperphenylalaninemia.  相似文献   

11.
We studied the functional and structural effects of two unique missense mutations in CYP21 found in patients with simple virilizing congenital adrenal hyperplasia. The rare variants L300F and V281G were found in two girls who were each hemizygous for one of the mutations. Functional analysis after expression in COS-1 cells revealed that the mutant enzymes had reduced enzymatic activity for conversion of both 17-hydroxyprogesterone (L300F 9.5%, V281G 3.9% of normal) and progesterone (L300F 4.4%, V281G 3.9% of normal). Both mutant enzymes had an increased degradation in mammalian COS-1 cells compared to the normal protein, although the L300F variant affected the degradation pattern to a greater extent. Our data indicate that the residue L300 is important in maintaining normal structure of the 21-hydroxylase enzyme whereas mutations affecting V281 most likely cause impaired enzyme activity by interfering with a specific function(s) of the protein.  相似文献   

12.
We present the results of a comprehensive analysis of mutations, polymorphisms and haplotypes in the phenylalanine hydroxylase (PAH) gene in 39 Croatian families with phenylketonuria (PKU). A total of 21 disease-causing mutations was identified on 78 out of 79 independent chromosomes. The commonest mutation, R408W on haplotype 2 was found with a relative frequency of 37 %. P281L accounted for 11 %, R261Q and E390G each for 9 % of mutant chromosomes. There were three novel mutations: L249P (c.746T>C) in exon 7, IVS8+2T>C (c.912T>C) in intron 8, and F402L (c.1206T>G) in exon 12 of the PAH gene. Two known PKU mutations were found in cis on the same chromosome in one family, highlighting the need to perform full mutation scanning in recessive disease genes for molecular diagnosis even if two known mutations have been identified in a patient. This is the first comprehensive report on PKU mutations in southeastern Europe, adding to the growing bulk of molecular data for population genetic investigations.  相似文献   

13.
《Molecular immunology》2015,66(2):367-376
Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation, characterized by hemolytic anemia, thrombocytopenia and acute renal failure. Mutations in complement inhibitors are major risk factors for development of aHUS. The three aHUS patients reported in this study had several previously identified alterations in complement inhibitors; e.g. risk haplotypes in CD46 and factor H but we also identified two novel heterozygous non-synonymous CD46 alterations (p.E142Q and p.G259V). Presence of G259V caused decreased expression of the recombinant mutant CD46 compared to wild type (WT). Western blot analysis showed that the majority of the expressed G259V protein was in the precursor form, suggesting that it is processed less efficiently than WT. Low CD46 expression on the surface of the patient's neutrophils confirmed the in vitro results. Further, G259V had a substantially impaired ability to act as a cofactor to factor I, in the degradation of both C3b and C4b. The E142Q mutant showed neither decreased expression nor impaired function. Two of the patients also had a heterozygous non-synonymous alteration in factor H (p.Q950H), reported previously in aHUS but not functionally tested. This variant showed moderately impaired function in hemolytic assays, both using patient sera and recombinant proteins. The recombinant Q950H also showed a somewhat decreased expression compared to WT but the complement inhibitory function in fluid phase was normal. Taken together, we report a novel CD46 alteration showing both a decreased protein expression and substantially impaired cofactor function (G259V) and another without an effect on expression or cofactor function (E142Q). Moreover, mild consequences of a previously reported aHUS associated rare variant in factor H (Q950H) was also revealed, underlining the clear need for functional characterization of each new aHUS associated mutation.  相似文献   

14.
目的 了解新疆地区苯丙氨酸羟化酶(phenylalanine hydroxylase,PAH)基因的突变规律及特点.方法 应用聚合酶链反应一单链构象多态性分析及基因测序列方法 ,检测46例苯丙酮尿症患者PAH基因第3、5、6、7、11和12外显子及其两侧内含子序列.结果 在92个PAH等位基因中共检出20种不同的突变基因,总检出率为73.9%(68/92).其中常见基因突变R243Q、EX6-96A>G、R111X、Y356X和V399V与我国北方地区基本类似.较常见基因突变F161S、L255S、P281L和R413P与国内其他地区相比差异较大.E280G和A434D为在国际上第2次检出;L255S、P281L、R261Q和165T为在国内第2次检出.新疆少数民族也发现了13种PAH基因突变,均系在本民族中首次报道,其突变基因的类型表现出鲜明的民族特色.结论 从对新疆地区PAH突变基因的研究结果 来看,该地的遗传基因不仅具有独立、保守的特性,而且还存在着相互交叉、相互融合的特征.  相似文献   

15.
Missense mutations account for 48% of all reported human disease-causing alleles. Since few are predicted to ablate directly an enzyme's catalytic site or other functionally important amino acid residues, how do most missense mutations cause loss of function and lead to disease? The classic monogenic phenotype hyperphenylalaninemia (HPA), manifesting notably as phenylketonuria (PKU), where missense mutations in the PAH gene compose 60% of the alleles impairing phenylalanine hydroxylase (PAH) function, allows us to examine this question. Here we characterize four PKU-associated PAH mutations (F39L, K42I, L48S, I65T), each changing an amino acid distant from the enzyme active site. Using three complementary in vitro protein expression systems, and 3D-structural localization, we demonstrate a common mechanism. PAH protein folding is affected, causing altered oligomerization and accelerated proteolytic degradation, leading to reduced cellular levels of this cytosolic protein. Enzyme specific activity and kinetic properties are not adversely affected, implying that the only way these mutations reduce enzyme activity within cells in vivo is by producing structural changes which provoke the cell to destroy the aberrant protein. The F39L, L48S, and I65T PAH mutations were selected because each is associated with a spectrum of in vivo HPA among patients. Our in vitro data suggest that interindividual differences in cellular handling of the mutant, but active, PAH proteins will contribute to the observed variability of phenotypic severity. PKU thus supports a newly emerging paradigm both for mechanism whereby missense mutations cause genetic disease and for potential modulation of a disease phenotype.  相似文献   

16.
We screened 160 unrelated Chinese hypertriglyceridemic subjects for sequence alterations in the promoter and the 10 exons of the lipoprotein lipase (LPL) gene. We identified one reported mutation (L252R), one common polymorphism (S447X), and six novel mutations: V181I, C283Y, S298R and S338F (found in single individuals), L252V (in two individuals), and A71T (in three individuals). Screening of family members of the above probands revealed a total of 19 mutation carriers, most of whom, though not all, displayed reduced LPL activity and mass when compared to normolipidemic control subjects. In in vitro expression studies, A71T, V181I, L252R, L252V and C283Y decreased the specific activity of the gene product. Interestingly, S298R had no effect on the catalytic activity while S338F increased it. A71T and C283Y reduced the secretion of the mutant proteins significantly while V181I, S298R and S338F had mild effects only. The total LPL mass of all the mutant constructs was reduced compared to that of the wild type construct, probably due to the instabilities of the mutant mRNA or the mutant protein. The heterogeneity in phenotypic effects of these mutations is a likely consequence of their variable effects on proteoglycan binding, conformation and interactions with other secondary genetic or environmental factors.  相似文献   

17.
Mental illness in mild PKU responds to biopterin   总被引:2,自引:0,他引:2  
A 25-year-old woman with mild hyperphenylalaninemia developed disabling depression and panic attacks. The mutations on the phenylalanine hydroxylase gene indicated that she might be responsive to tetrahydrobiopterin therapy. Mutation analyses were performed by the John F. Kennedy Institute in Glostrup, Denmark. The response to tetrahydrobiopterin therapy was impressive at an oral dose of 50 mg twice a day. A 25-year-old woman with mild hyperphenylalaninemia due to a PAH mutation of IVS12nt1g-->a/E390G has been treated for 1 year with BH4 therapy. A maintenance dosage of only 100 mg/day has resulted in significant improvement of depression and panic attacks, with discontinuation of psychotropic medication.  相似文献   

18.
BackgroundResidual phenylalanine hydroxylase (PAH) activity is the key determinant for the phenotype severity in phenylketonuria (PKU) patients and correlates with the patient's genotype. Activity of in vitro expressed mutant PAH may predict the patient's phenotype and response to tetrahydrobiopterin (BH4), the cofactor of PAH.MethodsA robust LC–ESI-MSMS PAH assay for the quantification of phenylalanine and tyrosine was developed. We measured PAH activity a) of the PAH mutations p.Y417C, p.I65T, p.R261Q, p.E280A, p.R158Q, p.R408W, and p.E390G expressed in eukaryotic COS-1 cells; b) in different cell lines (e.g. Huh-7, Hep3B); and c) in liver, brain, and kidney tissue from wild-type and PKU mice.ResultsThe PAH assay was linear for phenylalanine and tyrosine (r2  0.99), with a detection limit of 105 nmol/L for Phe and 398 nmol/L for Tyr. Intra-assay and inter-assay coefficients of variation were < 5.3% and < 6.2%, respectively, for the p.R158Q variant in lower tyrosine range. Recovery of tyrosine was 100%. Compared to the wild-type enzyme, the highest PAH activity at standard conditions (1 mmol/L L-Phe; 200 μmol/L BH4) was found for the mutant p.Y417C (76%), followed by p.E390G (54%), p.R261Q (43%), p.I65T (33%), p.E280A (15%), p.R158Q (5%), and p.R408W (2%). A relative high PAH activity was found in kidney (33% of the liver activity), but none in brain.ConclusionsThis novel method is highly sensitive, specific, reproducible, and efficient, allowing the quantification of PAH activity in different cells or tissue extracts using minimum amounts of samples under standardized conditions.  相似文献   

19.
(L597V)BRAF mutations are acquired somatically in human cancer samples and are frequently coincident with RAS mutations. Germline (L597V)BRAF mutations are also found in several autosomal dominant developmental conditions known as RASopathies, raising the important question of how the same mutation can contribute to both pathologies. Using a conditional knock-in mouse model, we show that endogenous expression of (L597V)Braf leads to approximately twofold elevated Braf kinase activity and weak activation of the Mek/Erk pathway. This is associated with induction of RASopathy hallmarks including cardiac abnormalities and facial dysmorphia but is not sufficient for tumor formation. We combined (L597V)Braf with (G12D)Kras and found that (L597V)Braf modified (G12D)Kras oncogenesis such that fibroblast transformation and lung tumor development were more reminiscent of that driven by the high-activity (V600E)Braf mutant. Mek/Erk activation levels were comparable with those driven by (V600E)Braf in the double-mutant cells, and the gene expression signature was more similar to that induced by (V600E)Braf than (G12D)Kras. However, unlike (V600E)Braf, Mek/Erk pathway activation was mediated by both Craf and Braf, and ATP-competitive RAF inhibitors induced paradoxical Mek/Erk pathway activation. Our data show that weak activation of the Mek/Erk pathway underpins RASopathies, but in cancer, (L597V)Braf epistatically modifies the transforming effects of driver oncogenes.  相似文献   

20.
In the present study we report on the identification of ten novel mutations in the phenylalanine hydroxylase (PAH) gene of Brazilian patients with phenylketonuria (PKU): IVS5-54A>G, IVS6+17G>T, E205A, F240S, K274E, I318T, L321L, C357G, IVS11+17G>A and S411X. These mutations were detected during the characterization of the PAH genotypes of 115 patients with PKU from the southeast region of Brazil. The results obtained confirm the high heterogeneity of the PAH gene and provide information about the distribution of PKU mutations in the Brazilian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号